

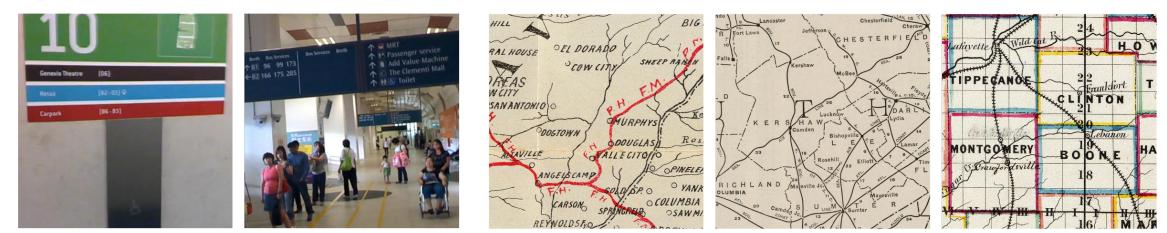
Synthetic Map Generation to Provide Unlimited Training Data for Historical Map Text Detection

Zekun Li¹, Runyu Guan², Qianmu Yu², Yao-Yi Chiang¹, Craig A. Knoblock²

¹ University of Minnesota ² University of Southern California

Motivation

- Automatically reading text from map images could speed up map interpretation
- Many existing text detection models are trained with data from **different domains** (e.g. ICDAR scene images)
- Gathering **training data** for historical maps is important, while manual annotation takes a lot of time and effort



Sample images from ICDAR 15 dataset

Sample image patches from David Rumsey historical map collection

Related Work

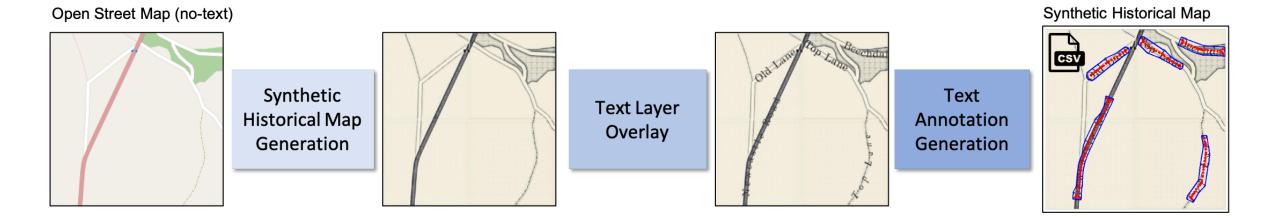
- Text Detection Datasets
 - International Conference on Document Analysis and Recognition (ICDAR)
 - Has been releasing text detection datasets since 2011
 - Before 2015: focused scene images and born-digital images [Karatzas et al. (2013)]
 - After 2015: incidental scene images [Karatzas et al. (2015)][Nayef et al. (2019)]
 - COCO-Text [Veit et al. (2016)]
 - Machine-printed and hand-written text, multi-lingual
 - SCUT-CTW1500 [Liu et al. (2019)]& Total Text [Ch'ng et al. (2019)] :
 - Contain curved text instances
 - David Rumsey Map Collection [Weinman et al. (2019)]:
 - Historical map images
 - Dataset that we use for evaluation in this paper

Related Work

- Synthetic Data Generation
 - SynthText [Gupta et al. (2016)]
 - Large scale dataset with 800K images
 - Segmentation-based method for text label placement
 - UnrealText [Long et al. (2020)]
 - 600K images with 12 million word instances
 - Utilize Unreal 3D graphics engine for placing text on object surfaces

Approach

- We propose to generate **synthetic historical** maps images to aid the training of text detection models
- General Idea
 - Generate synthetic map background without any text labels
 - Automatically place text labels and generate ground-truth annotation



Synthetic Map Generation

- Public map sources such as OpenStreetMap (OSM) contain separable map layers: rasterized map background layer and text layer
 - Use clean (no text) OSM map background to produce style-transferred historical map
- Generative Adversarial Networks (GAN) can efficiently perform style transfer
 - CycleGAN model for the map style transfer this can be replaced with other models as well
- Target map style
 - Ordnance Survey 6-inch map during year 1888-1913

Synthetic Map Generation - CycleGAN

OSM

G(s)

F(t)

Historical

Cycle Consistency Loss:

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1] \\ + \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1].$$

Adversarial Loss:

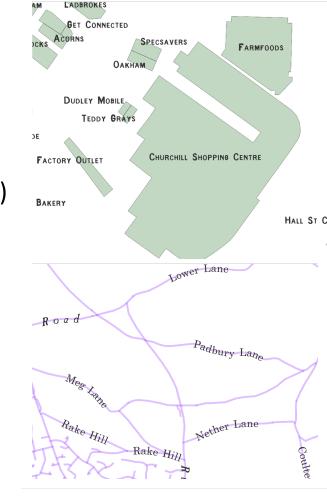
$$\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] \\ + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x)))]$$

Sample Synthetic Map Images

Text Layer Overlay

- Three types of geometries (QGIS PAL API for automatic label placement)
 - Polygon: text label on the polygon
 - Line: text label on the line
 - Point: text label near the point
- Font style and size
 - Roughly three levels of **font sizes**: large, medium and small
 - Collected 16 historical font styles
 - Same type of geo features have the same font size and style

Groups	Size (pt)	Geo Features
Large	[60,80]	canal, city, county, town, village waterfall, wetland, island
Med.	[35,45]	airfield, airport, allotment, archaeological battlefield, camp site, cliff, dock, farmland farm, forest, fort, hamlet, nature reserve reservoir, ruins, vineyard, rail river, stream
Small	[20,30]	others (e.g. streets)



Dream Days Brid

Perfect Home WARREN JAMES

Birdcage Grill

Belle Beauty

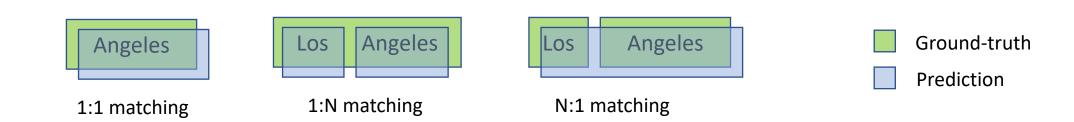
Text Annotation Generation

- We provide following annotation information
 - Bounding polygon for each text region
 - Centerline across the text region
 - Local height (or diameter) of the text region

*Details for automatically computing the annotation info can be found in the paper

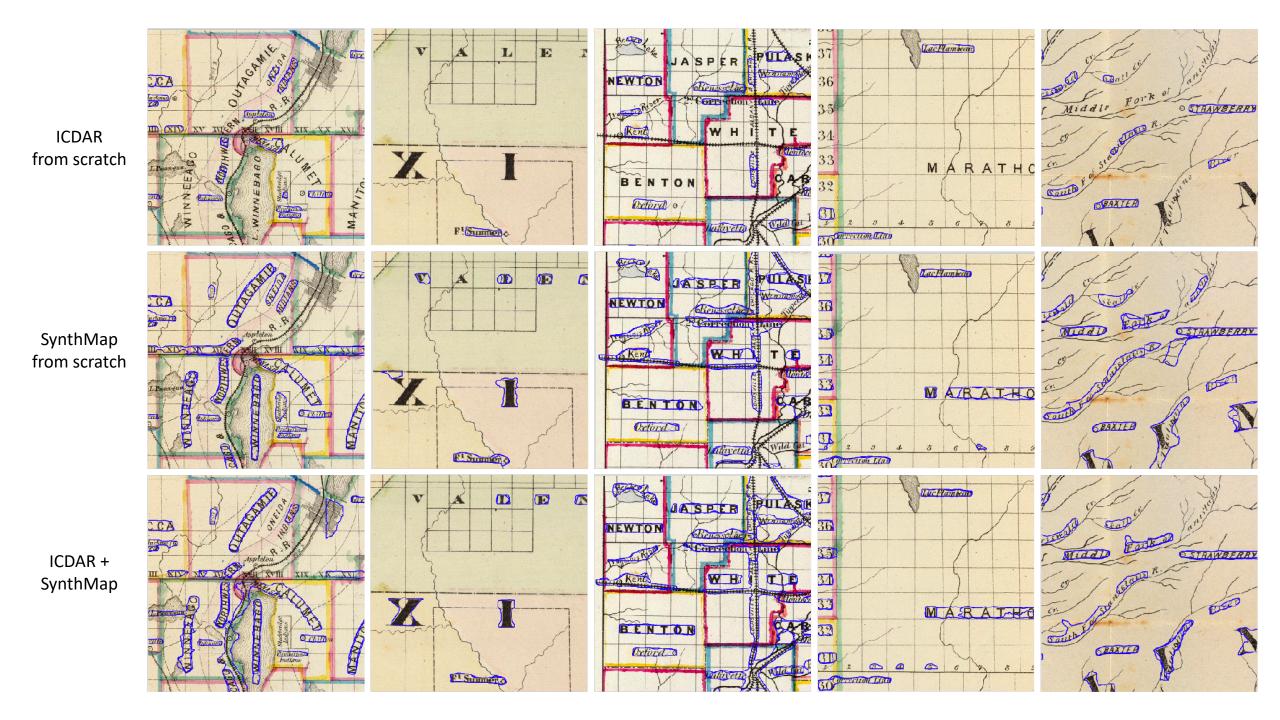
Experiment Setting

- Text Detection Model: PSE-Net [Wang et al. (2019)]
- Training Strategies (notice that we did not use any real map data for training)
 - ICDAR: train from scratch on ICDAR 2015 dataset only
 - SynthMap: train from scratch on our SynthMap dataset only
 - ICDAR + SynthMap: pretrain on ICDAR 2015, fine tune on SynthMap dataset
- Evaluation Metrics [Wolf et al. (2006)]
 - Considers 1:1 matching, 1:N matching and N:1 matching of GT and prediction



Experiment Results

	ICDAR2015			SynthMap			ICDAR + SynthMap		
	prec.	recall	F1	prec.	recall	F1	prec.	recall	F1
D0006	84.30%	44.80%	58.50%	68.90%	25.30%	37.00%	79.60%	27.70%	41.10%
D0017	81.10%	49.30%	61.30%	85.30%	63.40%	72.70%	88.90%	60.80%	72.20%
D0041	71.90%	48.90%	58.20%	71.70%	70.80%	71.20%	74.90%	72.35%	73.60%
D0042	81.28%	34.18%	47.75%	75.88%	48.65%	58.83%	77.86%	55.75%	64.39%
D0079	45.30%	4.20%	7.70%	40.50%	20.60%	27.30%	31.30%	13.60%	19.00%
D0089	83.10%	49.90%	62.40%	75.90%	44.60%	56.20%	69.30%	48.10%	56.80%
D0090	82.80%	55.80%	66.70%	90.60%	63.40%	74.60%	91.00%	70.30%	79.30%
D0117	89.75%	56.13%	68.90%	72.72%	55.55%	62.95%	82.40%	55.12%	66.02%
D5005	88.55%	57.68%	69.57%	78.38%	54.60%	64.23%	82.55%	57.95%	67.87%
All	82.76%	45.00%	57.32%	74.90 %	51.73%	60.62%	78.51%	55.25%	64.25%



Conclusion and Future Work

- We proposed a pipeline to generate unlimited amount of training data for map text detection algorithms
- We use style transfer model to convert OSM maps to historical style
- Text labels are placed according to the underlying geo feature locations
- This approach can be extended to generate synthetic data for word linking and road delineation

Demo and Code

• Live Demo

• Code released

https://zekun-li.github.io/side-by-side/

https://github.com/zekun-li/generate_synthetic_historical_maps