Multi-view Active Learning

Ion Muslea

University of Southern California

Outline

- Multi-view active learning
- Robust multi-view learning
- View validation as meta-learning
- Related Work
- Contributions
- Future work

Background & Terminology

- Inductive machine learning
 - algorithms that learn concepts from *labeled* examples
- Active learning: *minimize need for training data* – detect & ask-user-to-label only most informative exs.
- Multi-view learning (*MVL*)
 - disjoint sets of features that are sufficient for learning
 - Speech recognition: sound vs. lip motion
 - previous multi-view learners are <u>semi-supervised</u>
 - exploit distribution of the *unlabeled examples*
 - boost accuracy by *bootstrapping* views from each other

Thesis of the Thesis

Multi-view active learning <u>maximizes</u> the accuracy of the learned hypotheses while <u>minimizing</u> the amount of labeled training data.

Outline

- Multi-view active learning
 - The intuition
 - The Co-Testing family of algorithms
 - Empirical evaluation
- Robust multi-view learning
- View validation as meta-learning
- Related Work
- Contributions
- Future work

A Simple Multi-View Problem

- Features:
 - salary
 - office number
- Concept: Is Faculty ?
 - View-1: salary > 50 K
 - **View-2: office < 300**

GOAL: minimize amount of labeled data

Co-Testing

? ?2 ? ??? \bigcirc ?2? 2 Office

Unlabeled Examples

Co-Testing

Co-Testing

The *Co-Testing* Family of Algorithms

- <u>REPEAT</u>
 - Learn one hypothesis in each view
 - Query one of the *contention points* (CP)
- Algorithms differ by:
 - output hypothesis: winner-takes-all, majority/weighted vote
 - query selection strategy:
 - *Naïve:* randomly chosen *CP*
 - *Conservative:* equal confidence *CP*
 - *Aggressive:* maximum confidence *CP*

When does Co-Testing work?

• Assumptions:

1. Uncorrelated views

- for any $\langle \mathbf{x}_1, \mathbf{x}_2, \mathbf{L} \rangle$: given \mathbf{L} , \mathbf{x}_1 and \mathbf{x}_2 are uncorrelated
- views *unlikely* to make same mistakes => contention points

2. Compatible views

- perfect learning in both views
- contention points are *fixable mistakes*
- <u>under these assumptions</u>, there are classes of learning problems for which Co-Testing converges faster than single-view active learners

Experiments: *four real-world domains*

wins 🗹 works

cannot-be-applied

Main Application: Wrapper Induction

Extract *phone number*: find its <u>start</u> & <u>end</u>

Co-Testing for Wrapper Induction

• <u>Views:</u> tokens <u>before</u> & <u>after</u> extract. point

Results on 33 tasks: 2 rnd exs + queries

Random sampling

Tasks

Results on 33 tasks: 2 rnd exs + queries

■ Naïve Co-Testing ■ Random sampling

Results on 33 tasks: 2 rnd exs + queries

Aggressive Co-Testing
Naïve Co-Testing
Random sampling

Queries until 100% accuracy

Co-Testing *vs.* **Single-View Sampling**

■ Aggressive Co-Testing ■ Query-by-Bagging

Queries until 100% accuracy

First Contribution

Co-Testing: multi-view active learning

- Querying contention points
- Converges faster than single-view
 > variety of domains & base learners

Outline

- Multi-view active learning
- Robust multi-view learning

– motivation

- **Co-EMT** = active + semi-supervised learning

– *robustness* to assumption violations

- View validation as meta-learning
- Related Work
- Contributions
- Future work

Motivation

- Active learning:
 - queries *only* the most informative examples
 - ignores all remaining (unlabeled) examples
- Semi-supervised learning (previous *MVL*):
 - few labeled + many unlabeled examples
 - *unlabeled examples:* model examples' distribution
 - use this model to boost accuracy of small training set
- Best of both worlds:
 - 1. <u>Active:</u> make queries
 - 2. <u>Semi-supervised:</u> use remaining (unlabeled) exs.

Co-EMT = Co-Testing + Co-EM

• <u>Given:</u>

The **Co-EMT** Synergy

- 1. Co-Testing boosts Co-EM: *better examples*
 - *stand-alone* **Co**-**EM** uses random examples
 - **Co-Testing** provides more informative examples

- 2. CO-EM helps Co-Testing: better hypotheses
 - *stand-alone* **Co-Testing** uses only labeled exs
 - **Co-EM** also exploits unlabeled examples

Two real-world domains

COURSES

Semi-supervised *MVL*: bootstrapping views

Task: is Web page *course homepage* (+) or *not* (-) ?

Assumption: compatible, independent views

Incompatible views

Correlated views: *domain clumpiness*

A Controlled Experiment

Co-EMT is robust !

Second Contribution

Co-EMT: robust multi-view learning

• interleave *active* & *semi-supervised* MVL

Outline

- Multi-view active learning
- Robust multi-view learning
- View validation as meta-learning

 Motivation
 Adaptive view validation
 - Empirical results
- Related Work
- Contributions
- Future work

Motivation: Wrapper Induction

In MVL, the <u>same views</u> may be:

• adequate for some tasks

• inadequate for other tasks

The Need for View Validation

- *Not only* for wrapper induction:
 - <u>Speech recognition:</u> *sound vs. lip motion*
 - Task-1: recognize *Tom Brokaw*'s speech
 - Task-2: recognize Ozzy Osbourne's speech
 - ...
 - <u>Web page classification</u>: *hyperlink vs. page* words
 - **Task-1:** terrorism / economics news
 - **Task-2:** faculty / student homepage
 - •
- Solution: meta-learning
 - from past experiences, learn to ...
 - ... predict whether \mathcal{MVL} is adequate for new, unseen task

Meta-learner: Adaptive View Validation

• GIVEN

- labeled tasks $[Task_1, L_1], [Task_2, L_2], \dots, [Task_n, L_n]$

- FOR EACH Task; DO
 - generate *view validation example*

 $e_i = \langle Meta-F1, Meta-F2, \dots, L_i \rangle$

• train C4.5 on $e_1, e_2, ..., e_n$

For each *new, unseen task* use <u>learned decision tree</u> to predict whether *MVL* is adequate for task.

View Validation Meta-Features

- use labeled examples to learn $h_1 \& h_2$
- The meta-features:

- F1: agreement of h₁ & h₂ on unlabeled examples

 Illustrative View Validation Rule:

 IF

 h₁ & h₂ agree on at least 62% unlabeled exs

 [TrainError(h₁)- TrainError(h₂)] < 10%</td>

 THEN

task's views are adequate for \mathcal{MVL}

Empirical Results

- WI: wrapper induction (33 tasks)
- **TC**: text classification (60 tasks)

percentage of tasks used for training

Third Contribution

View validation:

meta-learner that uses past experiences to predict whether or not \mathcal{MVL} is appropriate for new, unseen task

Related Work: Active Learning

- counterexamples [Angluin 88], query generation [Lang '92]
- Selective Sampling
 - uncertainty reduction [Lewis 94,Schohn 01, Thompson 99]
 - version space reduction [Seung 92, Cohn 94, Abe 98]
 - expected-error minimization [Lindenbaum 99, Tong 00, Roy 01]
- *Co-Testing vs.* existing selective samplers multi-view *vs.* single-view active learning
 - "domain" oriented vs. "base learner" oriented
- **CO-EMT** *vs.* "**EM** + Query-by-Committee" [McCallum+ '98]

Related Work: Multi-view Learning

- Theory of Co-Training:
 - [Blum+Mitchell 98] formalization of multi-view learning
 - [Dasgupta+ 01] Co-Training's proof of convergence
 - [Abney 02] allowing (some) view correlation
- Extensions:
 - algorithmic [Collins 99] [Nigam 00] [Pierce 01] [Ghani 02]
 - applicability [Nigam 00] [Goldman 00] [Raskutti 02]
- *Co-Testing vs.* existing multi-view learners

 all other *MVL* are "passive" & semi-supervised

Related Work: *Meta-learning*

- Meta-features
 - general features [Aha 92][Brazdil+ 95][Todorovski+ 99]
 - simple features: number of classes, features, examples, ...
 - statistical: default accuracy, std.-dev., skewness, kurtosis, ...
 - information theoretic: class, attribute, and joint entropy, ...
 - classifier-based [Bensusan 99] : max-depth & shape of DT, ...
 - landmarking [Pfaringer 00]: accuracies of simple, fast learners
- Adaptive View Validation vs. existing approaches:
 - single- vs. multi- view learning
 - few labeled + many unlabeled examples
 - landmarking (*training error*) + classifier-based (*complexity*)

Contributions

- 1. *Co-Testing*: multi-view active learning
 - Querying contention points
 - Converges faster than single-view learners ...
 - ... on a variety of <u>domains</u> & <u>base learners</u>
- **2.** Co-EMT: novel multi-view learner
 - Interleaving active & semi-supervised learning
 - Robust behavior on large spectrum of tasks
- **3.** *View Validation*: is task appropriate for *MVL*?
 - Meta-learning algorithm that uses past experiences to predict whether or not \mathcal{MVL} is appropriate for new, unseen task.

Future Work

View Detection

- propose feature split into views
 - INPUT: learning task (features + examples)
 - OUTPUT: split of features into several views (*if possible*)

• Co-Testing

- myopic vs. look-ahead queries
 - select optimal *sequence of queries*
- <u>Co-Testing</u> for regression & semi-supervised clustering

Adaptive View Validation

- "general purpose" vs. "per multi-view problem"
 - train on tasks from a variety of multi-view problems