

A Scalable Architecture for Extracting, Aligning, Linking, and Visualizing Multi-Int Data

Craig Knoblock & Pedro Szekely University of Southern California

Introduction

 Massive quantities of data available for analysis

– OSING, HUMINT, SIGINT, MASINT, GEOINT, ...


 Data is spread across multiple sources, multiple sites and multiple formats

- Databases, text, web sites, XML, JSON, etc...

- If an analyst could exploit all of this data, it could transform analysis
 - Disruptive technology for analysis

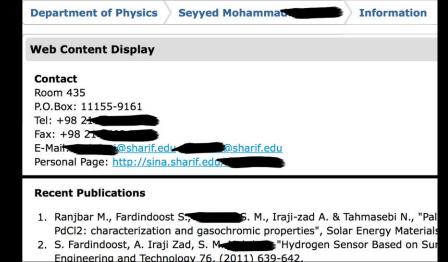
Solution: Domain-specific Insight Graphs

- Innovative architecture
 - Extracting, aligning, linking, and visualizing massive amounts of data
 - Domain-specific content from structured and unstructured sources

- Open architecture with flexible APIs
- Cloud-based infrastructure (HDFS, Hadoop, ElasticSearch, etc.)

Example Scenario

- Want to determine the nuclear know-how of a given country from open source data
- Analyze the universities, academics, publications, reports, articles within the country



Seyed Mohammad Professor, Chair Research Interests: Thin Films, Nanophysics, Optoelectronics, Email: Email: more... Homepage: http://phys.sharif.edu/web.

Abdollah Professor, Vice-chair for education Research Interests: Strongly Correlated Electron Systems Email: District Strongly Correlated Electron Systems Email: District Strongly Correlated Electron Systems Email: District Strongly Correlated Electron Systems

Homepage: http://sharif.edu

University of Southern California

Scenario Results

- Exploit the data available from
 - Web pages, publications, articles, etc.
- Produce a knowledge graph
 - Key people and connections
 - Technical capabilities and how they have changed over time

Department of Physics	Seyyed Mohammad	Information
Web Content Display		
Contact		
Room 435		
P.O.Box: 11155-9161		
Tel: +98 2 1		
Fax: +98 21		
E-Mait. <u>@sharif.edu</u>	<u>@sharif.edu</u>	
Personal Page: <u>http://sina.s</u>	harif.edu	

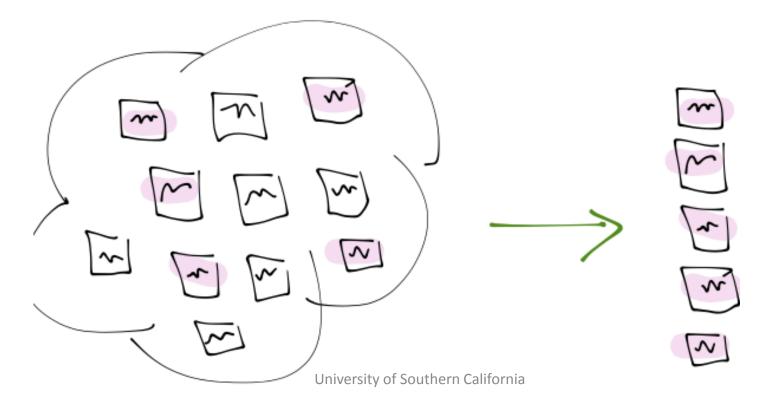
Research Interests

Optical properties of nanoparticles and nanostructures, work on gasochromic m random lasers and disorder optical systems.

Research Plan

Our group is studying on different materials which potentially can be used to materials using to prepare the samples for the above purposes is mostly pulsed laser

Recent Publications


- 1. Ranjbar M., Fardindoost S., Charles S. M., Iraji-zad A. & Tahmasebi N., "Pal PdCl2: characterization and gasochromic properties", Solar Energy Materials
- S. Fardindoost, A. Iraji Zad, S. Machine "Hydrogen Sensor Based on Sur Engineering and Technology 76. (2011) 639-642.

DIG Pipeline

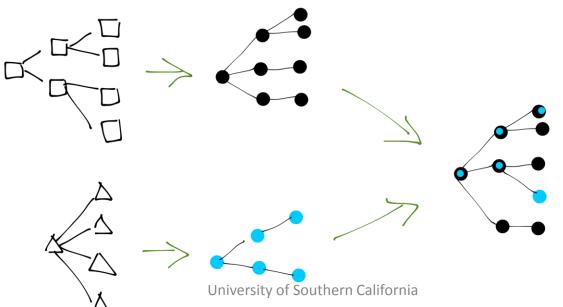
- Crawling
- Extracting
- Cleaning
- Integration
- Computing simlarity
- Entity resolution
- Graph construction
- Query, analysis, and visualization


Crawling

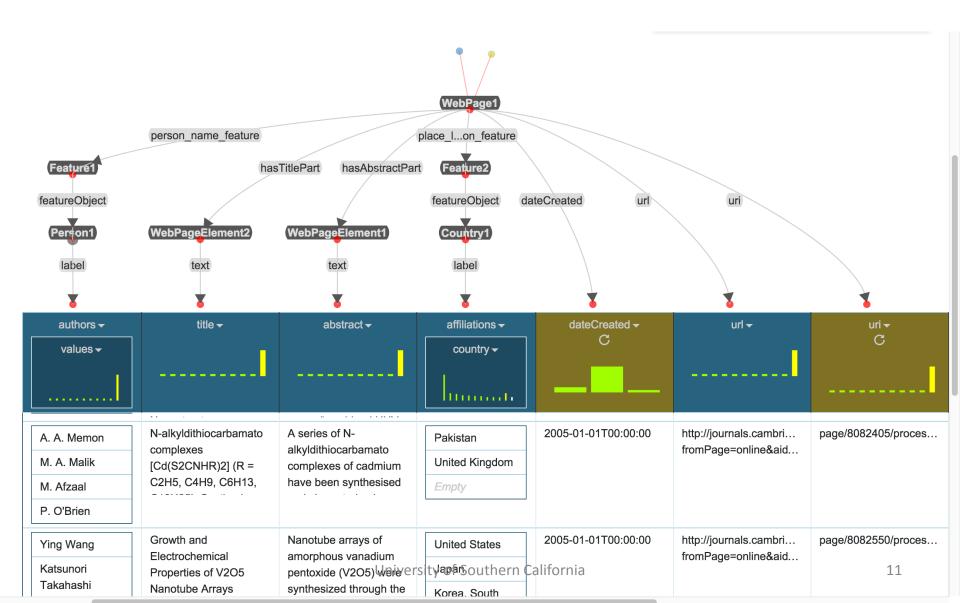
- Challenge: how to crawl just the relevant pages
- Approach:
 - Uses the Apache Nutch framework for Web pages
 - Uses Karma to extract pages from the deep Web

Extracting

- Need to produce a structured representation for indexing and linking
- Highly configurable architecture for extractors
 - Learning of landmark extractors for structured data
 - Trainable CRF-based extractors for unstructured data
 - Uses Mechanical Turk to crowd source training data

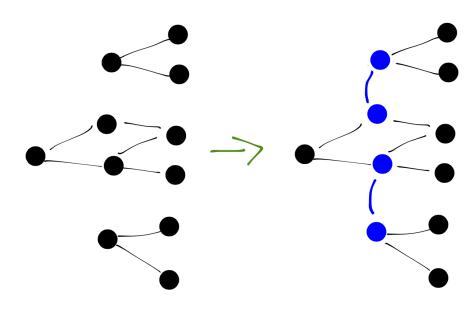

Cleaning

- Cleaning and normalization to support analysis and linking
 - Visualization showing data distribution
 - Learned transformations from examples
 - Cleaning programs written in Python

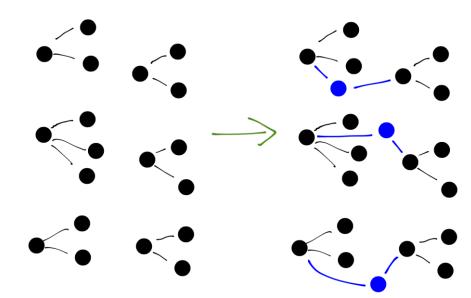


Integration

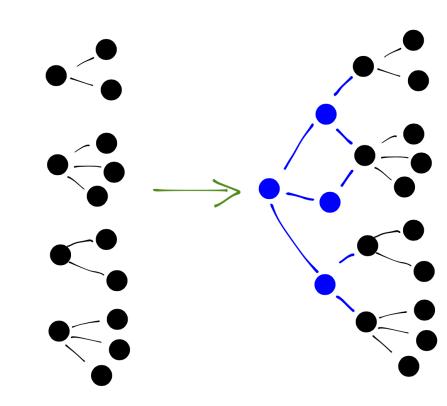
- Need to align the data across extracted data and structured sources
- Performed using a data integration tool called Karma
 - Karma maps arbitrary sources into a shared domain vocabulary (schema alignment)
 - Uses machine learning to minimize user effort



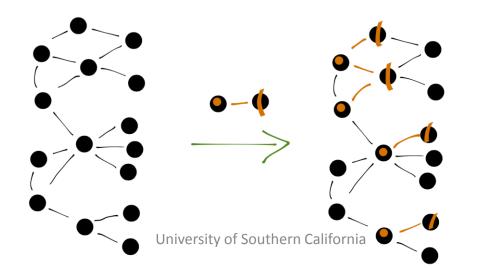
Integration Using Karma


Similarity

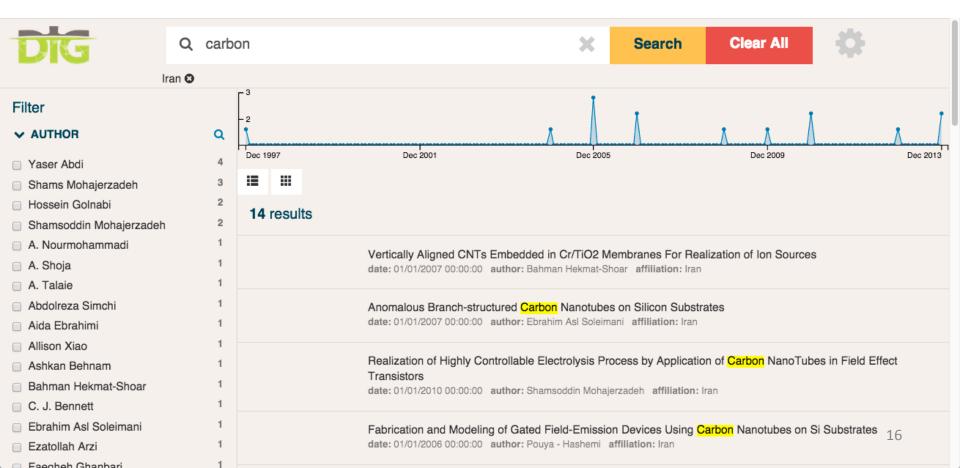
- Computes similarity across text fields and images
 - Image similarity done using DeepSentiBank
 - Text similarity done using Minhash/LSH


Entity Resolution

- Finds matching entities
- Reference source
 - Match against source to disambiguate entities
 - E.g., geonames for locations
- No reference source
 - Combine entities by considering the similarity across multiple fields


Graph Construction

- Data is integrated into a graph that can be queries and analyzed
 - Data stored in HDFS
 - Data represented in a common language JSON-LD
 - Represented using a common terminology


Query, Analysis and Visualization

- Challenge: support efficient querying against the graph
- Employ ElasticSearch to provide keyword querying, faceted browsing, and aggregation queries

Query, Analysis & Visualization

• Visualization interface that provides faceted queries, timeslines, maps, etc.

Discussion

- Technology that can provide dramatic new insights from data that is already available
- Applies to a wide range of problems
 - Determining the nuclear know-how of a given country
 - Technologies, key scientists, relevant organizations
 - Combating human trafficking
 - Understanding trends in technical areas
 - E.g., Material Science
 - Analyzing the competitive landscape of companies
 - and many other domains with massive quantities of data

USC DIG Team

Pedro Szekely Project Leader

Craig Knoblock Director & Rese...

Kevin Knight Director & Prof...

Daniel Marcu Director & Rese...

Computer Scie...

Dipsy Kapoor Research Scientist

PhD Student

Linhong Zhu Postdoctoral R...

Student

Student

Student

Student

Shreenidhi Bhat Student

Anvesha Sinha Student

Anjul Kumar Student

Gandhali Karnik Student

Chen Qian Unive Student

ty of Southern Student

Student

Chengye Yin Student

Acknowledgements

Collaborators

- Sponsor
 - DARPA
 - AFRL contract number FA8750-14-C-0240

Thanks!

- More information:
 - Homepage
 - isi.edu/~knoblock
 - DIG
 - usc-isi-i2.github.io/dig
 - Karma
 - usc-isi-i2.github.io/karma

Domain-specific Insight Graphs

Information Sciences Institute

USC University of Southern California