Multi-view Active Learning

Ion Muslea

University of Southern California
Outline

- Multi-view active learning
- Robust multi-view learning
- View validation as meta-learning

- Related Work
- Contributions
- Future work
Background & Terminology

• Inductive machine learning
 – algorithms that learn concepts from labeled examples
• Active learning: minimize need for training data
 – detect & ask-user-to-label only most informative exs.
• Multi-view learning (MVL)
 – disjoint sets of features that are sufficient for learning
 • Speech recognition: sound vs. lip motion
 – previous multi-view learners are semi-supervised
 • exploit distribution of the unlabeled examples
 • boost accuracy by bootstrapping views from each other
Multi-view active learning maximizes the accuracy of the learned hypotheses while minimizing the amount of labeled training data.
Outline

• Multi-view active learning
 – The intuition
 – The Co-Testing family of algorithms
 – Empirical evaluation

• Robust multi-view learning

• View validation as meta-learning

• Related Work

• Contributions

• Future work
A Simple Multi-View Problem

- **Features:**
 - salary
 - office number

- **Concept:** Is Faculty?
 - View-1: salary > 50 K
 - View-2: office < 300

GOAL: minimize amount of labeled data
Co-Testing

Labeled Examples

Unlabeled Examples
Co-Testing

Salary

Office

Labeled Examples

Unlabeled Examples
Co-Testing

Labeled Examples

Unlabeled Examples
The **Co-Testing** Family of Algorithms

- **REPEAT**
 - Learn one hypothesis in each view
 - Query one of the *contention points* *(CP)*

- Algorithms differ by:
 - output hypothesis: *winner-takes-all, majority/weighted vote*
 - query selection strategy:
 - **Naïve:** randomly chosen *(CP)*
 - **Conservative:** equal confidence *(CP)*
 - **Aggressive:** maximum confidence *(CP)*
When does Co-Testing work?

• **Assumptions:**

1. **Uncorrelated views**
 - for any \(<x_1, x_2, L>\): given \(L\), \(x_1\) and \(x_2\) are uncorrelated
 - views *unlikely* to make same mistakes \(\Rightarrow\) contention points

2. **Compatible views**
 - perfect learning in both views
 - contention points are *fixable mistakes*

• **under these assumptions**, there are classes of learning problems for which Co-Testing converges faster than single-view active learners
Experiments: *four real-world domains*

- Random Sampling
- Uncertainty Sampling
- Query-by-Committee
- Query-by-Boosting
- Query-by-Bagging
- Naïve Co-Testing
- Conservative Co-Testing
- Aggressive Co-Testing

<table>
<thead>
<tr>
<th>Ad</th>
<th>Parse</th>
<th>Courses</th>
<th>Wrapper</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB</td>
<td>C4.5</td>
<td>Naïve-Bayes</td>
<td>Stalker</td>
</tr>
</tbody>
</table>

- remove advertisements
- "is this image an ad?"

- learns shift-reduce parser that converts Japanese discourse tree into an equivalent English one
- discriminates between course homepages and other pages
- extract relevant data from Web pages

- **wins**
- **works**
- **cannot-be-applied**
Main Application: **Wrapper Induction**

- Extract *phone number*: find its **start** & **end**

... Hilton <p> Phone: (211) 111-1111 </p> Fax: (211) 121-1...

SkipTo(Phone :) SkipTo()

... Phone (toll free) : <i> (800) 171-1771 </i> </i> Fax: (800) 777-1...

SkipTo(Phone) SkipTo(Html) SkipTo(Html)
Co-Testing for Wrapper Induction

- **Views:** tokens *before* & *after* extract. point

... Hilton <p> Phone: (211) 111-1111 Fax: (211) ...</p>

SkipTo(Phone) SkipTo() BackTo(Fax) BackTo((Nmb)

... Motel 6 <p> **Phone**: (311) 101-1110 Fax: (311) ...</p>

... **Phone** (tool free): <i> (800) 171-1771 </i> Fax: (111) ...</i>

...
Results on 33 tasks: 2 rnd exs + queries

Tasks

Queries until 100% accuracy

Random sampling

18+
Results on 33 tasks: 2 rnd exs + queries

![Bar chart showing queries until 100% accuracy for Naïve Co-Testing and Random sampling across 33 tasks. The chart indicates that tasks 1, 3, 5, 9, and 17 require more than 18 queries for 100% accuracy.](chart.png)
Results on 33 tasks: 2 rnd exs + queries
Co-Testing vs. Single-View Sampling

Tasks

Queries until 100% accuracy

Aggressive Co-Testing Query-by-Bagging
First Contribution

Co-Testing: multi-view active learning

- Querying contention points
- Converges faster than single-view
 - variety of domains & base learners
Outline

• Multi-view active learning

• Robust multi-view learning
 – motivation
 – Co-EMT = active + semi-supervised learning
 – robustness to assumption violations

• View validation as meta-learning

• Related Work

• Contributions

• Future work
Motivation

- **Active learning:**
 - queries *only* the most informative examples
 - ignores all remaining (unlabeled) examples

- **Semi-supervised learning (previous MVL):**
 - few labeled + many unlabeled examples
 - *unlabeled examples:* model examples’ distribution
 - use this model to boost accuracy of small training set

- **Best of both worlds:**
 1. **Active:** make queries
 2. **Semi-supervised:** use remaining (unlabeled) exs.
Co-EMT = Co-Testing + Co-EM

• Given:
 – views V_1 & V_2
 – L & U, sets of labeled & unlabeled examples

• Co-Testing

 REPEAT
 - use Co-EM(L, U) to learn h_1 and h_2
 - use labeled examples in L to learn h_1 and h_2
 – query contention point: $h_1(u) \neq h_2(u)$

Semi-supervised MVL
- few labeled + many unlabeled exs
- uses unlabeled exs to bootstrap views from each other
The Co-EMT Synergy

1. Co-Testing boosts Co-EM:
 - *stand-alone Co-EM* uses random examples
 - Co-Testing provides more informative examples

2. Co-EM helps Co-Testing:
 - *stand-alone Co-Testing* uses only labeled exs
 - Co-EM also exploits unlabeled examples
Two real-world domains

COURSES

error rate (%)

ADS

error rate (%)

Co-EMT
Co-EM
Co-Training
semi-supervised EM

Co-Testing
Semi-supervised **MVL**: bootstrapping views

Task: is Web page *course homepage* (+) or *not* (-) ?

V2: words in hyperlinks

... Spring teaching ...

... favorite class ...

... my favorite class ...

V1: words in pages

![Image of course homepage]
Assumption: compatible, independent views
Incompatible views

CS-511: Neural Nets

Neural nets papers:

...neural nets ...

...neural nets ...

Neural nets papers:...
Correlated views: *domain clumpiness*

- **Theory clump**
- **A.I. clump**
- **Systems clump**
- **Faculty clump**
- **Admin clump**
- **Students clump**
A Controlled Experiment

<table>
<thead>
<tr>
<th>Clumps per class</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Co-EM
- Co-Training
- EM

Incompatibility (%)

Legend:
- Co-EM
- Co-Training
- EM
Co-EMT is robust!
Second Contribution

Co-EMT: robust multi-view learning

- interleave *active* & *semi-supervised MVL*
Outline

• Multi-view active learning
• Robust multi-view learning

• View validation as meta-learning
 – Motivation
 – Adaptive view validation
 – Empirical results

• Related Work
• Contributions
• Future work
Motivation: Wrapper Induction

In **MVL**, the *same* views may be:

- *adequate* for some tasks
- *inadequate* for other tasks
The Need for View Validation

• **Not only** for wrapper induction:
 • **Speech recognition:** sound *vs.* lip motion
 • Task-1: recognize *Tom Brokaw*’s speech
 • Task-2: recognize *Ozzy Osbourne*’s speech
 • ...
 • **Web page classification:** hyperlink *vs.* page words
 • Task-1: terrorism / economics news
 • Task-2: faculty / student homepage
 • ...

• **Solution:** meta-learning
 • from past experiences, learn to …
 • … predict whether **MVL** is adequate for new, unseen task
Meta-learner: *Adaptive View Validation*

- **GIVEN**
 - labeled tasks \([\text{Task}_1, L_1], [\text{Task}_2, L_2], \ldots, [\text{Task}_n, L_n]\)

- **FOR EACH** \(\text{Task}_i\) **DO**
 - generate *view validation example*
 \[e_i = \langle \text{Meta-F1}, \text{Meta-F2}, \ldots, L_i \rangle\]

- train **C4.5** on \(e_1, e_2, \ldots, e_n\)

For each *new, unseen task* use learned decision tree to predict whether **MVL** is adequate for task.
View Validation *Meta-Features*

- use labeled examples to learn h_1 & h_2
- **The meta-features:**
 - F1: agreement of h_1 & h_2 on unlabeled examples
 - F2: $\min(\text{TrainError}(h_1), \text{TrainError}(h_2))$
 - F3: $\max(\text{TrainError}(h_1), \text{TrainError}(h_2))$
 - F4: $F3 - F2$
 - F5: $\min(\text{Complexity}(h_1), \text{Complexity}(h_2))$
 - F6: $\max(\text{Complexity}(h_1), \text{Complexity}(h_2))$
 - F7: $F6 - F5$

Illustrative View Validation Rule:

IF

h_1 & h_2 agree on at least 62% unlabeled exs & $|\text{TrainError}(h_1) - \text{TrainError}(h_2)| < 10$

THEN

task’s views are adequate for MVL
Empirical Results

- **WI**: wrapper induction (33 tasks)
- **TC**: text classification (60 tasks)
Third Contribution

View validation:

meta-learner that uses past experiences to predict whether or not MVL is appropriate for new, unseen task
Related Work: Active Learning

• counterexamples [Angluin 88], query generation [Lang ‘92]

• Selective Sampling
 – uncertainty reduction [Lewis 94, Schohn 01, Thompson 99]
 – version space reduction [Seung 92, Cohn 94, Abe 98]
 – expected-error minimization [Lindenbaum 99, Tong 00, Roy 01]

• Co-Testing vs. existing selective samplers
 – multi-view vs. single-view active learning
 – “domain” oriented vs. “base learner” oriented

• Co-EMT vs. “EM + Query-by-Committee” [McCallum+ ‘98]
Related Work: \textit{Multi-view Learning}

- **Theory of Co-Training:**
 - [Blum+Mitchell 98] formalization of multi-view learning
 - [Dasgupta+ 01] Co-Training’s proof of convergence
 - [Abney 02] allowing (some) view correlation
- **Extensions:**
 - algorithmic [Collins 99] [Nigam 00] [Pierce 01] [Ghani 02]
 - applicability [Nigam 00] [Goldman 00] [Raskutti 02]

- **Co-Testing vs. existing multi-view learners**
 - all other \textit{MVL} are “passive” & semi-supervised
Related Work: *Meta-learning*

- **Meta-features**
 - general features [Aha 92][Brazdil+ 95][Todorovski+ 99]
 - simple features: number of classes, features, examples, …
 - statistical: default accuracy, std.-dev., skewness, kurtosis, …
 - information theoretic: class, attribute, and joint entropy, …
 - classifier-based [Bensusan 99]: max-depth & shape of DT, …
 - landmarking [Pfaringer 00]: accuracies of simple, fast learners
- **Adaptive View Validation** vs. existing approaches:
 - single- vs. multi-view learning
 - few labeled + many unlabeled examples
 - landmarking (**training error**) + classifier-based (**complexity**)
Contributions

1. **Co-Testing**: multi-view active learning
 - Querying contention points
 - Converges faster than single-view learners …
 - … on a variety of domains & base learners

2. **Co-EMT**: novel multi-view learner
 - Interleaving active & semi-supervised learning
 - Robust behavior on large spectrum of tasks

3. **View Validation**: is task appropriate for MVL?
 - Meta-learning algorithm that uses past experiences to predict whether or not MVL is appropriate for new, unseen task.
Future Work

• **View Detection**
 – propose feature split into views
 • INPUT: learning task (features + examples)
 • OUTPUT: split of features into several views (*if possible*)

• **Co-Testing**
 – myopic *vs.* look-ahead queries
 • select optimal *sequence of queries*
 – **Co-Testing** for regression & semi-supervised clustering

• **Adaptive View Validation**
 – “general purpose” *vs.* “per multi-view problem”
 • train on tasks from a variety of multi-view problems