
Web Data Extraction

Craig Knoblock

University of Southern California

This presentation is based on slides prepared
by Ion Muslea and Kristina Lerman

Extracting Data from Semi-
structured Sources

NAME Casablanca Restaurant

STREET 220 Lincoln Boulevard

CITY Venice

PHONE (310) 392-5751

Approaches to Wrapper
Construction

• Manual Wrapper Construction

• Learning-based Wrapper Construction

• Automatic Wrapper Construction

October 20, 2017 University of Southern California 4

Grammar Induction Approach

• Pages automatically generated by scripts that
encode results of db query into HTML

• Script = grammar

• Given a set of pages generated by the same
script

• Learn the grammar of the pages

• Wrapper induction step

• Use the grammar to parse the pages

• Data extraction step

October 20, 2017 University of Southern California 5

RoadRunner: Towards Automatic Data
Extraction from Large Web Sites by
Crescenzi, Mecca, & Merialdo

October 20, 2017 University of Southern California 6

RoadRunner Overview

• Automatically generates a wrapper from large
web pages
• Pages of the same class

• No dynamic content from javascript, ajax, etc

• Infers source schema
• Supports nested structures and lists

• Extracts data from pages

• Efficient approach to large, complex pages with
regular structure

October 20, 2017 University of Southern California 7

Example
Pages

• Compares two pages at a
time to find similarities
and differences

• Infers nested structure
(schema) of page

• Extracts fields

October 20, 2017 University of Southern California 8

Extracted Result

October 20, 2017 University of Southern California 9

Union-Free Regular Expression
(UFRE)

• Web page structure can be represented as
Union-Free Regular Expression (UFRE)

• UFRE is Regular Expressions without disjunctions

• If a and b are UFRE, then the following are also
UFREs

• a.b

• (a)+

• (a)?

October 20, 2017 University of Southern California 10

Union-Free Regular Expression
(UFRE)

• Web page structure can be represented as
Union-Free Regular Expression (UFRE)

• UFRE is Regular Expressions without disjunctions

• If a and b are UFRE, then the following are also
UFREs

• a.b  string fields

• (a)+  lists (possibly nested)

• (a)?  optional fields

• Strong assumption that usually holds

October 20, 2017 University of Southern California 11

Approach

• Given a set of example pages
• Generate the Union-Free Regular Expression

which contains example pages
• Find the least upper bounds on the RE lattice to

generate a wrapper in linear time
• Reduces to finding the least upper bound on

two UFREs

October 20, 2017 University of Southern California 12

Matching/Mismatches

Given a set of pages of the same type

• Take the first page to be the wrapper (UFRE)

• Match each successive sample page against the wrapper

• Mismatches result in generalizations of wrapper
• String mismatches

• Tag mismatches

October 20, 2017 University of Southern California 13

Matching/Mismatches

Given a set of pages of the same type

• Take the first page to be the wrapper (UFRE)

• Match each successive sample page against the wrapper

• Mismatches result in generalizations of wrapper
• String mismatches

• Discover fields

• Tag mismatches

• Discover optional fields

• Discover iterators

October 20, 2017 University of Southern California 14

Example Matching

October 20, 2017 University of Southern California 15

String Mismatches: Discovering Fields

• String mismatches are used to discover fields of
the document

• Wrapper is generalized by replacing
“John Smith” with #PCDATA

<HTML>Books of: John Smith

 <HTML> Books of: #PCDATA

October 20, 2017 University of Southern California 16

Example Matching

October 20, 2017 University of Southern California 17

Tag Mismatches: Discovering
Optionals

• First check to see if mismatch is caused by an
iterator (described next)

• If not, could be an optional field in wrapper or
sample

• Cross search used to determine possible
optionals

• Image field determined to be optional:
• ()?

October 20, 2017 University of Southern California 18

Example Matching

String Mismatch

String Mismatch

October 20, 2017 University of Southern California 19

Tag Mismatches:
Discovering Iterators

• Assume mismatch is caused by repeated elements in a
list
• End of the list corresponds to last matching token:
• Beginning of list corresponds to one of the mismatched tokens:

 or
• These create possible “squares”

• Match possible squares against earlier squares
• Generalize the wrapper by finding all contiguous

repeated occurrences:
• (<I>Title:</I>#PCDATA)+

October 20, 2017 University of Southern California 20

Example Matching

October 20, 2017 University of Southern California 21

Internal Mismatches

• Generate internal mismatch while trying to
match square against earlier squares on the
same page
• Solving internal mismatches yield further refinements

in the wrapper

• List of book editions

• <I>Special!</I>

October 20, 2017 University of Southern California 22

Recursive Example

October 20, 2017 University of Southern California 23

Discussion

• Assumptions:
• Pages are well-structured

• Structure can be modeled by UFRE (no disjunctions)

• Search space for explaining mismatches is
huge
• Uses a number of heuristics to prune space

• Limited backtracking

• Limit on number of choices to explore

• Patterns cannot be delimited by optionals

• Will result in pruning possible wrappers

October 20, 2017 University of Southern California 24

Limitations

• Learnable grammars

• Union-Free Regular Expressions (RoadRunner)

• Variety of schema structure: tuples (with optional attributes)
and lists of (nested) tuples

• Does not efficiently handle disjunctions – pages with
alternate presentations of the same attribute

• Context-free Grammars

• Limited learning ability

• User needs to provide a set of pages of the same type

October 20, 2017 University of Southern California 25

Inferlink Web Extraction Software

Inferlink Web Extraction Software

• Two phase processing

• Step 1: Cluster the pages based on the layout of the
pages

• Step 2: Build a template to extract the data for each
cluster

Inferlink Web Extraction Software:
Clustering

• Cluster

• Based on the visible text

• Page is broken into chunks

• These are continuous blocks of text

• Search for common visible chunks

• Remove chunks that occur in all pages

• Remove chunks that occur in less than 10 pages

• Greedy algorithm to cluster the pages based on the
remaining chunks

• Sort by the size of the clusters created by each chunk

Inferlink Web Extraction Software:
Template Learning

• Input: cluster {Pi}

• Select 5 random pages to build a template

• Tokenize on space & punctuation

• Start with n-grams of tuples of size n, n=6

• Find those n-grams that occur on all pages

• Keep only those n-grams that occur exactly once per pages

• Decompose pages based on these n-grams

• Run algorithm recursive on decomposed page

• Repeat above for size n-1 down to n=2

• Construct template based on the decomposition

Discussion

• Inferlink approach solves some of the key
limitations of Roadrunner

• Pages do not all have to be of the same type

• Multiple optionals would be treated as different page
types

• Scales well with complex pages

Demonstration

Web Data Extraction Software

• Beautiful Soup

• http://www.crummy.com/software/BeautifulSoup/

• Python library to manually write wrappers

• Jsoup

• http://jsoup.org/

• Java library to manually write wrappers

• ScrapingHub

• http://scrapinghub.com/

• Portia provides a wrapper learner

• Others

• https://www.quora.com/Which-are-some-of-the-best-web-data-
scraping-tools

• Tell us if you find a good one!

http://www.crummy.com/software/BeautifulSoup/
http://jsoup.org/
http://scrapinghub.com/
https://www.quora.com/Which-are-some-of-the-best-web-data-scraping-tools

