Mining Airfare Data to Minimize Ticket Purchase Price

Oren Etzioni (UW) Craig Knoblock (USC) Alex Yates (UW) Rattapoom Tuchinda (USC)

Consumers' Dilemma

To Buy or Not to Buy...that is the question..

Data mining \rightarrow Price drops

Advisor Model

Consumer wants to buy a ticket.
 Hamlet: 'buy' (this is a good price).
 Or: 'wait' (a better price will emerge).
 Notify consumer when price drops.

Arbitrage Model

- "going price" is \$900.
- 2. Hamlet anticipates a price of \$400.
 - 3. Hamlet offers a \$600 fare.
- 4. Hamlet buys when the price drops to \$400.
 - 5. Consumer saves \$300; Hamlet earns \$200.
- (of course, Hamlet could lose money!)

Will Flights sell out?

- 1. Watch the number of empty seats.
- 2. Upgrade to business class.
 - 3. Place on another flight and give a free ticket.
 - In our experiment: upgrades were sufficient.

Is Airfare Prediction Possible???

Complex "yield management" algorithms.
 - airlines have tons of historical data.
 Exogenous events create randomness.

How about the stock market?
True markets are unpredictable.
For Hamlet, prices are set by the airlines!

Surprising Experimental Result

Savings: buy immediately versus Hamlet. Optimal: buy at the best possible time.

HAMLET's savings were 61.8% of optimal!

Though it be madness, yet there be method in it.

Data Set

Used Fetch.com's data collection infrastructure.

- Collected over 12,000 price observations:
 - Lowest available fare for a one-week roundtrip. LAX-BOS and SEA-IAD.
 - 6 airlines including American, United, etc.
 - 21 days before each flight, every 3 hours.

Learning Task Formulation

Input: price observation data.

Algorithm: label observations (decision point); run learner.

Output: Classify each decision point → buy versus wait.

Formulation Fine Points

Want to learn from the latest data.

Run learner nightly to produce a new model.

- Learner is trained on data gathered to date.

Learned policy is a sequence of 21 models.

Test set: 8 * 21 decision points for the last 1/3 of the flights.

the the the			\supset
	Labeling	Training Data	
	O n	ow	takeoff
	5 days	11 days	

IF price drops between and now THEN label(O)=wait ELSE label(O) \rightarrow Pr(price will drop between now and takeoff)

We estimate Pr based on behavior of past flights.

Candidate Approaches

Fixed: "asap", 14 days prior, 7 days,... By hand: an expert looks at the data. **Time series:** $P_t = F(P_{t-1}, P_{t-2}, ..., P_1).$ – Not effective at price jumps! Reinforcement learning: Q-learning. - Used in computational finance. & Rule learning: Ripper, …

Ripper

• Features include price, airline, route, hoursbefore-takeoff, etc.

•Learned 20-30 rules...

IF hours-before-takeoff ≥ 252 AND price ≥ 2223 AND route = LAX-BOS THEN *wait*.

Simple Time Series

Predict price using a fixed window of k price observations weighted by α.

We used a linearly increasing function for α

$$p_{t+1} = \frac{\sum_{i=1}^{k} \alpha(i) p_{t-k+i}}{\sum_{i=1}^{k} \alpha(i)}$$

Q-learning

Natural fit to problem

$$Q(a,s) = R(a,s) + \gamma \cdot \max_{a'} (Q(a',s'))$$

$$Q(b,s) = -price(s)$$

$$Q(w,s) = \begin{cases} -300000 & \text{if flight sells out after } s.\\ \max(Q(b,s'), Q(w,s')) & \text{otherwise.} \end{cases}$$

Hamlet

Stacking with three base learners:
1. Ripper (e.g., R=wait)
2. Time series
3. Q-learning (e.g., Q=buy)
Ripper used as the meta-level learner.
Output: classifies each decision point as

'buy' or 'wait'.

Experimental Results

Real price data; Simulated passengers.

- Uniform distribution over decision points. (sensitivity)
 Requesting specific flights (also 3hr interval).
- Learner run once per day on "past data".
- Execution: label each purchase point until buy (or sell out).
- Compute savings (or loss).

Savings by Method

Net savings = cost now - cost at purchase point.
Penalty for sell out = upgrade cost. 0.42% of the time.

Total ticket cost is \$4,579,600.

Sensitivity Analysis

Passenger requests any nonstop flight in a 3 hour interval:

Upgrade Penalty

Hamlet	\$38,743	0.42%
Q-learning	\$29,444	0.49%
Time Series	\$693,105	33.00%
Ripper	\$33,340	0.45%
By hand	\$22,472	0.36%
Optimal	\$0	0%
Method	Upgrade Cost	% Upgrades

Discussion

76% of the time --- no savings possible.

- Uniform distribution over 21 days.
 - 33% of the passengers arrived in the last week.
 - No passengers arrived >21 days before.

Simulation understates possible savings!

Savings on "Feasible" Flights

Method	Net Savings
Optimal	30.6%
By hand	21.8%
Ripper	20.1%
Time Series	25.8%
Q-learning	21.8%
Hamlet	23.8%

Comparison of Net Savings (as a percent of total ticket price) on Feasible Flights

Related Work

Trading agent competition. - Auction strategies W Temporal data mining. Time Series. Computational finance.

Future Work

More tests: international, multi-leg, hotels, etc. Cost sensitive learning (tried MetaCost). Additional base learners Bagging/boosting Refined predictions Commercialization: patent, license.

Conclusions

Dynamic pricing is prevalent.
 Price mining a-la-Hamlet is feasible.
 Price drops can be surprisingly predictable.
 Need additional studies and algorithms.
 Great potential to help consumers!

All's well that ends well.

Savings by Method

Savings over "buy now".
Penalty for sell out = upgrade cost.
Total ticket cost is \$4,579,600.

Method	Savings	Losses	Upgrade Cost	% Upgrades	Net Savings	% Savings	% of Optimal
Optimal	\$320,572	\$0	\$0	0%	\$320,572	7.0%	100.0%
By hand	\$228,318	\$35,329	\$22,472	0.36%	\$170,517	3.8%	53.2%
Ripper	\$211,031	\$4,689	\$33,340	0.45%	\$173,002	3.8%	54.0%
Time Series	\$269,879	\$6,138	\$693,105	33.00%	-\$429,364	-9.5%	-134.0%
Q-learning	\$228,663	\$46,873	\$29,444	0.49%	\$152,364	3.4%	47.5%
Hamlet	\$244,868	\$8,051	\$38,743	0.42%	\$198,074	4.4%	61.8%

Sensitivity Analysis

Passenger requests any nonstop flight in a 3 hour interval:

Method	Net Savings	% of Optimal	% upgrades
Optimal	\$323,802	100.0%	0.0%
By hand	\$163,523	55.5%	0.0%
Ripper	\$173,234	53.5%	0.0%
Time Series	-\$262,749	-81.1%	6.3%
Q-Learning	\$149,587	46.2%	0.2%
Hamlet	\$191,647	59.2%	0.1%

Another Chart

