A Heterogeneous Field Matching Method for Record Linkage

Steven Minton and Claude Nanjo Fetch Technologies {sminton, cnanjo}@fetch.com

Craig A. Knoblock, Martin Michalowski, and Matthew Michelson USC / ISI {knoblock,martinm,michelso}@isi.edu

Introduction

- Record linkage is the process of recognizing when two database records are referring to the same entity.
 - Employs similarity metrics that compare pairs of field values.
 - Given field-level similarity, an overall record-level judgment is made.

Record Linkage An example

• Fetch

Union Switch and Signal	2022 Hampton Ave	Manufacturing
JPM	115 Main St	Manufacturing
McDonald's	Corner of 5 th and Mai	n Food Retail
Joint Pipe Manufacturers	115 Main Street	Plumbing Manufacturer
Union Sign	300 Hampton Ave	Signage
McDonald's Restaurant	532 West Main St.	Restaurant

Traditional Approaches to Field Matching

Rule Based Approach:

- Pros:
 - Highly tailored domain-specific rules for each fields
 - E.g., last_name > first_name
 - Leverages domain-specific information.
- Cons:
 - Not Scalable
 - Rarely reusable on other domains

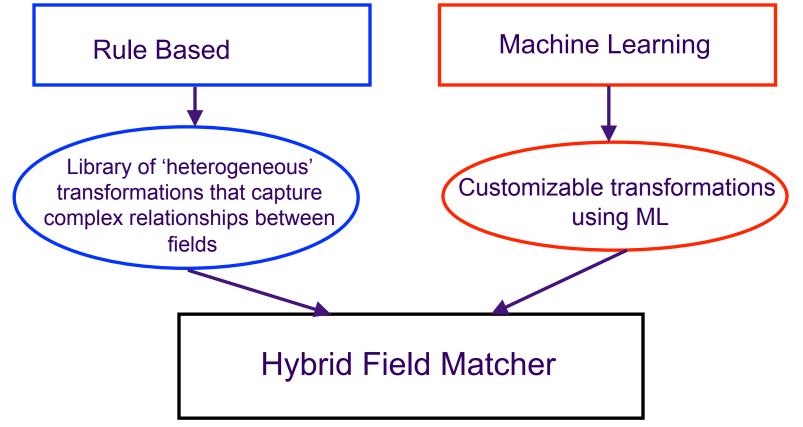
Traditional Approaches to Field Matching

Previous Machine Learning Approaches:

- Pros
 - Sophisticated decision-making methods at record level (e.g. DT, SVM, etc...)
 - Field matching often generic (TFIDF, Levenshtein)
 - Hence, more scalable
- Cons
 - Often used only one such homogeneous field matching approach
 - Thus, unable to detect heterogeneous relationships within fields (e.g. acronyms and abbreviations)
 - Failed to capture some important domain-specific fine-grained phenomena

Introducing the Hybrid Field Matcher (HFM)

(Based on Sheila Tejada's Active Atlas platform)



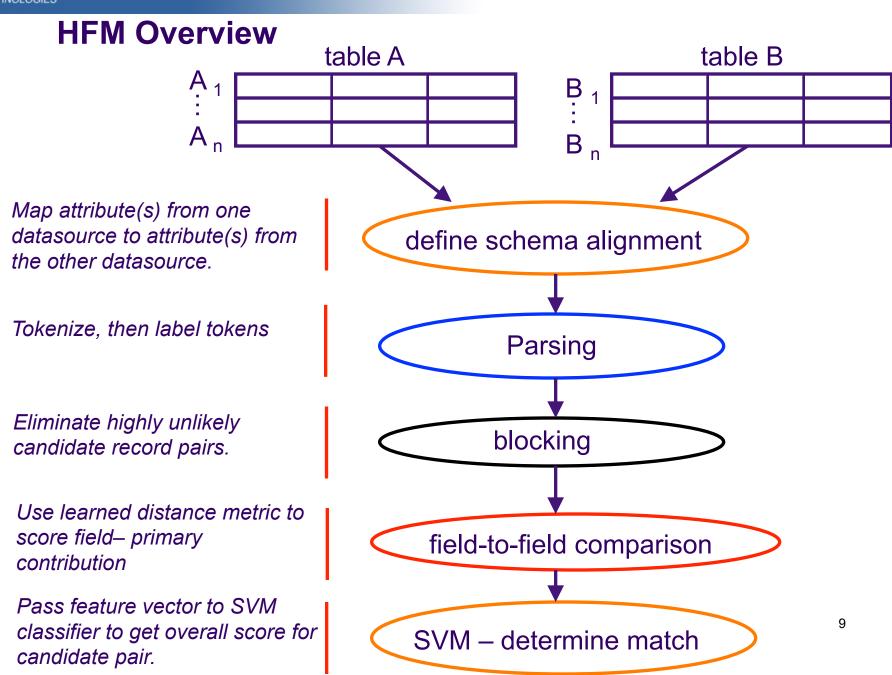
Better field matching results in better record linkage

Field Matching: Our Goals

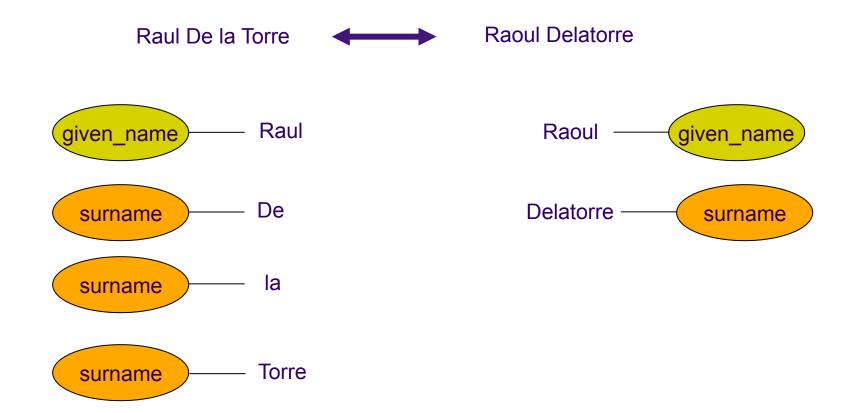
- To identify important relationships between tokens
- To capture these relationships using an expressive library of 'transformations'.
- To make these transformations generalizable across domain types.
- To translate the knowledge imparted from their application into a field score.

Field Matching

"JPM" ~ "Joint Pipe Manufacturers" → Acronym
"Hatchback" ~ "Liftback" → Synonym
"Miinton" ~ "Minton" → Spelling mistake
"S. Minton" ~ "Steven Minton" → Initials
"Blvd" ~ "Boulevard" → Abbreviation
"200ZX" ~ "200 ZX" → Concatenation



HFM Overview Parsing and tagging

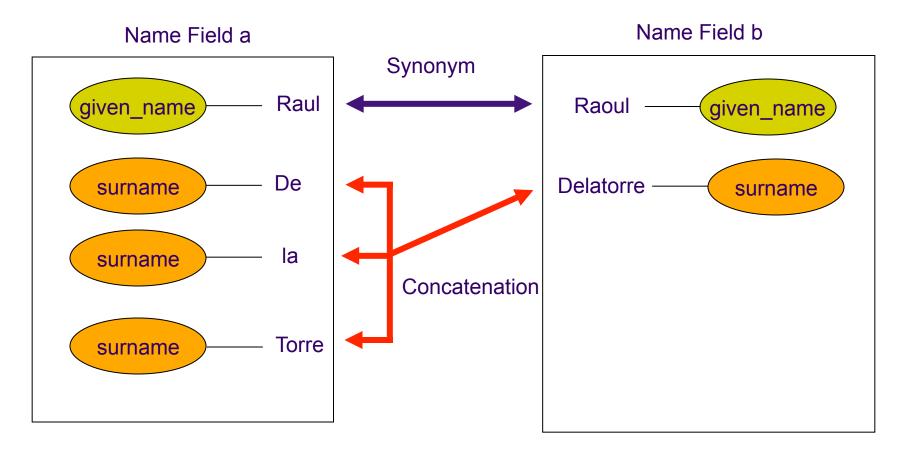


HFM Overview Blocking

- Provide the best set of candidate record pairs to consider for record linkage
- Blocking step should not affect recall by eliminating good matches
- We used a reverse index
 - datasource 1 used to build index
 - datasource 2 used to do lookup

HFM Overview

Field to Field Comparison



Score = 0.98

HFM Overview SVM Classification

Score for candidate pair: 0.975

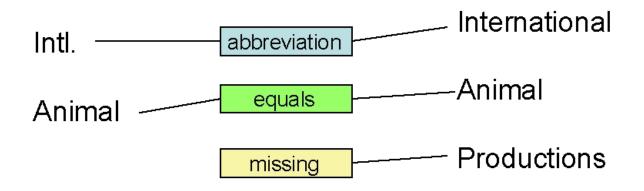
Training the Field Learner

Transformations =

{ Equal, Synonym, Misspelling, Abbreviation, Prefix, Acronym, Concatenation, Suffix, Soundex, Missing... }

Transformation Graph

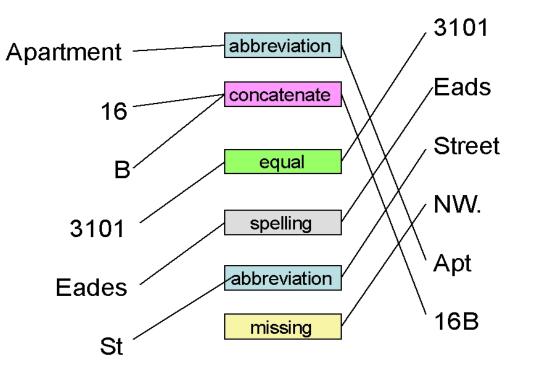
"Intl. Animal" + "International Animal Productions"



Training the Field Learner

Another Transformation Graph

"Apartment 16 B, 3101 Eades St" ↔ "3101 Eads Street NW Apt 16B"



Training the Field Learner

Step 1: Tallying transformation frequencies

Generic Preference Ordering

Equal > Synonym > Misspelling > Missing ...

Training Algorithm:

- I. For each training record pair
 - i. For each aligned field pair (a, b)
 - i. build transformation graph T(a, b)
 - "complete / consistent"
 - Greedy approach: preference ordering over transformations

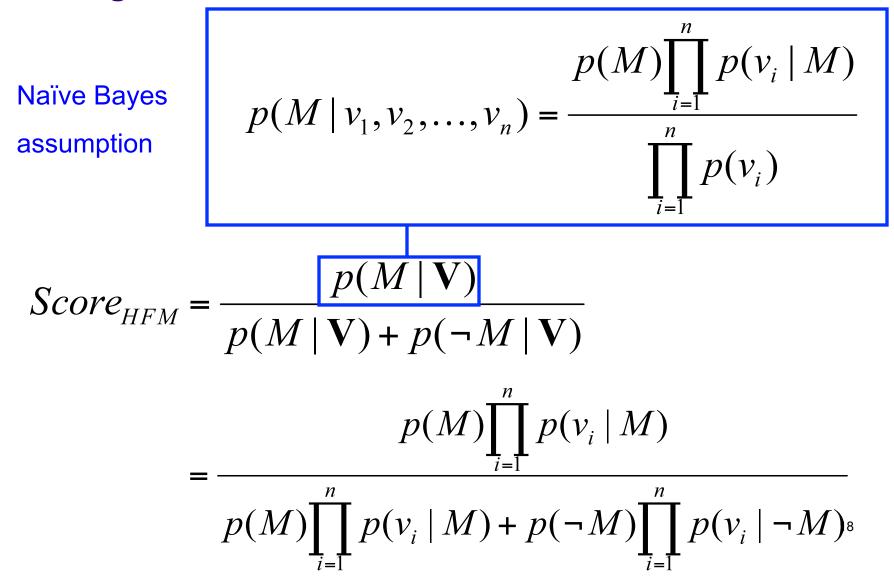
Training the Field Learner Step 2: Calculating the probabilities

 For each transformation type v_i (e.g. Synonym), calculate the following two probabilities:

 $p(v_i|Match) = p(v_i|M) = (freq. of v_i in M) / (size M)$ $p(v_i|Non-Match) = p(v_i|\neg M) = (freq. of v_i in \neg M) / (size \neg M)$

• Note: Here we make the Naïve Bayes assumption

Scoring unseen instances



Scoring unseen instances An Example

a = "Giovani Italian Cucina Int'l"

b = "Giovani Italian Kitchen International"

T(a,b) = {*Equal*(Giovani, Giovani), *Equal*(Italian, Italian),

Synonym(Cucina, Kitchen), Abbreviation(Int'l, International)}

Training:

p(M) = 0.31 p(Equal | M) = 0.17 p(Synonym | M) = 0.29p(Abbreviation | M) = 0.11 $p(\neg M) = 0.69$ $p(Equal | \neg M) = 0.027$ $p(Synonym | \neg M) = 0.14$ $p(Abbreviation | \neg M) = 0.03$

$$p(M)\prod p(v_i | M) = 2.86\text{E} - 4$$

 $p(\neg M)\prod p(v_i | \neg M) = 2.11\text{E} - 6$
Score_{HFM} = 0.993 \rightarrow Good Match!

Consider the following case

Pizza Hut Restaurant - Pizza Hut Rstrnt

Sabon Gari Restaurant - Sabon Gari Rstrnt

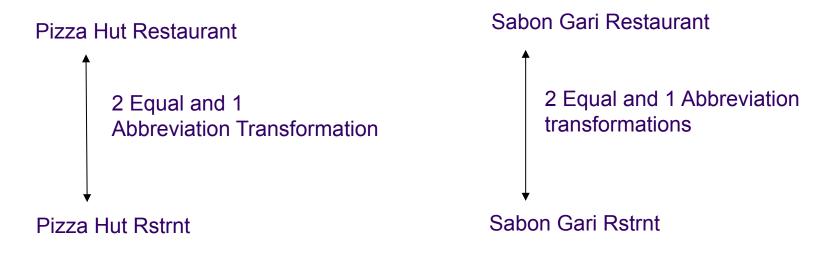
Should these score equally well?

Introducing Fine-Grained Transformations

- Capture additional information about a relationship between tokens
 - Frequency information
 - Pizza Hut vs. Sabon Gari
 - Semantic category
 - Street Number vs. Apartment Number
- Parameterized transformations
 - Equal[HighFreq] vs Equal[MedFreq]
 - Equal[FirstName] vs Equal[LastName]

Fine-Grained Transformations Frequency Considerations

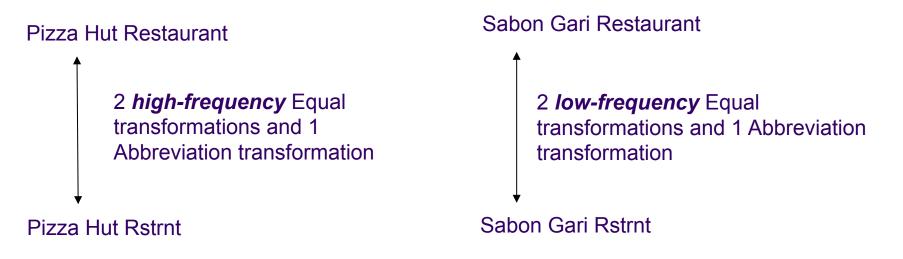
Coarse Grained:



Both score equally well.

Fine-Grained Transformations Frequency Considerations

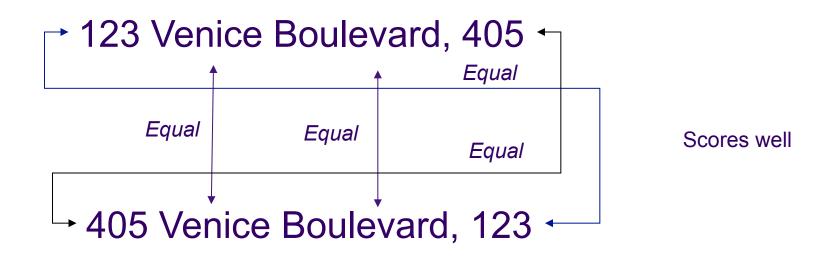
Fine Grained:



Sabon Gari Restaurant scores higher since low frequency equals are much more indicative of a match

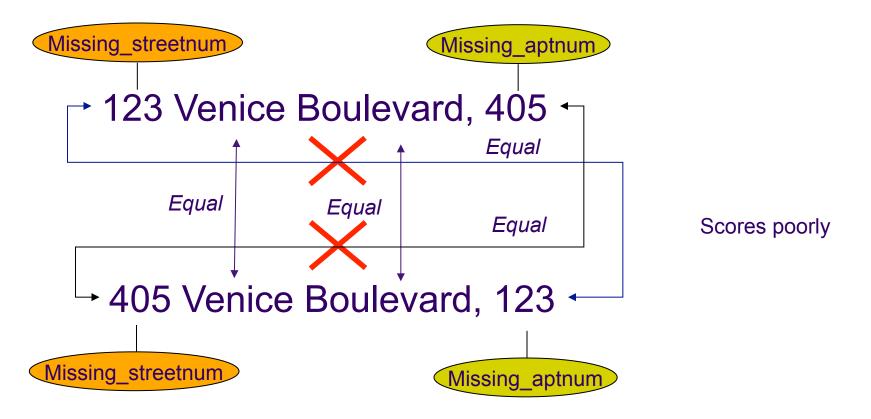
Fine-Grained Transformations Semantic Categorization

Without Tagging:

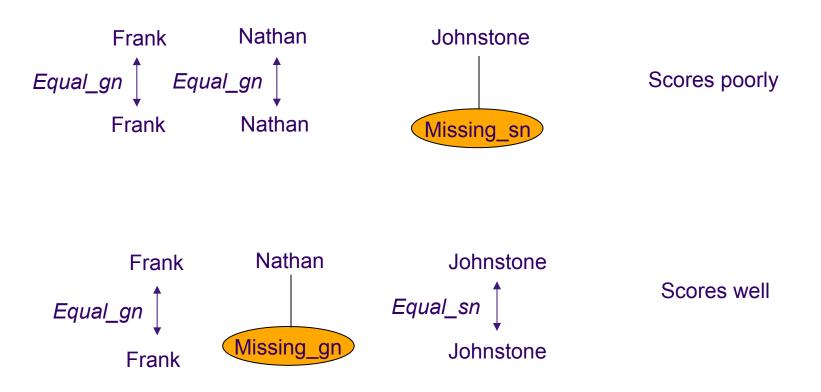


Fine-Grained Transformations Semantic Categorization

With Tagging:



Fine-Grained Transformations -Differential Impact of Missings



A missing surname penalizes a score far more than a missing given name.

Global Transformations

- Applied to entire transformation graph
 - Reordering
 - "Steven N. Minton" vs. "Minton, Steven N."
 - Subset
 - "Nissan 150 Pulsar wth AC" vs.
 - "Nissan 150 Pulsar"

Experimental Results

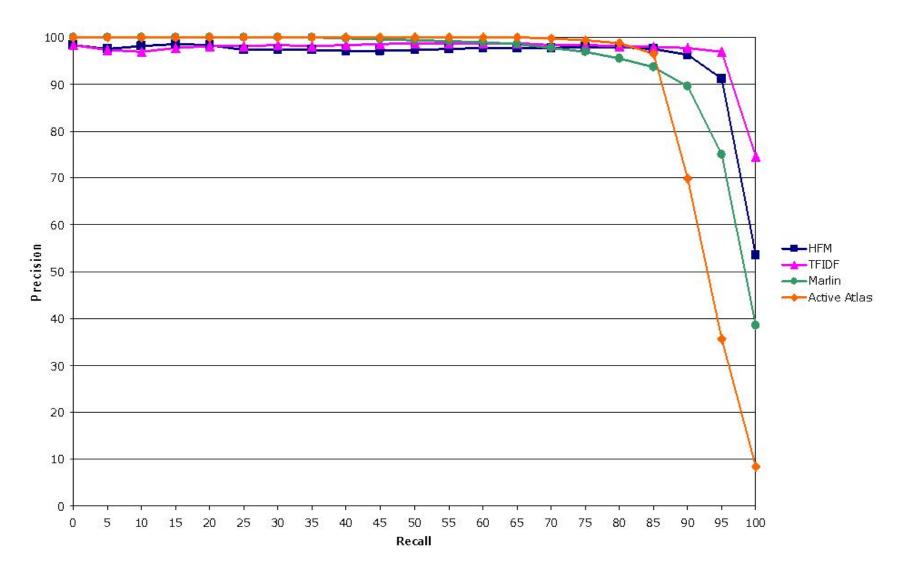
- We compared the following four systems:
 - HFM
 - **TF-IDF** (Vector-based cosine)
 - matches tokens
 - MARLIN
 - learned string edit distance
 - Active Atlas (older version)
- We made use of 4 datasets
 - Two restaurant datasets
 - One car dataset
 - One hotel dataset

Experimental Results

- Reproduced the experimental methodology described in the MARLIN paper (entitled "Adaptive Duplicate Detection Using Learnable String Similarity Measures" by M. Bilenko and R. Mooney, 2003)
 - All methods calculate vector of feature scores
 - Pass to SVM trained to label matches/non-matches
 - Radial Bias Function kernel, $\gamma = 10.0$
 - 20 trials, cross-validation
 - Dataset randomly split into two folds for cross validation
 - Precision interpolated at 20 standard recall levels.

"Marlin Restaurants" Dataset

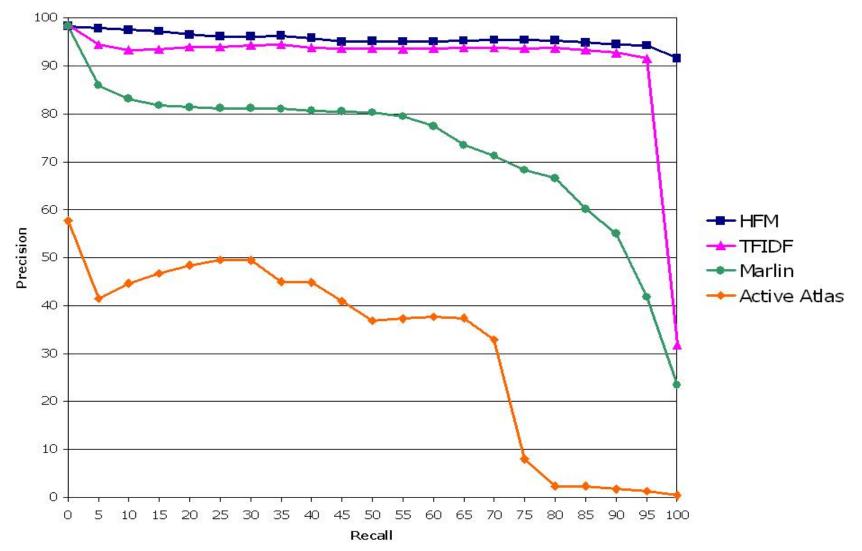
Fields: name, address, city, cuisine Size: Fodors (534 records), Zagats (330 records),112 Matches



Larger Restaurant Set With Duplicates

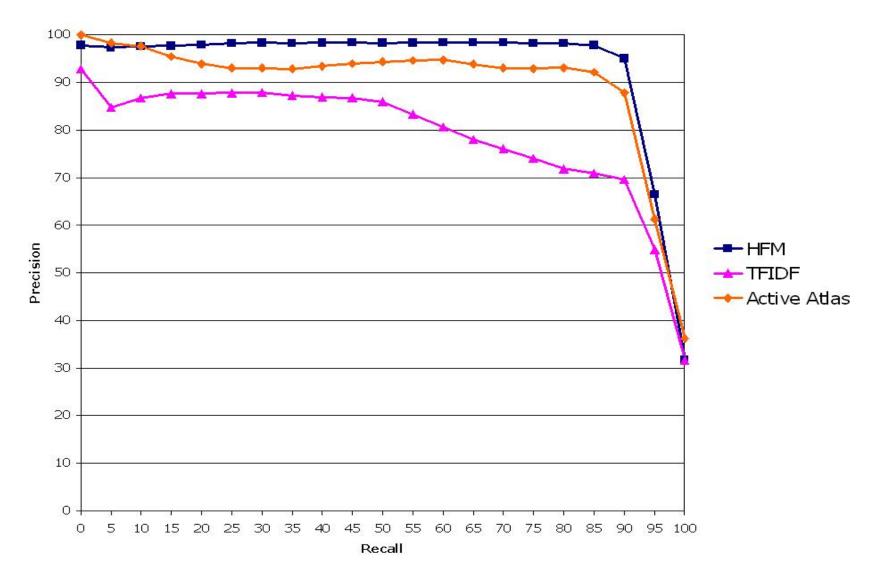
Fields: name, address

Size: LA County Health Dept. Website (3701), Yahoo LA Restaurants (438), 303



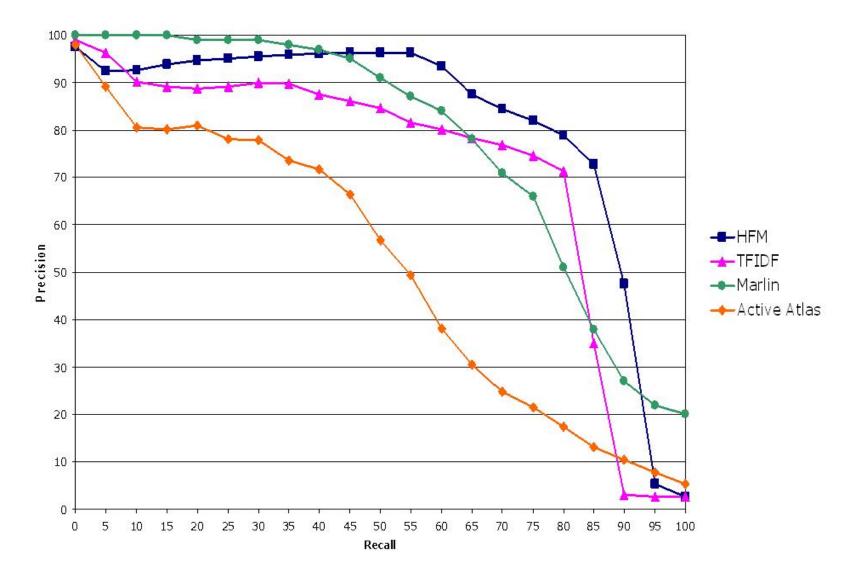
Car Dataset

Fields: make, model, trim, year Attributes: Edmunds (3171), Kelly Blue Book (2777), 2909 Matches



Bidding for Travel

Fields: star rating, hotel name, hotel area Size: Extracted posts (1125), "Clean" hotels (132), 1028 matches



Result Summary

Matching	Domain			
Technique	Marlin Res.	MD Res.	Cars	BFT
HFM	94.64	95.77	92.48	79.52
Active Atlas	92.31	45.09	88.97	56.95
TF-IDF	96.86	93.52	78.52	75.65
Marlin	91.39	76.29	N/A	75.54

Average maximum F-measure for detecting matching records. Note: *red* is not significant with respect to a 1-tailed paired t-test at confidence 0.05

Discussion of Results

- Comparison to TFIDF
 - HFM outperforms TFIDF by identifying complex relationships which improve matching
 - Restaurant Datasets:
 - Tokens related mostly by equality
 - Minor improvement over TFIDF
 - Car Dataset:
 - Transformations yield large improvements (in particular, synonym and ordered concatenation transformations)
- Comparison to Active Atlas
 - HFM introduces fine-grained & global transformations
 - HFM based on a better justified statistical approach. (Improved scoring of transformations based on Naïve Bayes)
- Comparison to Marlin
 - Can handle larger datasets
 - Captures important token-level relationships not accessible to Marlin
 - Token-based and not character-based

Discussion / Conclusion

- Alternative to transformations: normalize/preprocess data
 - No normal form
 - Caitlyn \rightarrow {Catherine, Lynne}
- Scalability
 - HFM does well on large, complex datasets

Acknowledgements

- We would like to thank:
 - Mikhail Bilenko for his kind help in helping us set up and run MARLIN on our datasets.
 - Sheila Tejada for her work on Active Atlas, the precursor to HFM

Questions / Comments

Thank you!

 Field alignments are defined mappings between attribute(s) from one datasource to attribute(s) from another datasource.

