A Constraint Satisfaction Approach to Geospatial Reasoning

Martin Michalowski and Craig A. Knoblock Information Sciences Institute, Department of Computer Science, University of Southern California

Outline

- Goals and Motivation
- Problem Solving Approach
- Constraint Formulation
- Experimental Results
- Discussion and Future Work

Goals

- Identify buildings in satellite imagery
- Infer as much information as possible
- Accurate identification
- Fuse diverse information sources
- High resolution imagery
- Vector data
- Online data sources

Motivating Example

- Chinese Embassy Bombing in Belgrade (1999)
- From Pickering Report
- Flawed procedure to identify the geographic coordinates of FDSP used
- Chinese Embassy was not in DB therefore was not considered
- But Chinese Embassy was in phone book

Available information

- High Resolution Satellite Imagery
- Detect buildings
- NGA vector data
- Locate streets on satellite imagery
- White and Yellow Pages for Belgrade
- Find all information about buildings for a given street

Problem Solving Approach

Source Information

- Set of street names
- Set of buildings
-Potential street(s) it is on
- Side of street it is on
- Order for a given street
-Additional information
- Side of street where even numbers lie
-Ascending addresses direction
-Helpful but not required
-Constrains the problem

Source Information

Key Ideas

- Use both explicit and implicit information in publicly available data sources.
- Challenge: combining this information
- Solution: use a constraint satisfaction framework
- Leverage common properties of streets and addresses
- Cannot be deduced from any individual source but require the combination of data from multiple sources.

Assumptions Made

- Buildings in imagery are identified
- Each building is made an assignment
- Multiple assignments per building possible
- Sources are accurate but not necessarily complete

Constraint Formulation

- Variables ($\mathrm{m}=$ = number of buildings)
- $s_{1} \ldots s_{m}=\{$ streets in image $\}$
- $\#_{1} \ldots \#_{m}=\{$ set of natural numbers $\}$
- $\mathrm{e}_{\mathrm{ew}}=\{\mathrm{N}, \mathrm{S}\}, \mathrm{e}_{\mathrm{ns}}=\{W, E\}$
- $a_{\mathrm{ew}}=\{W, E\}, a_{\mathrm{ns}}=\{N, S\}$

Constraint Formulation

- 4 constraints
- Even or $ᄀ$ Even (Odd) numbering constraint
- Ordering constraint
- Phone book constraint
- Global Variables Set constraint
- Implementation detail

Even or \urcorner Even Constraint

Assures all these buildings will be even or odd, not a mix

Ordering Constraint

Assures that address > address because we know numbers ascend in south direction on N/S running streets

Phone Book constraint

Street A

Assures that all of the odd \#s and the even \#s for Street A (as found in the phone book) are a subset of the solution returned

Example

Example

Example

Phone Book:
Nothing on T
$1,2,3,5,7,9$ on U
1 on A

Phone book constraint applied

Street T
Street U
Street A
Street M

Example

Phone Book:
Nothing on T
$1,2,3,5,7,9$ on U
1 on A

Phone book constraint applied

Street T
Street U
Street A
Street M

Example

Phone Book:
Nothing on T
$1,2,3,5,7,9$ on U
1 on A

Ordering + Phone book constraint applied

Street T
Street U
Street A
Street M

Example

Phone Book:
Nothing on T
$1,2,3,5,7,9$ on U
1 on A

Ordering + Phone book constraint applied

Street T
Street U
Street A
Street M

Example

Phone Book:
Nothing on T
$1,2,3,5,7,9$ on U
1 on A

Ordering + Phone book constraint applied

Street T
Street U
Street A
Street M

Example

Phone Book:
Nothing on T
$1,2,3,5,7,9$ on U
1 on A

Ordering + Phone book constraint applied

Street T Street U Street A Street M

Example

Phone Book:
Nothing on T
$1,2,3,5,7,9$ on U
1 on A

Ordering + Phone book constraint applied

Street T Street U Street A Street M

Experimental Results

- Two sets of experiments
- Synthetic
- Layout of streets and buildings created by us
- Real-world scenario
- Using data and layout for a neighborhood in El Segundo CA
- Report Precision and Recall

Precision and Recall

$$
\text { recall }=\frac{\text { correctly_labeled }}{\text { total_buildings }}
$$

$$
\text { precision }=\frac{\text { num_correct_assignments }}{\text { total_num_assignments }}
$$

- For example
- Two buildings in an image, two assignments to one building, three to the other, and a correct assignment is made to both
- recall $=100 \%$, precision $=40 \%$.

Synthetic Experiment

Synthetic Experiment

Trial Type	Precision	Recall
All information available	100%	100%
All info except even/odd	100%	100%
Missing phone book entries	85.3%	96.6%
Missing entries and no even/ odd	58.6%	96.6%

Real-World Experiment

- El Segundo CA neighborhood
- 34 houses
- 4 cross streets

Real-World Experiment

Source Used	Precision	Recall
Phone book source	54.7%	94.1%
Property tax source	100%	100%

Discussion

- CSP Issues:
- Only gives a binary decision (yes/no)
- Preferred output
- Probabilities of assignment
- Probabilistic CSP
- Assigns probability for a given assignment
- Stochastic CSP
- Incorporates probabilities and more flexible

Future Work

- Improving accuracy
- Soft constraints
- Using a probabilistic approach
- Studying scalability
- "Plug-in" capability
- Plug in region specific information

Thank you!

