A General Approach to Using Problem Instance Data for Model Refinement in Constraint Satisfaction Problems

Martin Michalowski

Doctoral Defense

July 22nd,2008

Outline

- Motivation
 - Building Identification Problem
 - Constraint model refinement
 - Modeling: Constraint Satisfaction Problems (CSPs)
- Constraint-inference framework
 - Outline core components
 - Experimental evaluation
- Contributions and Related Work
- Future Work

Motivation

Building Identification (BID) Problem

Traditional Sources

Non-traditional Sources

BID Problem as a CSP

[Michalowski & Knoblock 2005]

Public Information

- Set of street names.
- Set of buildings
 - Potential street(s) it is on
 - •Side of street it is on
 - •Order for a given street
- Additional information
 - •Side of street where even numbers lie
 - Ascending addresses direction
- Helpful but not required
 - •Constrains the problem

Public Information

Phone book

Set of known addresses for all streets in image (vector data)

Example Constraints

Parity Constraint

Assures all these buildings will be even or odd, not a mix

Example Constraints

Ascending Constraint

Assures that address > address because we know numbers ascend in south direction on N/S running streets

Key Ideas

- Use both explicit and implicit information in publicly available data sources.
 - Challenge: combining this information
 - Solution: use a constraint satisfaction framework
- Leverage common properties of streets and addresses
 - Cannot be deduced from any individual source but require the combination of data from multiple sources.
 - Represent as constraints

Challenges

- Varying addressing schemes exist
 - Static models don't work
- Single areas are non-homogeneous
 - Further complicates the problem
- Generating models for all possible scenarios
 - BAD! Lots of work, tedious, difficult to account for everything,...

Applicability of Constraints

Block Numbering

Non-Homogenous Areas

Addadsbesierende Weintsthewartiffelde Addades in East

Observations

- Instances exhibit variations
- Using the same generic model for all instances yields under-constrained problems

- The scope of constraints can differ in a problem instance
- Input data provides useful information
- Solution = Model refinement

Constraint Satisfaction Problems

- Definition of a CSP
 - Given *P* = (*V*, *D*, *C*)
 - V is a set of variables, $V = \{V_1, V_2, ..., V_n\}$
 - **D** is a set of variable domains (domain values)

$$\mathbf{D} = \{ D_{\forall 1}, D_{\forall 2}, \dots, D_{\forall n} \}$$

• C is a set of constraints, $C = \{C_1, C_2, ..., C_l\}$

$$C_{Va,Vb,...,Vi} = \{(x,y,...,z)\} \subseteq D_{Va} \times D_{Vb} \times ... \times D_{Vi}$$

- Query: can we find a value for each variable such that all constraints are satisfied?
- Useful for modeling & solving combinatorial problems

Model Generation

- Creating an accurate model is difficult
 - Thesis work focuses on the modeling problem

Outline

- Motivation
 - Building Identification Problem
 - Constraint model refinement
 - Modeling: Constraint Satisfaction Problems (CSPs)
- Constraint-inference framework
 - Outline core components
 - Experimental evaluation
- Contributions and Related Work
- Future Work

Constraint-Inference Framework

Problem Instance

Input information

$$\mathbf{F} = \{F_1, F_2, ..., F_n\}$$

Generic model

$$\mathbf{F} = \{F_{1}, F_{2}, ..., F_{n}\}$$
 $C_{\mathbf{B}} = \{C_{1}, C_{2}, ..., C_{i}\}$

Constraint Library

User-defined (& learned) constraints

$$C_{L} = \{C_{11}, C_{12}, ..., C_{1Z}\}$$

Inference Engine

Inference rules

$$\mathbf{R}_{t} = \{R_{1}, R_{2}, ..., R_{z}\}$$

$$R_{k}: F_{i} \subseteq F \rightarrow C_{I} \subseteq C_{L}$$

Refined model: $C_{new} = C_B \cup C_T$

Input Information

- Describes a particular instance of the problem
 - Data points D_i characterized by a set of features F_{Di}
 - Framework exploits other types of information

Generic Model

 Constraints that capture the general characteristics of the problem class

Corner building can only be on one street

A single address per building

Library of Constraints

- Constraints that capture some characteristic of a problem instance
 - User-defined (or learned)

BID Problem Sample Library

Inference Rules

- Map the features of D_i to the constraints of the library
 - Determine constraints governing the instance
 - Rule language supports any programmable predicate expressions

BID Applicability Rule: Odd on North

If(B_1 and B_2 are on E/W-running street \land B_1 , B_2 are on N side of street) \land addr(B_1) and addr(B_2) are odd

Then increment positive support of constraint 'Odd on North' Else increment negative support of constraint 'Odd on North'

Selecting Constraints

- Inference rules are evaluated using data points
 - Supports (+,-) provided for the constraints
- Constraints are partitioned based on their level of support
 - Status: Applicable, Unknown, Non-applicable
- Applicable constraints added to generic model

Selecting Constraints: Algorithm

```
Constraint-Inference(D, finalSet)

1 finalSet \leftarrow \{\}

2 constraints \leftarrow constraintLibrary

3 buckets \leftarrow CreateBuckets(D)

4 for i \leftarrow 0 to size[buckets]

5 do B \leftarrow buckets[i]

6 constraints \leftarrow EvaluateRules(B)

7 for i \leftarrow 0 to size[constraints]

8 do C \leftarrow constraints[i]

9 if PosSupport(C) > NegSupport(C)

10 then finalSet \leftarrow finalSet \cup C
```

- Grouping of data points based on feature values
- Evaluation of inference rules to provide support for constraints
- Inference of applicable constraints based on their level of support

Solving Complex Instances

- Large areas may lack expressiveness in input data
 - Incorrect inferences
- Introducing scope complicates the problem
 - Determining scope should be domain independent
- Domain expert shouldn't play a large role

Incorrect Inferences

Caused by noisy or weak support

A Solution

Support Level

f (support c_i, support c_i, C_i)

Expresses a level of confidence in the inference of a constraint

Support Levels

- Increase confidence in inference by increasing the supports provided
 - Augment the set of inference rules
 - Support a n-to-1 mapping of rules to constraints
- But...
 - More general rules can lead to incorrect (noisy) support
- Non-binary support levels handle this

Example: BID problem, Increasing North rules

```
1. ((sType(B1) = sType(B2) = NS) & (sSide(B1) = sSide(B2))) & (addr(B1) > addr(B2)) & (lat(B1) > lat(B2))
2. ((sType(B1) = sType(B2) = NS) & (sSide(B1) = sSide(B2))) & (addr(B1) < addr(B2)) & (lat(B1) < lat(B2))

More general (not limited to same side of the street)
3. ((sType(B1) = sType(B2) = NS)) & (addr(B1) > addr(B2)) & (lat(B1) > lat(B2))
4. ((sType(B1) = sType(B2) = NS)) & (addr(B1) < addr(B2)) & (lat(B1) < lat(B2))
```

Determining the Scope

- Finding a constraint's scope shouldn't be domain specific
- Assume a spatial boundary
- Introduce a *variable* boundary

Spatial Separation

Problem Space

Determining the Scope

Domain-independent solution

Inferred Model

Constraint 2 Conflict
Constraint 3...

Data Points

 $\begin{cases}
 D_{1,2,3,4,5,6,7,8,9,10} \\
 D_{1,2,5,6} \rightarrow \text{Constraint 1} \\
 D_{3,4,7,8} \rightarrow \text{Constraint 2} \\
 D_{9,10} \rightarrow ?$

Classify unknown data points

28

Automating the Process

- Instantiate the model
 - Data points ∈ All variables
 - Augment the scope of applicable constraints
- Represent the model in a recognized format
 - XCSP representation for the BID problem
- Solve automatically
 - Customized solver

[Bayer+ CP'o7]

Selecting Constraints: Homogenous Areas

Area	Data Points
1. El Segundo CA	(a) 38 points west of Main St. (b) 660 geocoded points (c) 12 USGS gazetteer points East of Main Street (schools and churches)
2. Downtown Los Angeles	7 hotels from an online hotels data source
3. San Francisco CA	16 USGS gazetteer points (schools and churches)
4. Boulder CO	7 USGS gazetteer points (schools only)
5. New Orleans LA	21 USGS gazetteer points (churches and schools)
6. Belgrade Serbia	85 points from a government planning website

Selecting Constraints: Homogenous Areas

El Segundo CA

San Francisco CA

Downtown Los Angeles

New Orleans LA

Belgrade Serbia

Selecting Constraints: Homogenous Areas

Area	Parity	$\mathbf{Block} \\ k = 100$	Increasing North	Increasing East	Prec.	Recall
El Segundo CA(38)	✓	✓	✓	✓	100.00%	100.00%
El Segundo CA(660)	✓	✓	✓	✓	100.00%	100.00%
El Segundo CA(12)	√	√	×	✓	100.00%	89.90%
Downtown LA(7)	√	√	✓	×	100.00%	87.50%
San Francisco CA(16)	√	√	√	√	100.00%	100.00%
Boulder CO(7)	✓	N/A	×	✓	100.00%	76.45%
New Orleans LA(21)	✓.	×	√	×	100.00%	64.92%
Belgrade Serbia(85)	√	N/A	√	√	100.00%	100.00%

 \checkmark correctly inferred \times not inferred N/A not applicable

Sligh Chyrimpote te palette accutuar a teur a teur

Putting It All Together

- Solve non-homogeneous areas
- Enhance the set of inference rules
- Use support levels to deal with noisy data and support
- Infer scopes using SVMs

Determining the Scope: Evaluation

Very accurate with only 4% (~66 points) training data

Selecting Constraints: More Complex Areas

Area	Data Points
1. El Segundo CA	(a) 38 points west of Main St.
	(b) 1650 geocoded points (East & West of Main) (c) 20 USGS gazetteer points East & West of Main (schools and churches)
2. Downtown Los Angeles	7 hotels from an online hotels data source
3. San Francisco CA	16 USGS gazetteer points (schools and churches)
4. Boulder CO	7 USGS gazetteer points (schools only)
5. New Orleans LA	66 USGS gazetteer points (churches and schools)
6. Belgrade Serbia	88 points from a government planning website
7. Jakarta Indonesia	20 hotels from an online Indonesian source

Selecting Constraints: More Complex Areas

Area	Odd On North/East	$\begin{array}{c} \textbf{Block} \\ k = 100 \end{array}$	Increasing North	Increasing East	Prec.	Recall
El Segundo (38)	✓	✓	✓	√	100.00%	100.00%
El Segundo (1750)	✓	✓	Scope 1: ✓ Scope 2: ✓	Scope 1: ✓ Scope 2: ✓	98.99%	100.00%
El Segundo (20)	✓	✓	Scope 1: ✓ Scope 2: ✓	Scope 1: ✓ Scope 2: ×	98.73%	89.90%
Downtown LA (7)	✓	√	✓	×	100.00%	87.50%
San Francisco (16)	✓	✓	✓	✓	100.00%	100.00%
Boulder (7)	✓	N/A	×	✓	100.00%	76.45%
New Orleans (66)	✓	✓	Scope 1: ✓ Scope 2: ✓	Scope 1: ✓ Scope 2: ✓	97.67%	100.00%
Belgrade (88)	Scope 1: ✓ Scope 2: ✓	N/A	✓	✓	100.00%	100.00%
Jakarta (20)	✓	N/A	✓	✓	100.00%	100.00%

 \checkmark correctly inferred \times not inferred N/A not applicable

Performance Improvement

CSP Search Solver

	W/o orient	ation cons	W/ orienta	tion cons			
	Runtime Domain		Runtime	Domain	Runtime	Domain	
	(sec)	size	(sec)	size	reduction	reduction	
NSeg125-c	22397.08	1.22	1962.53	1.0	11.41x	1.22x	
NSeg125-i	22929.49	6.11	3987.73	4.18	5.75x	1.46x	
NSeg206-c	198169.43	1.21	10786.33	1.0	18.37x	1.21x	
NSeg206-i	232035.89	7.91	12900.36	4.99	17.99x	1.59x	
SSeg131-c	173565.78	1.56	125011.65	1.41	1.39x	1.11x	
SSeg131-i	75332.35	12.56	17169.84	3.92	4.39x	3.20x	
SSeg178-c	523100.80	1.41	284342.89	1.31	1.84x	1.08x	
SSeg178-i	334240.61	8.24	62646.91	3.23	5.34x	2.55x	
				Average	8.31x	1.68x	

Outline

- Motivation
 - Building Identification Problem
 - Constraint model refinement
 - Modeling: Constraint Satisfaction Problems (CSPs)
- Constraint-inference framework
 - Outline core components
 - Experimental evaluation
- Contributions and Related Work
- Future Work

Contributions

- Established a new domain for CP research
- A general constraint-inference framework
 - Applied to BID problem and Sudoku puzzles
- Use instance-specific data to specialize a model
 - Eliminates need for model generation a priori
- Handles noise
 - Support levels
- Machine learning approach to dealing with inconsistencies
 - Finding scope using SVMs
- Automated processing reducing user involvement

Related Work

- Constraint Programming
 - Puzzles [Lauriere 1978, Nadal 1990,...]
 - PROVERB [Littman 2002]
 - Sudoku [Simonis 2005]
 - BID problem [Michalowski+ 2005]
 - Uncertain and Probabilistic CSPs [Fargier 1993]
- Constraint Modeling
 - Contextualizing constraints [Graham+ 2006, Cheung+ 1996]
 - Compositional modeling in QR [Falkenhainer+, 1991, ...]
 - Specification languages [Frisch+ 2005, Renker+ 2004,...]

Related Work

- Learning Constraints
 - Learning from data [Coletta+ 2003, Bessière+ 2005]
 - Learning to optimize models [Colton+ 2001, Lallouet+ 2005]
- Geospatial
 - Geocoding [Bakshi+ 2004]
 - Computer vision [Agouris+ 1996, Doucette+ 1999]

Outline

- Motivation
 - Building Identification Problem
 - Constraint model refinement
 - Modeling: Constraint Satisfaction Problems (CSPs)
- Constraint-inference framework
 - Outline core components
 - Experimental evaluation
- Contributions and Related Work
- Future Work

Future Work

- Learning inference rules
 - Agglomerative clustering approach
- Enhancing the learning of scopes
 - Non-binary conflicting constraints (multi-class SVM)
- BID problem
 - End-to-end online application for building identification

Thank you!!

Supplemental Material

Application Domain II

Sudoku Puzzles

7		9						
		4	7		8	3		
5			6	3			9	
			3	1	7		8	
			4		6			
	7		2	8	9			
	2		5	4				8
		6	9		1	2		
						5		1

7	ო	9	1	2	5	8	4	6
6	1	4	7	9	8	3	2	5
5	8	2	6	3	4	1	9	7
2	6	5	3	1	7	4	8	9
3	9	8	4	5	6	7	1	2
4	7	1	2	8	9	6	5	3
1	2	7	5	4	3	9	6	8
8	5	6	9	7	1	2	3	4
9	4	3	8	6	2	5	7	1

CSP Example: Sudoku

Given:

				7	1			
					2	5		
9	1					8		
					7		8	9
		7			8		4	
	5	6	9			7		
1	2	3					6	
4			3					
			7	6				

Query: Fill the empty cell such that 1..9 appear in each row, column, and unit w/o repetition

One model

- 81 variables: C_{1,1}... C_{9,9}
- Domains: {1,2,3,...,8,9}
- Constraints:
 - all-diff constraints, 9-arity
 - One constraint per row
 - One constraint per column
 - One constraint per (3x3) unit

Taking Sudoku One Step Further

- Variations of Sudoku are played throughout the world
- System that can <u>easily</u> solve any variation
 - Can figure out the type of puzzle
 - Easy to add new varieties
 - Leverage techniques in CSP solving
- Can be accomplished using model refinement

Model Refinement

Sudoku Puzzles

Case Study: Sudoku Puzzles

- 100 instances of easy, medium, hard difficulty levels for all puzzle types
- Magic puzzle instances have same difficulty level

Basic

 8
 5
 6

 5
 1
 2

 5
 1
 6

 4
 4

 6
 7
 2

 6
 7
 2

 7
 2
 2

 8
 6
 7
 2

 8
 6
 7
 2

 9
 4
 5
 6
 7
 1

Geometry

Diagonal

Magic

Even/Odd

Selecting Constraints: Evaluation

Sudoku Puzzles

		Easy		Med	lium	Hard				
	$ C_{new} $	Rec. Prec.		Rec.	Prec.	Rec.	Prec.			
Basic	3	1.0	0.88	1.0	0.87	1.0	0.87			
Geometry	3	1.0	0.86	1.0	0.88	1.0	0.88			
Diagonal	4	0.86	1.0	0.86	1.0	0.85	1.0			
Even/Odd	4	1.0 0.93 1.0 0.94 1.0 0.95								
Magic	5	(not categorized): Rec.: 0.81, Prec.: 1.0								

Recall: #correctly inferred cons. / total # cons.

Precision: # correctly inferred cons./ total # inferred cons.

Constraint Propagation Evaluation

Sudoku Puzzles: New Points

	Easy					Medium				Hard					
	Initial	AC	GAC	SAC	All	Initial	AC	GAC	SAC	All	Initial	AC	GAC	SAC	All
Basic	27	30	64	78	81	27	30	74	76	81	28	32	47	79	80
Geometry	28	32	51	78	81	27	30	71	76	80	27	31	45	79	80
Diagonal	22	22	25	23	25	22	22	25	23	25	22	22	26	23	26
Even/Odd	15	16	16	16	16	15	15	15	15	15	15	15	15	15	15
				(a) (Categor	ized	puzz	les						
								orize							
	Initial AC GAC SAC All														
	Magic 9 9 9 9 9														
			•	(b) I	Magic p	ouzz	le typ	е						

Constraint Propagation Evaluation

Sudoku Puzzles: Inferred Models

			Ea	asy	Med	lium	Hard			
	$ C_G $	$ C_{new} $	Rec.	Prec.	Rec.	Prec.	Rec.	Prec.		
Basic	2	3	1.0	0.99	1.0	1.0	1.0	0.99		
Geometry	2	3	1.0	1.0	1.0	1.0	1.0	0.99		
Diagonal	2	4	0.89	1.0	0.89	1.0	0.88	1.0		
Even/Odd	2	4	1.0	0.93	1.0	0.94	1.0	0.94		
Magic	2	5	(not categorized): Rec.: 0.81, Prec.: 1.0							

Performance Improvement

Sudoku

	E	asy	Med	dium	Hard						
	% solved	olved % one sol. % solved % one sol.		% one sol.	% solved	% one sol.					
Basic	99%	100%	100% 100%		99%	100%					
Geometry	100%	100%	100% 100%		99%	100%					
Diagonal	100%	57%	100%	56%	100%	53%					
Even/Odd	69%	100%	74%	100%	76%	100%					
Magic	(¬ categorized): % solved: 100% % one sol.: 10%										

% solved: percentage of instances with a solution(s)

% one sol.: percentage of solved instances with a single solution*

^{*}all puzzle instances are well-formed (a single solution)