A Constraint Satisfaction Approach to Geospatial Reasoning

Martin Michalowski and Craig A. Knoblock Information Sciences Institute, Department of Computer Science, University of Southern California

Outline

- Goals and Motivation
- Problem Solving Approach
- Constraint Formulation
- Experimental Results
- Discussion and Future Work

Goals

- Identify buildings in satellite imagery
 - Infer as much information as possible
 - Accurate identification
- Fuse diverse information sources
 - High resolution imagery
 - Vector data
 - Online data sources

Motivating Example

- Chinese Embassy Bombing in Belgrade (1999)
- From Pickering Report
 - Flawed procedure to identify the geographic coordinates of FDSP used
 - Chinese Embassy was not in DB therefore was not considered
 - But Chinese Embassy was in phone book

Available information

- High Resolution Satellite Imagery
 - Detect buildings
- NGA vector data
 - Locate streets on satellite imagery
- White and Yellow Pages for Belgrade
 - Find all information about buildings for a given street

Source Information

- •Set of street names •Set of buildings Potential street(s) it is on Side of street it is on •Order for a given street Additional information Side of street where even numbers lie Ascending addresses direction Helpful but not required
 - •Constrains the problem

Source Information

Key Ideas

- Use both explicit and implicit information in publicly available data sources.
 - Challenge: combining this information
 - Solution: use a constraint satisfaction framework
- Leverage common properties of streets and addresses
 - Cannot be deduced from any individual source but require the combination of data from multiple sources.

Assumptions Made

- Buildings in imagery are identified
- Each building is made an assignment
- Multiple assignments per building possible
- Sources are accurate but not necessarily complete

Constraint Formulation

- Variables (m = number of buildings)
 - s₁... s_m = {streets in image}
 - #₁ ... #_m = {set of natural numbers}
 - e_{ew} = {N,S}, e_{ns} = {W, E}

Constraint Formulation

- 4 constraints
 - Even or ¬Even (Odd) numbering constraint
 - Ordering constraint
 - Phone book constraint
 - Global Variables Set constraint
 - Implementation detail

Even or ¬Even Constraint

Assures all these buildings will be even or odd, not a mix

Ordering Constraint

Assures that address > address because we know numbers ascend in south direction on N/S running streets

Phone Book constraint

Street A

Assures that all of the odd #s and the even #s for Street A (as found in the phone book) are a subset of the solution returned

Street T - TRESNJIN CVET Street U - BULEVAR UMETNOSTI Street A - BULEVAR AVNOJA Street M - BULEVAR MIHAILA PUPINA

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Street T - TRESNJIN CVET Street U - BULEVAR UMETNOSTI Street A - BULEVAR AVNOJA Street M - BULEVAR MIHAILA PUPINA

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Street T - TRESNJIN CVET Street U - BULEVAR UMETNOSTI Street A - BULEVAR AVNOJA Street M - BULEVAR MIHAILA PUPINA

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

If we know this building must be 3 on street U

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Even constraint applied

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Phone book constraint applied

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Phone book constraint applied

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Ordering + Phone book constraint applied

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Ordering + Phone book constraint applied

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Ordering + Phone book constraint applied

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Ordering + Phone book constraint applied

Phone Book: Nothing on T 1,2,3,5,7,9 on U 1 on A

Ordering + Phone book constraint applied

Experimental Results

- Two sets of experiments
 - Synthetic
 - Layout of streets and buildings created by us
 - Real-world scenario
 - Using data and layout for a neighborhood in El Segundo CA
- Report Precision and Recall

Precision and Recall

 $recall = \frac{correctly_labeled}{total_buildings}$

 $precision = \frac{num_correct_assignments}{total_num_assignments}$

- For example
 - Two buildings in an image, two assignments to one building, three to the other, and a correct assignment is made to both
 - recall = 100%, precision = 40%.

Synthetic Experiment

Synthetic Experiment

Trial Type	Precision	Recall
All information available	100%	100%
All info except even/odd	100%	100%
Missing phone book entries	85.3%	96.6%
Missing entries and no even/ odd	58.6%	96.6%

Real-World Experiment

- El Segundo CA neighborhood
- 34 houses
- 4 cross streets

Real-World Experiment

Source Used	Precision	Recall
Phone book source	54.7%	94.1%
Property tax source	100%	100%

Discussion

- CSP Issues:
 - Only gives a binary decision (yes/no)
- Preferred output
 - Probabilities of assignment
- Probabilistic CSP
 - Assigns probability for a given assignment
- Stochastic CSP
 - Incorporates probabilities and more flexible

Future Work

- Improving accuracy
 - Soft constraints
- Using a probabilistic approach
- Studying scalability
- "Plug-in" capability
 - Plug in region specific information

Thank you!