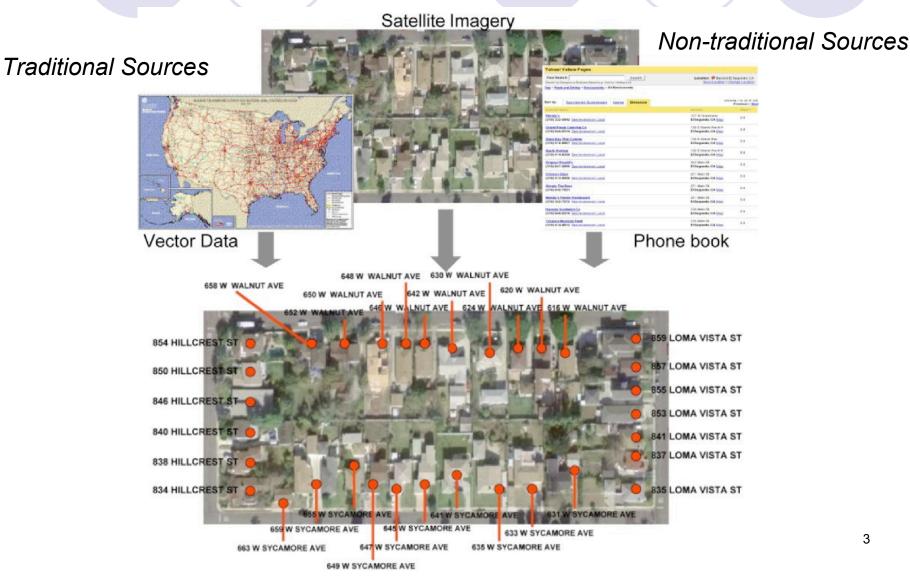
Exploiting Automatically Inferred Constraint-Models for Building Identification in Satellite Imagery

Martin Michalowski, Craig A. Knoblock University of Southern California Information Sciences Institute Research funded by the AFSOR, grant numbers FA9550-04-1-0105 and FA9550-07-1-0416.

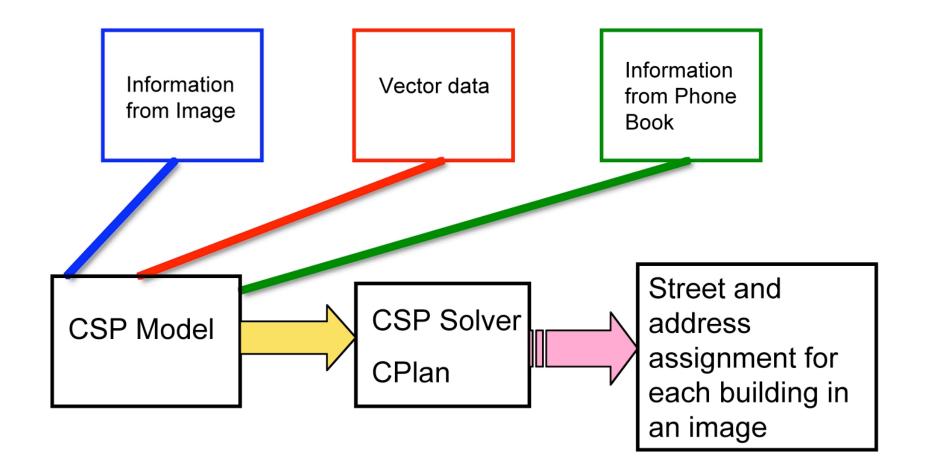

Kenneth M. Bayer, Berthe Y. Choueiry University of Nebraska-Lincoln Constraint Systems Lab Research funded by NSF CAREER Award No. IIS-0324955.

Problem Statement

- Goal: Annotating satellite imagery with addresses
- Addresses can be assigned by exploiting sets of addressing "rules"
- Many traditional and non-traditional data sources available online
- How can we combine our knowledge of addressing with the available data?

Building Identification Process

Challenges


Integrating heterogeneous data

 Modeling data and addressing characteristics

Supporting various addressing schemes
 One model tailored & stored per area BAD
 Non-homogenous addressing within one area
 Efficiently solving the constructed problem

Initial Approach

[Michalowski & Knoblock, 2005]

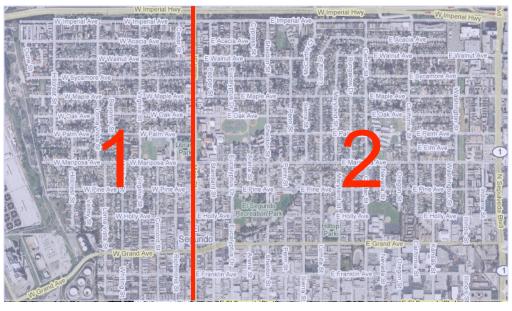
Building Identification as a CSP

Constraint Satisfaction Problem

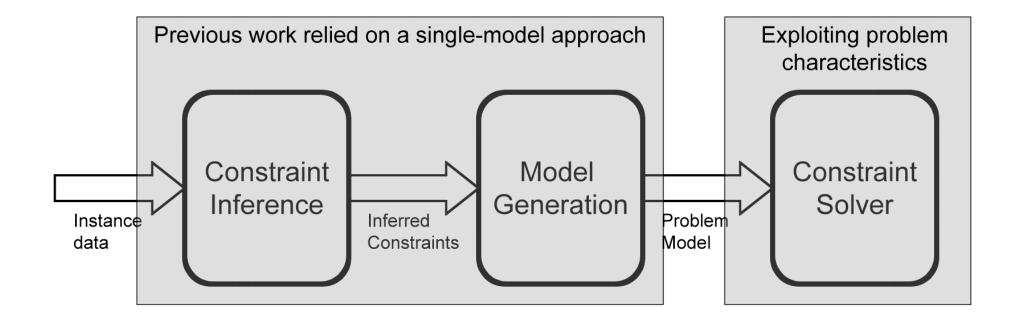
- **Variables**: Buildings
- Variable Domains: Potential street addresses
- Constraints: Global addressing characteristics (parity, ascending direction, etc.)
- Demonstrated the feasibility of modeling data integration for building identification as a CSP

Limitations

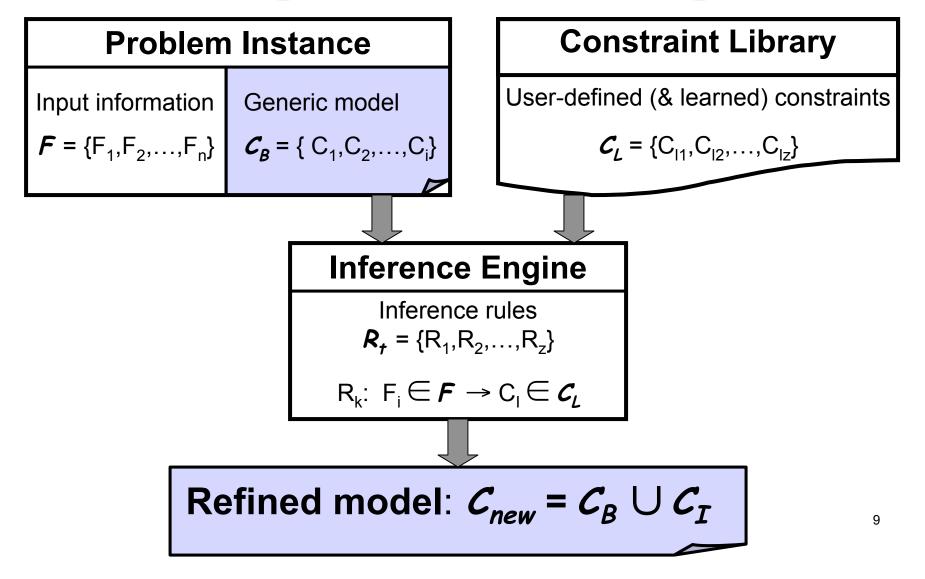
- Relied on a 'single-model' approach
- Climited to small homogeneous areas
- Oid not scale


Why a Single Model Doesn't Work

Block Numbering


Constraints apply in different contexts


Addresses increase West


Addresses increase East

Our Solution

Example

Data points

Landmark points that describes a particular instance

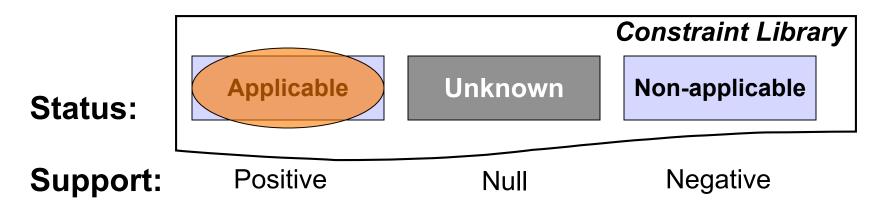
- Obtained from any online point repository (e.g. gazetteers)
- Features: Address Number, Street Name, Lat, Lon…

852 Hillcrest St

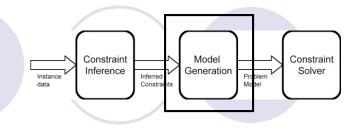
859 Loma Vista St.

834 Hillcrest St

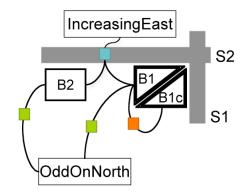
Constraints

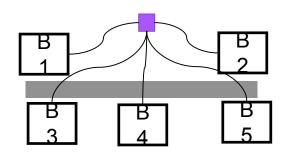

Name	Description		
Parity (odd/even)	Addresses on the same side of a		
	street have the same parity		
Continuous	Addresses increment continuously		
	by a fixed number n		
Block Numbering	Addresses increment by a factor of		
(Grid)	k across grid lines		
Ordering	Addresses increase monotonically		
	along a given street		

Context (El Segundo)

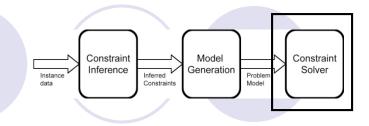


Inferring Constraints


- Inference rules are evaluated using data points
 Supports (+,-) provided for the constraints
- Constraints are partitioned based on support level
 Status: Applicable, Unknown, Non-applicable
- Applicable constraints added to generic model



Model Generation



- Generates constraint model from variables and *inferred* constraints
- Model improvements over previous work
 - Reduces total number of variables and constraints' arity
 - Reflects topology: Constraints can be declared locally & in restricted 'contexts'

Constraint Solver

- Backtrack-search with nFC3 and conflictdirected back-jumping
- Exploits structure of problem (backdoor variables)
- Implements domains as (possibly infinite) intervals

 Incorporates new reformulations that increase the scalability by large factors
 Details available in [Bayer+, 2007]

Case Studies

Case study	Phone-book	Number of			
	completeness	bldgs blocks		building-address	
				combinations	
NSeg125-c	100.0%	125	4	4160	
NSeg125-i	45.6%	120	4	1857	
NSeg206-c	100.0%	206	7	10009	
NSeg206-i	50.5%	200		4879	
SSeg131-c	100.0%	131 8		3833	
SSeg131-i	60.3%	101	0	2375	
SSeg178-c	100.0%	178	12	4852	
SSeg178-i	65.6%	110	12	2477	

 All cases are beyond what our initial work could solve

Experimental Results

CSP Search Solver

	W/o orientation cons W/ orient		tion cons			
	Runtime	Domain	Runtime	Domain	Runtime	Domain
	(sec)	size	(sec)	size	reduction	reduction
NSeg125-c	22397.08	1.22	1962.53	1.0	11.41x	1.22x
NSeg125-i	22929.49	6.11	3987.73	4.18	5.75x	1.46x
NSeg206-c	198169.43	1.21	10786.33	1.0	18.37x	1.21x
NSeg206-i	232035.89	7.91	12900.36	4.99	17.99x	1.59x
SSeg131-c	173565.78	1.56	125011.65	1.41	1.39x	1.11x
SSeg131-i	75332.35	12.56	17169.84	3.92	4.39x	3.20x
SSeg178-c	523100.80	1.41	284342.89	1.31	1.84x	1.08x
SSeg178-i	334240.61	8.24	62646.91	3.23	5.34x	2.55x
				Average	8.31x	1.68x

- 26 points used to infer correct model (inference time < 2 secs)</p>
- Inferred model greatly reduces runtime
- Domain reduction leads to higher precision by a significant factor
- Additional results show an even greater improvement (see paper)

15

Observations

- Constraint inference provides framework for data integration
- Inferred models lead to more precise results
- Ability to solve more complex instances
- Dynamic modeling makes global coverage possible and easier

Related Work

Geospatial
Geocoding

[Bakshi+, 2004]

Computer Vision

[Agouris+, 1996; Doucette+, 1999]

Modeling

Clearning constraint networks from data

[Coletta+, 2003; Bessière+, 2005]

Current Work

Eliminating incorrect constraint inference Support levels associate confidence with inferences Dealing with a lack of expressiveness in data points Iterative algorithm with constraint propagation Generalizing context-inference mechanism Classification in the variable space using SVMs Learning constraints to populate library Agglomerative clustering combined with set covering

Thank you!!!