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Problem Statement

Goal: Annotating satellite imagery with
addresses

Addresses can be assigned by exploiting
sets of addressing “rules”

Many traditional and non-traditional data
sources available online

How can we combine our knowledge of
addressing with the available data”



Building Identification Process
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Challenges

Integrating heterogeneous data

Modeling data and addressing
characteristics

Supporting various addressing schemes
One model tailored & stored per area <— BAD

Non-homogenous addressing within one area
Efficiently solving the constructed problem



Initial Approach [Michalowski & Knoblock, 2005]
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BUIldlng ldentification as a CSP [Michalowski+, 2005]

Constraint Satisfaction Problem
Variables: Buildings
Variable Domains: Potential street addresses
Constraints: Global addressing characteristics (parity,
ascending direction, etc.)
Demonstrated the feasibility of modeling data
iIntegration for building identification as a CSP

Limitations
Relied on a ‘single-model’ approach
Limited to small homogeneous areas
Did not scale



Why a Single Model Doesn’t Work

Block Numbering Constraints apply in different contexts
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Our Solution
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Constraint Inference

Problem Instance Constraint Library
Input information | Generic model User-defined (& learned) constraints
F={F.F,...F}| &={C,C,,....C} ¢, ={C,.Cp,....C}
— /

Z
| | | |
Inference Engine

Inference rules
R, ={R,R,,....R}

R: FEF =CE&E(

| |

Refined model: €., = (3 U C; \ 9




Example

Data points
Landmark points that describes a particular instance

Obtained from any online point repository (e.g. gazetteers)
Features: Address Number, Street Name, Lat, Lon...

852 Hillcrest

834 Hillcrest
Constraints

Name Description

Parity (odd /even) Addresses on the same side of a

street have the same parity

Addresses increment continuously

by a fixed number n

Block Numbering | Addresses increment by a factor of
(Grid) k across grid lines

Continuous

Addresses increase monotonically
along a given street

Ordering




Inferring Constraints

Inference rules are evaluated using data points
Supports (+,-) provided for the constraints

Constraints are partitioned based on support level
Status: Applicable, Unknown, Non-applicable

Applicable constraints added to generic model
Constraint Library
AN .
Applicable Non-applicable
Status: |~ PP
-

Support: Positive Null Negative
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Model Generation

Generates constraint model from variables
and inferred constraints

Model improvements over previous work

Reduces total number of variables and
constraints’ arity

Reflects topology: Constraints can be declared
locally & in restricted ‘contexts’
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Constraint Solver

Backtrack-search with nFC3 and conflict-
directed back-jumping

Exploits structure of problem (backdoor
variables)

Implements domains as (possibly infinite)
intervals

Incorporates new reformulations that
iIncrease the scalability by large factors

Detalils available in [Bayer+, 2007]
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Case Studies

Case study | Phone-book Number of...
completeness | bldgs blocks building-address
combinations
NSegl25-c 100.0% 195 4 4160
NSegl25-i 45.6% 1857
NSeg206-c 100.0% 206 - 10009
NSeg206-i 50.5% 4879
SSegl31-c 100.0% 131 ] 3833
SSegl31-i 60.3% 2375
SSegl78-c 100.0% 178 19 4852
SSegl78-i 65.6% 2477

All cases are beyond what our initial work could
solve



Experimental Results

CSP Search Solver

W /o orientation cons

W/ orientation cons

Runtime | Domain | Runtime | Domain | Runtime | Domain

(sec) size (sec) size reduction | reduction
NSegl25-c | 22397.08 1.22 1962.53 1.0 11.41x 1.22x
NSegl25-i | 2292949 | 6.11 3987.73 4.18 D.7dx 1.46x
NSeg206-c | 198169.43 | 1.21 10786.33 1.0 18.37x 1.21x
NSeg206-1 | 232035.89 7.91 12900.36 4.99 17.99x 1.59x
SSegl3l-c | 173565.78 1.56 125011.65 1.41 1.39x 1.11x
SSegl3l-i | 75332.35 12.56 17169.84 3.92 4.39x 3.20x
SSegl78-c | 523100.80 1.41 284342.89 1.31 1.84x 1.08x
SSegl78-1 | 334240.61 8.24 62646.91 3.23 5.34x 2.55x
Average | 8.81x 1.68x

26 points used to infer correct model (inference time < 2 secs)

Inferred model greatly reduces runtime

Domain reduction leads to higher precision by a significant factor
Additional results show an even greater improvement (see paper)
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Observations

Constraint inference provides framework
for data integration

Inferred models lead to more precise
results

Ability to solve more complex instances

Dynamic modeling makes global coverage
possible and easier
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Related Work

Geospatial

Geocoding
[Bakshi+, 2004]

Computer Vision
[Agouris+, 1996; Doucette+, 1999]

Modeling
Learning constraint networks from data
[Coletta+, 2003; Bessiere+, 2005]



Current Work

Eliminating incorrect constraint inference
Support levels associate confidence with inferences

Dealing with a lack of expressiveness in data
points
Iterative algorithm with constraint propagation

Generalizing context-inference mechanism
Classification in the variable space using SVMs

Learning constraints to populate library
Agglomerative clustering combined with set covering
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Thank you!!l



