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Information mediators

Flexible integration of heterogeneous information 
sources (databases, texts, web pages etc.)
Key ideas:
» users access data through a domain model
» information sources represented by a source model
» the mediator reformulates domain model query into source 

model sub-queries
» the mediator constructs a query plan that determines the 

orders of data flow and execution to retrieve data 

Enable new applications of information systems
» E-commerce, global health-care IS, etc.
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Query planning in information 
mediators

output

retrieve assets@unisys
assets(?ship ?draft):-
assets(?ship,?id,?draft),
id-code = “2701”. join

(?draft < ?depth)assets@unisys

geo@isi

Query: Retrieve seaports deep enough for ship “2701”.

geo@isi
geo@isi
geo@isi

retrieve geo@isi
geo(?port ?name ?depth):-
seaport(?port,?name,?depth)
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Latest work in information mediators

IM
» Levy, Srivastava, Kirk, et al. At AT&T Lab
» query reformulation, relevant source selections

TSIMMS
» Hammer, Garcia-Molina, Papakonstantinou, Ullman at 

Stanford
» object-based data modeling

SIMS
» Arens, Knoblock, Chunnan Hsu, et al. at ISI of USC
» flexible query planner, adaptive semantic query optimizer
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Input Query
Give me all the papers
written by “Chunnan”

Optimized Query
Give me all the “AI” papers

written by “Chunnan”

Semantic Rules

Databases

PESTO
Query Optimizer

R1: If AUTHOR is an “AIer”
⇒ PAPER is “AI” paper

R2: “Chunnan” is an “AIer”
R3: ...                   

BASIL
learner/KDDer

Basic idea of adaptive 
semantic query optimization
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Novel features and contributions of 
PESTO

Use more expressive relational rules
Optimize a larger class of queries
» queries with arbitrary join topology
» joins with multiple comparand attributes
» unions, intersections, other set operators

Therefore…
» detect more optimization opportunities
» execute queries faster

See 
» Hsu & Knoblock 93 (CIKM93) 
» Hsu & Knoblock 97 (Submitted to IEEE TKDE)

NEW

NEW
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Using relational rules in 
semantic query optimization

Range rules are propositional
» IF seaport(?port-name,?city,?storage,_,_) ∧

city(?city,“Malta”,_,_) 
⇒ ?storage > 2,000,000

Relational rules are first-ordered, predicate logic
» IF city(?city,?population,_,_) ∧ ?population > 3,000,000

⇒ airport(?airport-name,?city,_,_)
Relational rules are useful in detecting unnecessary 
relational joins 
» the dominant cost factor of query execution
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Desiderata of learning

Input Query
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Semantic
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Equivalence of 
Q and q

Induce alternative query and 
operational rules

Query Q

Database

Inductive query 
formation

Alternative
Query q

Operationalization
rule pruning

Semantic rules

+
+
+



CSE ASU 11AIS Conference, 1997

Inductive formation of efficient 
equivalent query

A                 1.5               2        -
B                 1.8               2        -
C                 0.7               2        +
B                 1.4               2        -
B                 0.8               1        -
C                 0.6               2        +
A                 1.6               2        -
A                 2.8               2        -

A1 *            A2              A3 Candidates                  gain        cost          h
?A2=0.7 or 0.6             6            16        0.38
0.5 < ?A2 < 1               5            16        0.31
?A2 < 1                        5              8        0.62
?A3 = 2                        1              8        0.12
?A1 = “C” 6              1        6.00    *

Induced new query: Q’(?A1,?A2,?A3):-
DB(?A1,?A2,?A3), ?A1 = “C”.  (cost=1)

Input query:             Q(?A1,?A2,?A3):-
DB(?A1,?A2,?A3), ?A2 < 1, ?A3 = 2. (cost=9)

Database DB: Candidate sub-goals:
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Induce operational rules

Induce an equivalent query Q’ for Q from data
Q(?A1,?A2,?A3) :- DB(?A1,?A2,?A3), ?A2 < 1, ?A3 = 2.
Q’(?A1,?A2,?A3) :- DB(?A1,?A2,?A3), ?A1 = “C”.

Equivalence of Q’ and Q:
DB(?A1,?A2,?A3) ∧ (?A1 = “C”)

        ⇔ DB(?A1,?A2,?A3) ∧ (?A2 < 1) ∧ (?A3 = 2)

Derive Rules:     
DB(?A1,?A2,?A3) ∧ (?A1 = “C”) ⇒ (?A2 < 1)

       DB(?A1,?A2,?A3) ∧ (?A1 = “C”) ⇒ (?A3 = 2)
       DB(?A1,?A2,?A3) ∧ (?A2 < 1) ∧ (?A3 = 2) ⇒ (?A1 = “C”)
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Learning relational rules

Apply Inductive logic programming techniques 
(e.g., FOIL by Quinlan, 1990) in alternative query 
formation and operationalization
Key ideas:
» construct database sub-goals (e.g., db(?x,?y)) as well as 

built-in sub-goals (e.g., ?x > 100) as candidates
» use uniform evaluation heuristics for both types of sub-goals
» use a join-path graph to assure that resulting rules are valid 

in operationalization

See
» Hsu & Knoblock, 1994, Machine Learning Conference
» Hsu & Knoblock, 1996, New KDD book, MIT Press
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Novel features and contributions of 
BASIL

Learn relational rules
Adapt to changes of query patterns
Yield effective rules for optimization
Yield ROBUST rules, so that they will remain valid 
after database changes 
About robustness of knowledge, See
» Hsu & Knoblock 1995, KDD Conference
» Hsu & Knoblock 1996, AAAI Conference
» Hsu & Knoblock 1997, (invited to submit to new Data Mining 

/ KDD journal)

NEW



CSE ASU 15AIS Conference, 1997

Dealing with database changes

database state (t)

database state (t+1)

transactions:
insert/ delete/
update

Learning

Consistent?

Semantic rules
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Robustness of knowledge

Intuitively, robustness can be estimated as
# of database states consistent with the rule

# of possible database states 
Alternatively, a rule is robust given a current 
database state if transactions that invalidate the rule 
are unlikely to be performed.
New definition of robustness is 1 - Pr(t|d)
» t: transactions that invalidate the rule are performed
» d: database is in the current database state 
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Robustness estimation

Step 1: Identify the class of invalidating transactions
Step 2: Decompose each transaction into local 
variables based on a Bayesian network model of 
database transactions
Step 3: Estimate local probabilities using 
» Laplace Law of Succession (Laplace 1820) or
» m-Probability (Cestnik & Bratko 1991)

Use information available in a database:
» transaction log 
» expected size of tables, attribute range, distribution



CSE ASU 18AIS Conference, 1997

Step 1: Find Transactions that 
Invalidate the Input Rule

R1: The latitude of a Maltese Geographic location is 
greater than or equal to 35.89.
geoloc(_,_,?country,?latitude,_) & (?country = “Malta”) 

⇒ ?latitude > or = 35.89

Transactions that invalidate R1:
» T1: One of the existing tuples of geoloc with its country = 

“Malta” is updated such that its latitude < 35.89
» T2: Insert an inconsistent tuple...
» T3:Update a tuple whose latitude < 35.89 into “Malta”

Robust(R1) = 1 - Pr(t|d)
= 1 - (Pr(T1|d) + Pr(T2|d) + Pr(T3|d))
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Step 2: Decompose the Probabilities 
of Invalidating Transactions

x1:
type of 
transaction?

x4:
on which 
attribute?

x3:
on which
tuple?

x2:
on which database
relation?

x5:
what new 
attribute value?

Bayesian network model of  rule invalidating transactions
Pr(t|d) = Pr(x1,x2,x3,x4,x5|d)

= Pr(x1|d) Pr(x2| x3,d) Pr(x3|x2,d) Pr(x4| x2,d) Pr(x5| x4,d)
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Step 3: Estimate Local Probabilities

Estimate local probabilities using Laplace Law of 
Succession (Laplace 1820) 

r + 1
n + k

Useful information for robustness estimation:
» transaction log 
» expected size of tables
» information about attribute ranges, value distributions

When no information is available, use database 
schema information
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Example of Robustness Estimation 

R1: geoloc(_,_,?country,?latitude,_) & (?country = “Malta”) ⇒ 
?latitude > or = 35.89

T1: One of the existing tuples of geoloc with its country = “Malta” is 
updated such that its latitude < 35.89
» p1: update? 1/3 = 0.33
» p2: geoloc?    1/2 = 0.50
» p3: geoloc, country = “Malta”? 4/80 = 0.05
» p4: geoloc, latitude to be updated?  1/5 = 0.20
» p5: latitude updated to < 35.89? 1/2 = 0.5

Pr(T1|d) = p1 * p2 * p3 * p4 * p5 = 0.008
Pr(T2|d) and Pr(T3|d) can be estimated similarly
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Example (cont.): When additional 
information is available

Naive
» p1: update? 1/3 = 0.33

Laplace
» p1: update? # of previous updates + 1

# of previous transactions + 3

m-Probability (Cestnik & Bratko 1991)
» p1: update?             # of previous updates + m * Pr(U)

# of previous transactions + m
» m is an expected number of future transactions
» Pr(U) is a prior probability of updates
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Applying robustness estimation in 
rule induction

Learning effective and robust rules

database

Input query Q

domain
information

Inductive 
Learning

(Hsu & Knoblock ML94)

r1 (saving = 10)
r2 (saving = 15)
r3 (saving = 18)

Robustness
Estimation/Pruning

(Hsu & Knoblock AAAI96)

r1’ (saving = 10) 
(robustness = 0.93)

r2’ (saving = 15)
(robustness = 0.98) 

r3’ (saving = 18)
(robustness = 0.94)
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Rule maintenance

Rule Maintenance: Identify and repair inconsistent 
rules

Semantic rules
R1: 0.98
R2: 0.96
R3: 0.83
R4: 0.62

database state (t)

database state (t+1)

Update

Learning

Maintaining

Semantic rules
consistent     R1: 0.985

R2: 0.92
inconsistent  R3: 0.83

R4: 0.62
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Finale

PESTO saves up to 97%, and 41+% on average for 
simple multi-database query plans
Higher saving expected for complex, expensive query 
plans to web sources
All rules learned automatically by BASIL
Totally invisible from users
Will be essential of information mediators like SIMS 
For more information:
» Chunnan Hsu, PhD Thesis, 1996, U of Southern California
» mailto: chunnan@asu.edu
» http://www.isi.edu/sims/chunnan/


