
Mining Airfare Data to Minimize 
Ticket Purchase Price 

Oren Etzioni (UW)   Craig Knoblock          (USC)  
Alex Yates    (UW)   Rattapoom Tuchinda (USC) 



Etzioni, UW 2 

Price change over time for American Airlines flight 
#192:223, LAX-BOS, departing on Jan. 2. 



Etzioni, UW 3 

Consumers’ Dilemma 

To Buy or Not to Buy…that is the question.. 

Data mining à Price drops 
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Advisor Model 

1.  Consumer wants to buy a ticket. 
2.  Hamlet: ‘buy’ (this is a good price). 
3.   Or: ‘wait’ (a better price will emerge). 
4.  Notify consumer when price drops. 
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Arbitrage Model 

1.  “going price” is $900. 
2.  Hamlet anticipates a price of $400. 
3.  Hamlet offers a $600 fare. 
4.  Hamlet buys when the price drops to $400. 
5.  Consumer saves $300; Hamlet earns $200. 
(of course, Hamlet could lose money!) 
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Will Flights sell out? 

1.  Watch the number of empty seats. 
2.  Upgrade to business class. 
3.  Place on another flight and give a free ticket. 

In our experiment: upgrades were sufficient. 
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Is Airfare Prediction Possible??? 

"  Complex “yield management” algorithms. 
 - airlines have tons of historical data. 

"  Exogenous events create randomness. 
 

How about the stock market? 
"  True markets are unpredictable. 
"  For Hamlet, prices are set by the airlines! 
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Surprising Experimental Result 

Savings: buy immediately versus Hamlet. 
Optimal: buy at the best possible time. 
 

Though it be madness, yet there be 
method in it. 

 

HAMLET’s savings were  61.8% of optimal! 
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Data Set 

"  Used Fetch.com’s data collection infrastructure. 
"  Collected over 12,000 price observations: 

–  Lowest available fare for a one-week roundtrip. 
–  LAX-BOS and SEA-IAD. 
–  6 airlines including American, United, etc. 
–  21 days before each flight, every 3 hours. 
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Learning Task Formulation 

Input: price observation data. 
 
Algorithm: label observations (decision point); 

          run learner. 
 
Output: Classify each decision point à 

 buy versus wait. 
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Formulation Fine Points 

"  Want to learn from the latest data. 
"  Run learner nightly to produce a new model. 

–  Learner is trained on data gathered to date. 
"  Learned policy is a sequence of 21 models. 

"  Test set:  8 * 21 decision points for the last 1/3 of 
the flights. 
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Labeling Training Data 

IF price drops between  and now THEN label(O)=wait 
ELSE label(O) à Pr(price will drop between now and takeoff) 

takeoff now O 

5 days 11 days 

We estimate Pr based on behavior of past flights. 
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Candidate Approaches 

"  Fixed: “asap”, 14 days prior, 7 days,… 
"  By hand: an expert looks at the data. 
"  Time series: 

–  Not effective at price jumps! 
"  Reinforcement learning: Q-learning. 

–  Used in computational finance. 
"  Rule learning: Ripper, … 
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Ripper  

  

. THEN BOS-LAX  route AND
 2223  price AND 252  takeoff-before-hours IF

wait=

≥≥

•  Features include price, airline, route, hours-
before-takeoff, etc. 

• Learned 20-30 rules… 
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Simple Time Series 

"   Predict price using a fixed window of k price 
observations weighted by α. 

"  We used a linearly increasing function for α 
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Q-learning 

Natural fit to problem 
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Hamlet 

"   Stacking with three base learners: 
1.  Ripper  (e.g., R=wait) 
2.  Time series 
3.  Q-learning  (e.g., Q=buy) 

"   Ripper used as the meta-level learner. 
"   Output: classifies each decision point as 
                ‘buy’ or ‘wait’. 
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Experimental Results 

"  Real price data; Simulated passengers. 
–  Uniform distribution over decision points. (sensitivity) 

Requesting specific flights (also 3hr interval). 
"  Learner run once per day on “past data”. 
"  Execution: label each purchase point until buy      

  (or sell out). 
"  Compute savings (or loss). 
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Net Savings by Method
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Savings by Method 
• Net savings = cost now – cost at purchase point. 
• Penalty for sell out = upgrade cost. 0.42% of the time. 
• Total ticket cost is $4,579,600. 
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Interval Savings
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Sensitivity Analysis 

"  Passenger requests any nonstop flight in a 3 
hour interval: 
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Upgrade Penalty 

Method Upgrade Cost % Upgrades
Optimal $0 0%
By hand $22,472 0.36%
Ripper $33,340 0.45%
Time Series $693,105 33.00%
Q-learning $29,444 0.49%
Hamlet $38,743 0.42%
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Discussion 

"  76% of the time --- no savings possible. 
"  Uniform distribution over 21 days. 
"  33% of the passengers arrived in the last week. 
"  No passengers arrived  >21 days before. 

Simulation understates possible savings! 
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Savings on “Feasible” Flights 

Method Net Savings
Optimal 30.6%
By hand 21.8%
Ripper 20.1%
Time Series 25.8%
Q-learning 21.8%
Hamlet 23.8%

Comparison of Net Savings (as a percent 
of total ticket price) on Feasible Flights 
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Related Work 

"  Trading agent competition. 
–  Auction strategies 

"  Temporal data mining. 
"  Time Series. 
"  Computational finance. 
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Future Work 

"  More tests: international, multi-leg, hotels, etc. 
"  Cost sensitive learning (tried MetaCost). 
"  Additional base learners 
"  Bagging/boosting 
"  Refined predictions 
"  Commercialization: patent, license. 
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Conclusions 

1.  Dynamic pricing is prevalent. 
2.  Price mining a-la-Hamlet is feasible. 
3.  Price drops can be surprisingly predictable. 
4.  Need additional studies and  algorithms. 
5.  Great potential to help consumers! 

All’s well that ends well. 
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Savings by Method 

Method Savings  Losses Upgrade Cost % Upgrades Net Savings % Savings % of Optimal
Optimal $320,572 $0 $0 0% $320,572 7.0% 100.0%
By hand $228,318 $35,329 $22,472 0.36% $170,517 3.8% 53.2%
Ripper $211,031 $4,689 $33,340 0.45% $173,002 3.8% 54.0%
Time Series $269,879 $6,138 $693,105 33.00% -$429,364 -9.5% -134.0%
Q-learning $228,663 $46,873 $29,444 0.49% $152,364 3.4% 47.5%
Hamlet $244,868 $8,051 $38,743 0.42% $198,074 4.4% 61.8%

• Savings over “buy now”. 
• Penalty for sell out = upgrade cost. 
• Total ticket cost is $4,579,600. 
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Sensitivity Analysis 

"  Passenger requests any nonstop flight in a 3 
hour interval: 

Method Net Savings % of Optimal % upgrades
Optimal $323,802 100.0% 0.0%
By hand $163,523 55.5% 0.0%
Ripper $173,234 53.5% 0.0%
Time Series -$262,749 -81.1% 6.3%
Q-Learning $149,587 46.2% 0.2%
Hamlet $191,647 59.2% 0.1%
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Another Chart 

Savings by Method
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