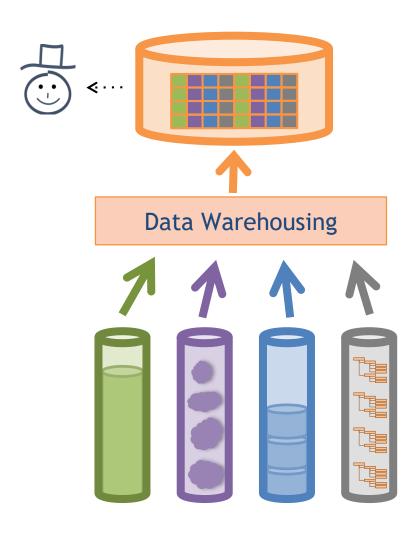


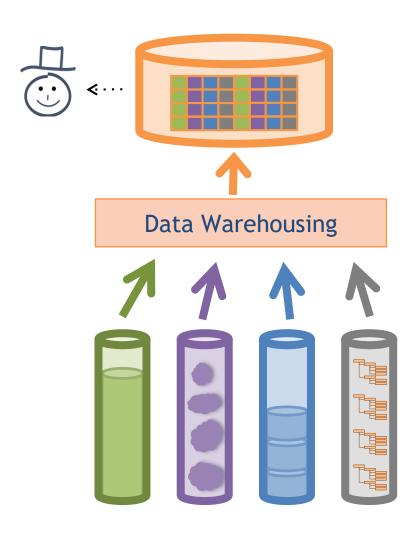
Aligning and Integrating Data in Karma

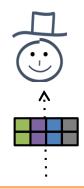
Craig Knoblock University of Southern California Data Integration Approaches

Data Integration Approaches



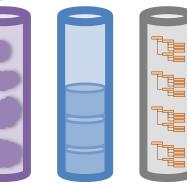
Data Integration Approaches

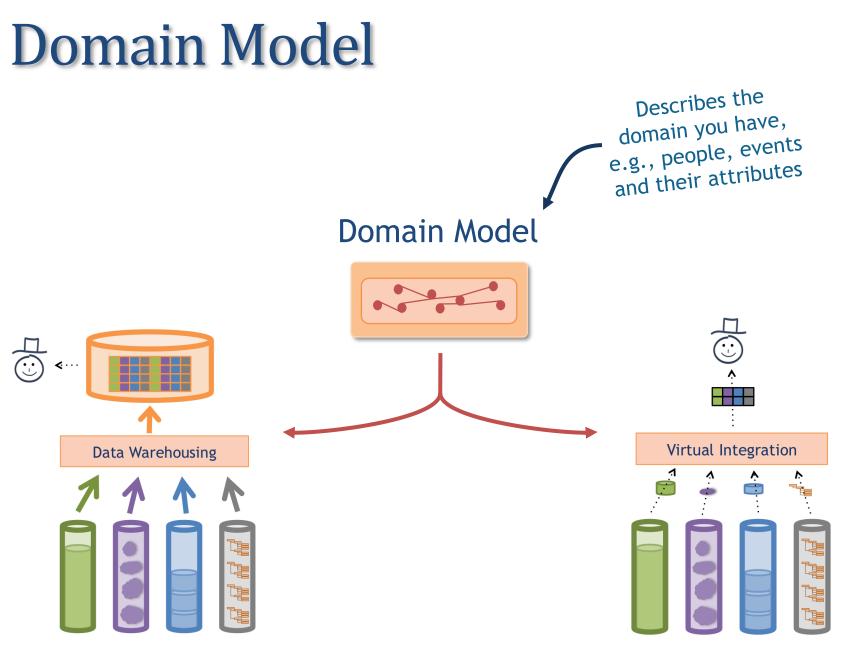




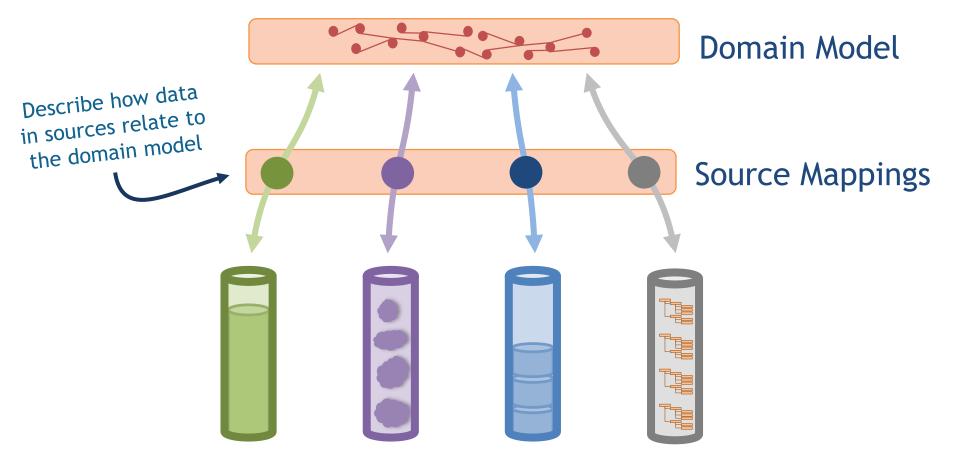
Virtual Integration

Λ



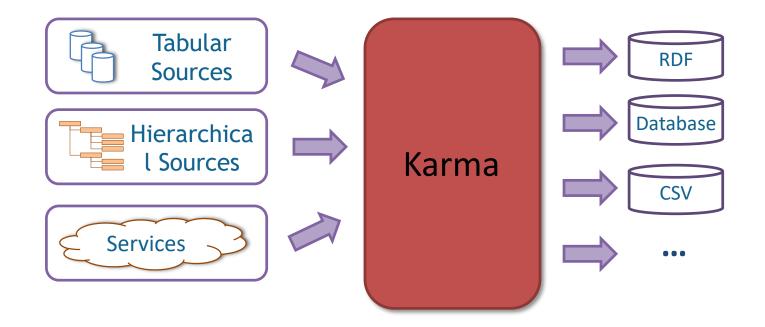


Key Ingredient: Source Mappings

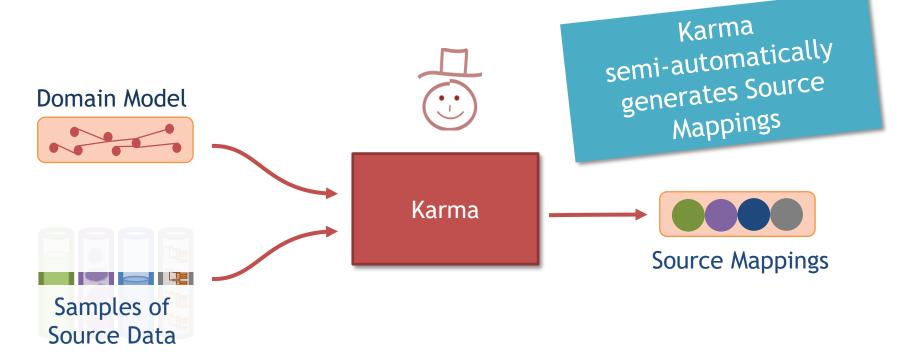


Karma: A Data Integration Tool

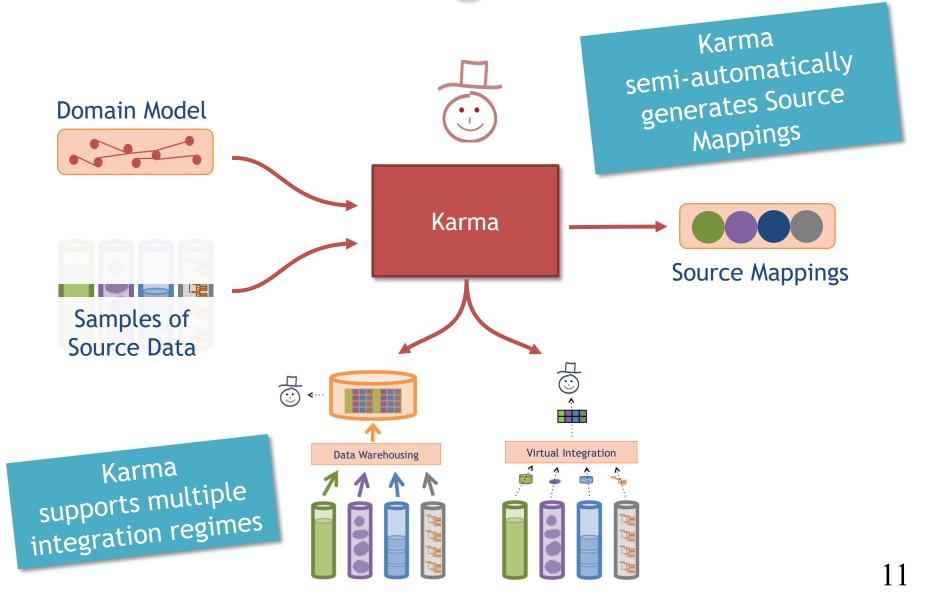
Interactive tool for rapidly extracting, cleaning, transforming, integrating and publishing data



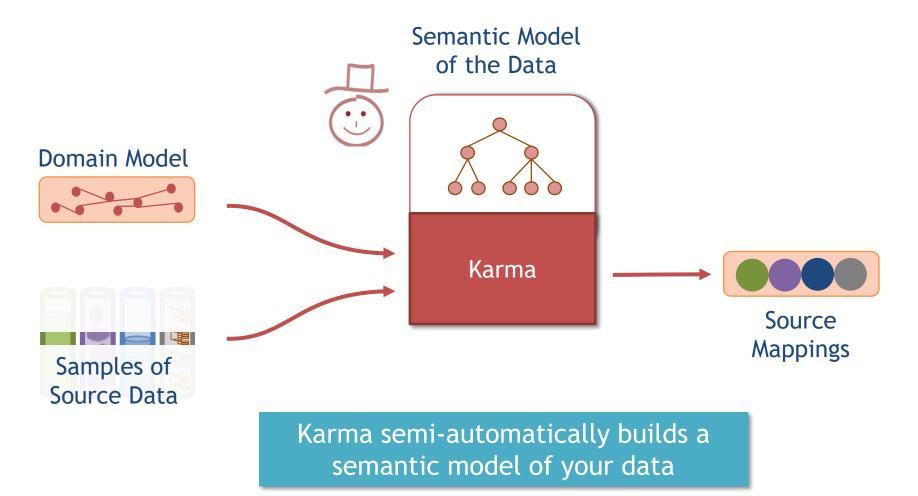
Information Integration in Karma



Information Integration in Karma



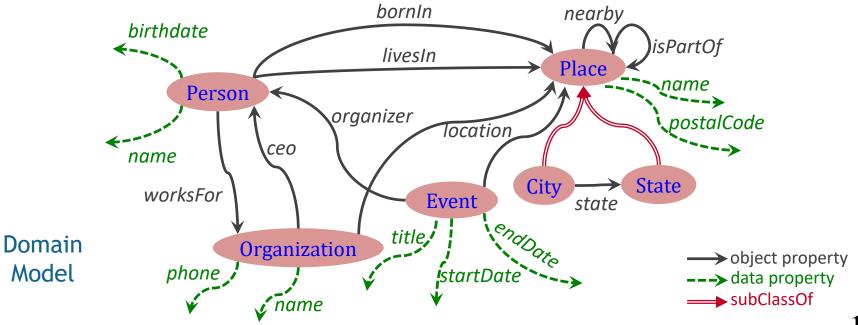
Secret Sauce: Karma Understands Your Data



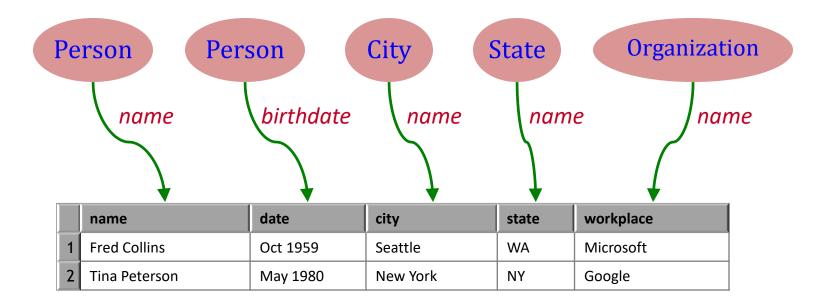
What is a Semantic Model?

Describe sources using classes & relationships in an ontology

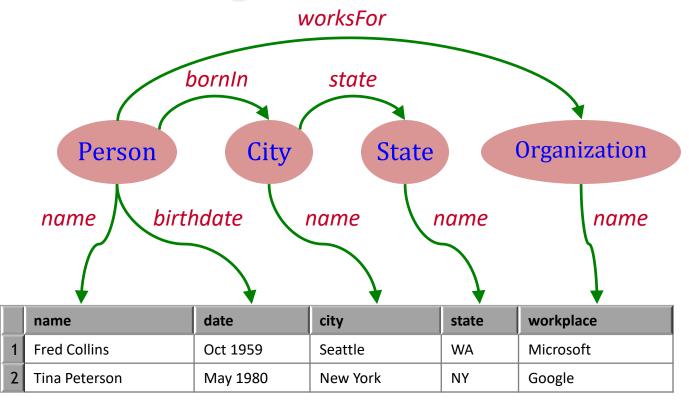
Source date city workplace state name Fred Collins Oct 1959 Microsoft Seattle WA 2 **Tina Peterson** May 1980 New York NY Google



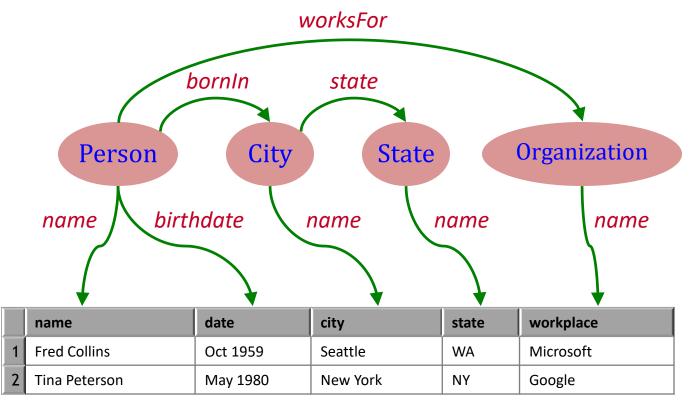
Semantic Types



Relationships



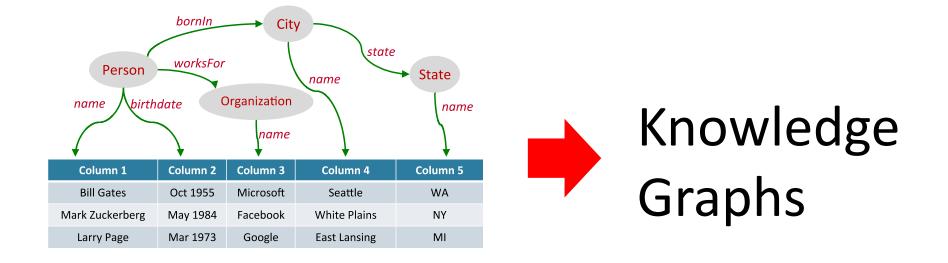
Semantic Model



Semantic models will be formalized as Source Mappings

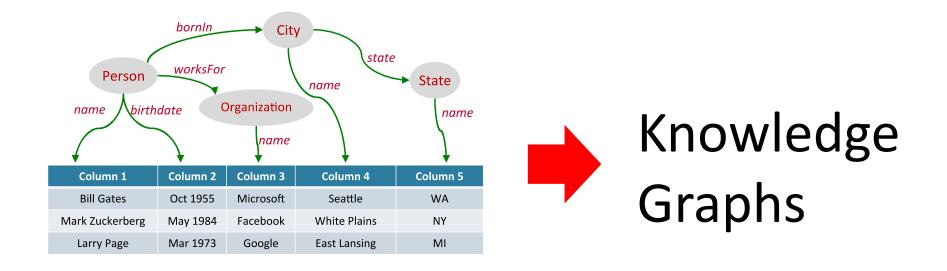
Key ingredient to automate <u>source discovery</u>, <u>data integration</u>, and <u>publishing semantic data (RDF triples)</u>

so what?



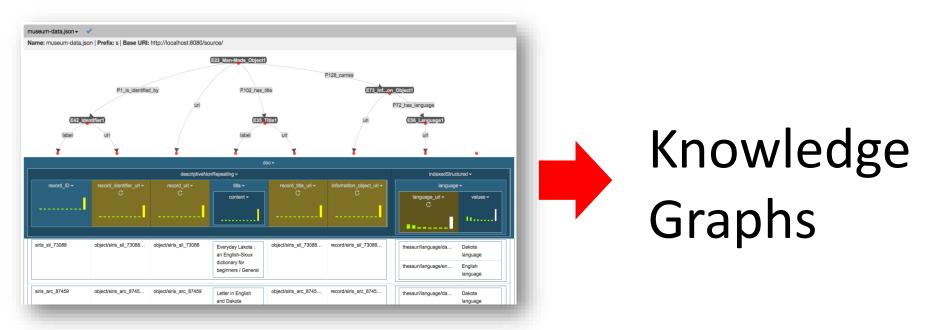
Karma uses semantic models to create knowledge grap

Karma semi-automatically builds semantic models



Karma uses semantic models to create knowledge grap

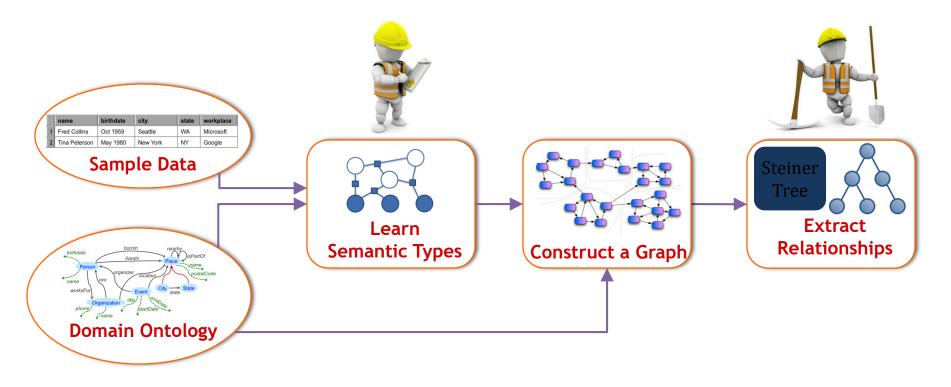
Karma semi-automatically builds semantic models ... and provides a nice GUI to edit them



Karma uses semantic models to create knowledge grap

Semi-automatically Building Semantic Models in Karma

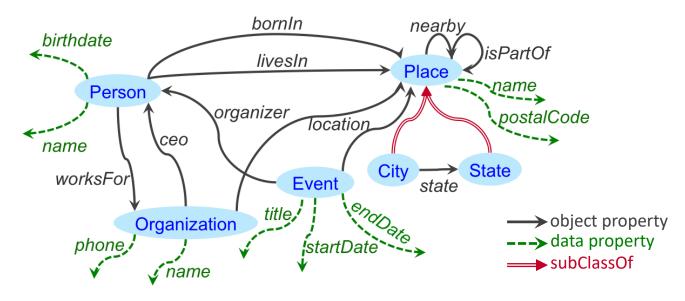
Approach [Knoblock et al, ESWC 2012]



Source

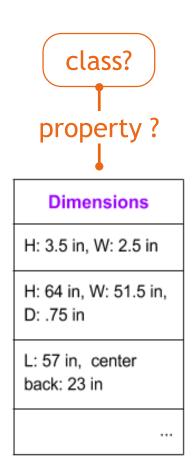
name	date	city	state	workplace
1 Fred Collins	Oct 1959	Seattle	WA	Microsoft
2 Tina Peterson	May 1980	New York	NY	Google

Domain Ontology

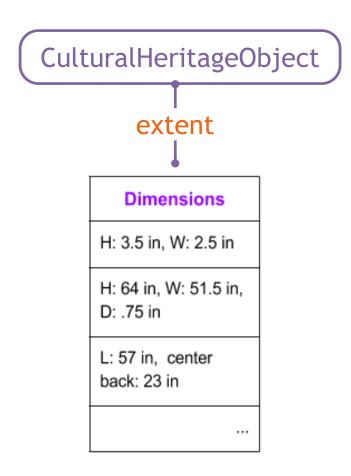


Find a semantic model for the source (map the source to the ontology)

Learning Semantic Types [Krishnamurthy et al., ESWC 2015]



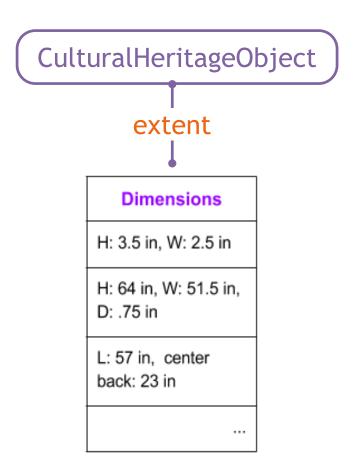
Learning Semantic Types



1- User specifies

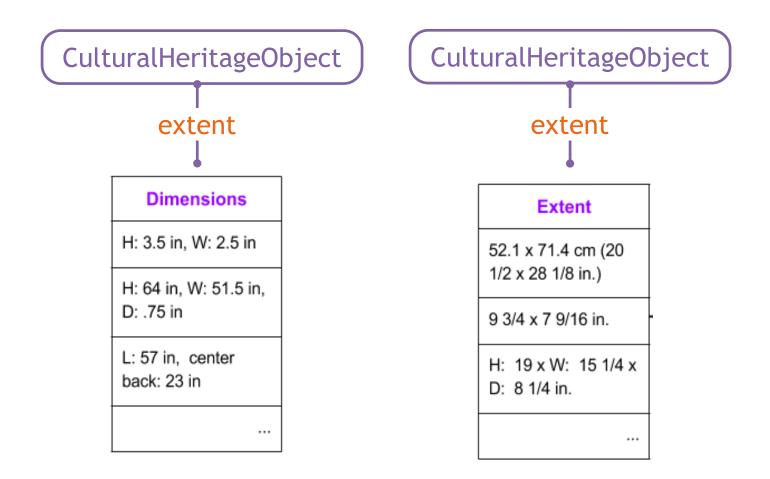
2- System learns

Learning Semantic Types



Extent				
52.1 x 71.4 cm (20 1/2 x 28 1/8 in.)				
9 3/4 x 7 9/16 in.				
H: 19 x W: 15 1/4 x D: 8 1/4 in.				

Learning Semantic Types



Requirements

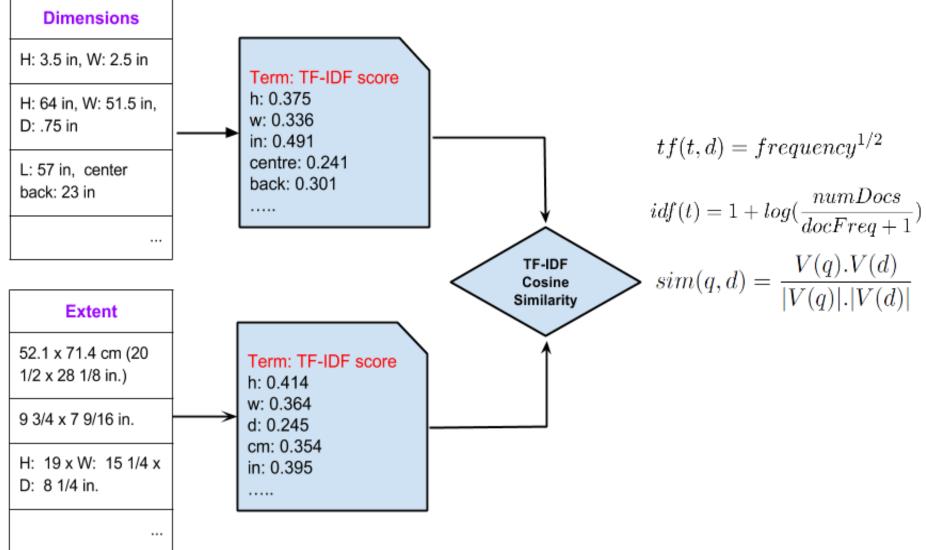
- Learn from a small number of examples
- Work on both textual and numeric values
- Learn quickly and highly scalable to large number of semantic types

Approach for Textual Data

- Document: each column of data
- Label: each semantic type
- Use Apache Lucene to index the labeled documents
- Compute TF/IDF vectors for documents
- Compare documents using Cosine Similarity between TF/IDF vectors

Dimensions			
H: 3.5 in, W: 2.5 in			
H: 64 in, W: 51.5 in, D: .75 in			
L: 57 in, center back: 23 in			

Approach for Textual Data

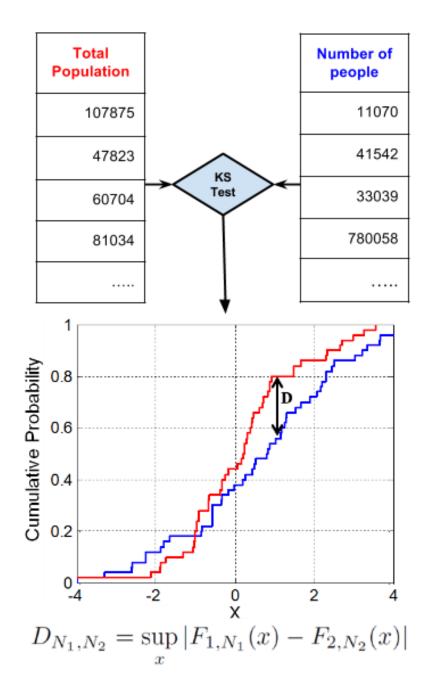


Approach for Numeric Data

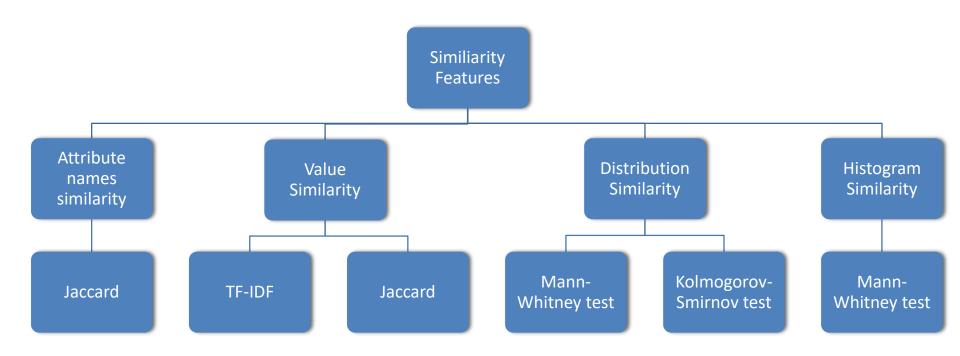
- Distribution of values in different semantic types is different, e.g., temperature vs. population
- Use Statistical Hypothesis Testing to see which distribution fits best
- Welch's T-test, Mann-Whitney U-test and Kolmogorov-Smirnov Test

Total Population	Number of people	
107875	11070	
47823	41542	
60704	 33039	
81034	780058	

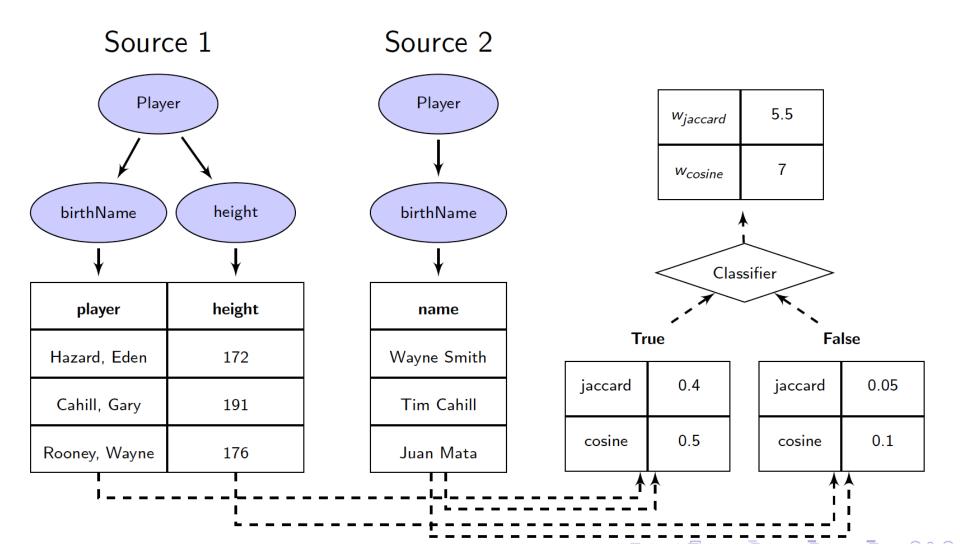
Approach for Numeric Data



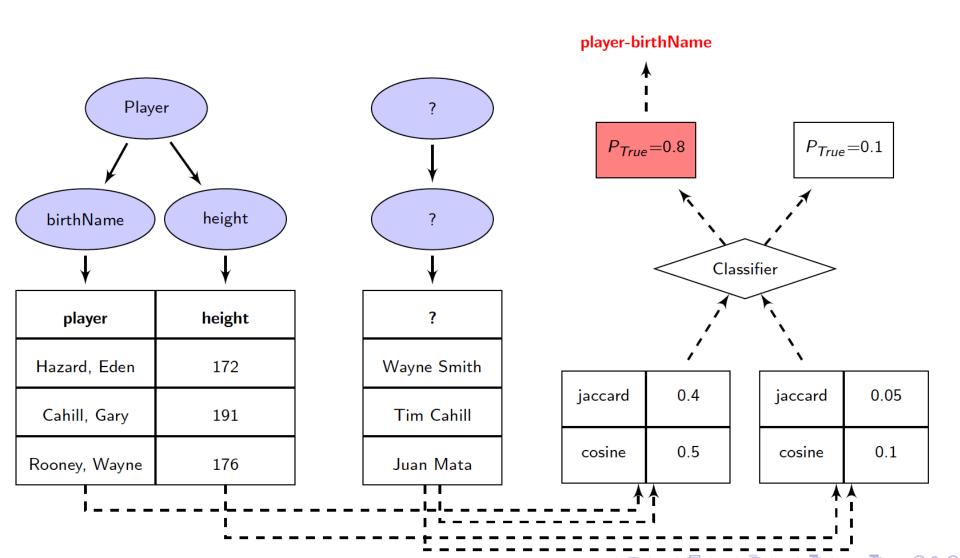
Similarity features



Training machine learning model [Pham et al., ISWC 2016]



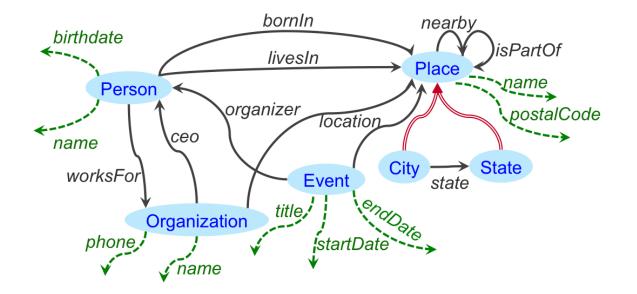
Predicting new attribute



Construct a Graph

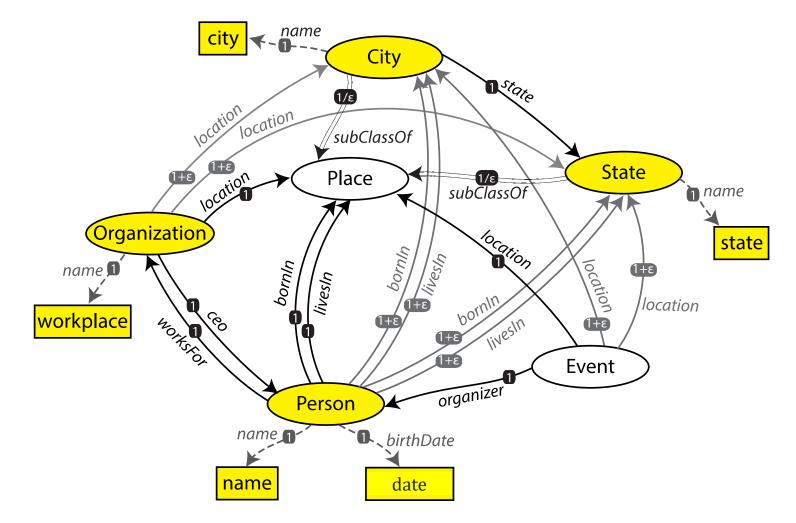
Construct a graph from semantic types and ontology

PersonCityStateOrganizationnamebirthdatenamenamename						
	name	date	city	state	workplace	
1	Fred Collins	Oct 1959	Seattle	WA	Microsoft	
2	Tina Peterson	May 1980	New York	NY	Google	



Construct a Graph

Construct a graph from semantic types and ontology

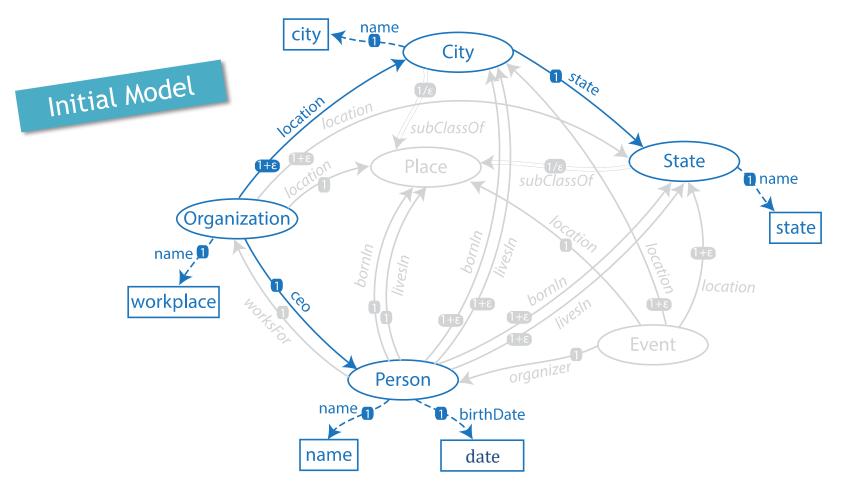


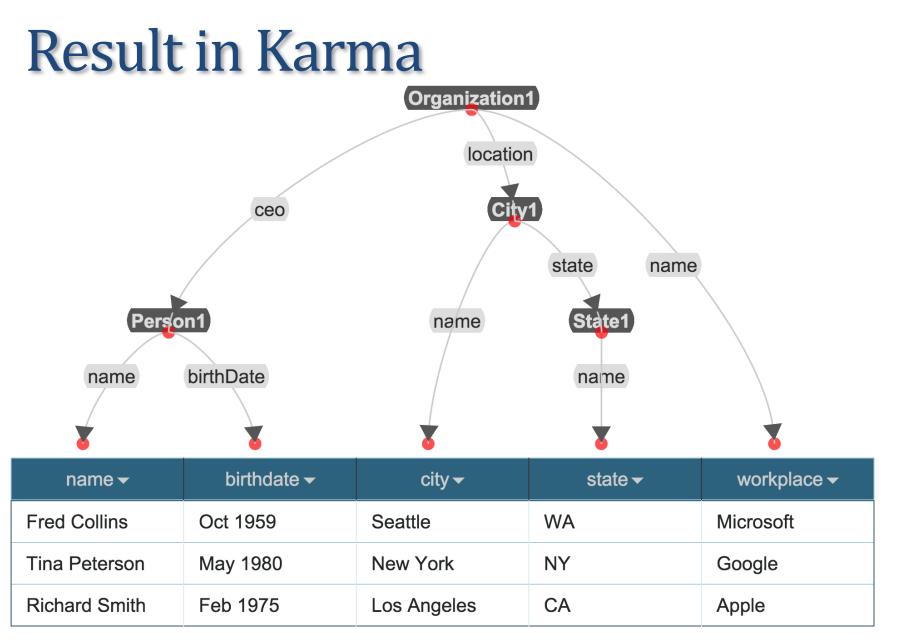
Inferring the Relationships

- Search for minimal explanation
- Steiner tree connecting semantic types over ontology graph
 - Given graph G=(V,E), nodes S \subset V, cost c: E $\rightarrow \Re$
 - Find a tree of G that spans S with minimal total cost
 - Unfortunately, NP-complete
- Approximation Algorithm [Kou et al., 1981]
 - Worst-case time complexity: O(|V|²|S|)
 - Approximation Ratio: less than 2

Inferring the Relationships Select minimal tree that connects all semantic types

A customized Steiner tree algorithm

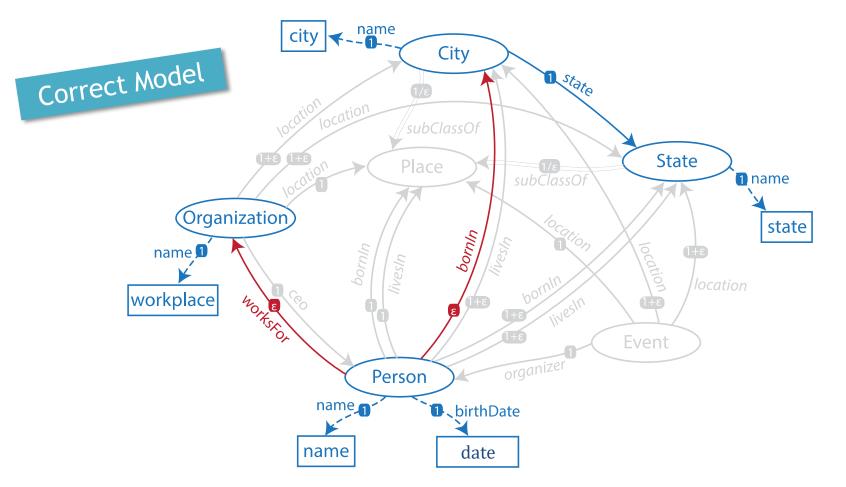


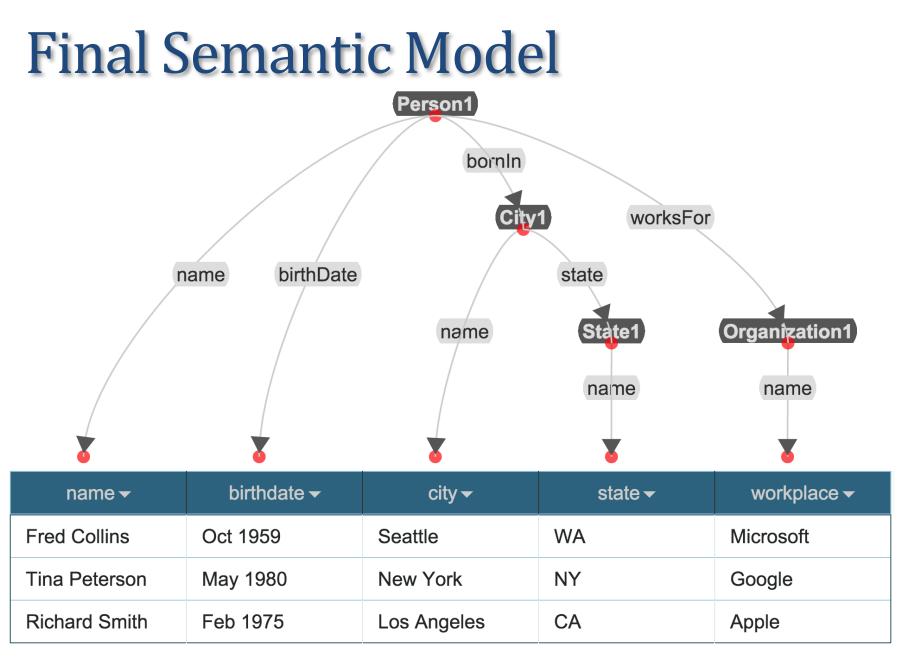


Refining the Model

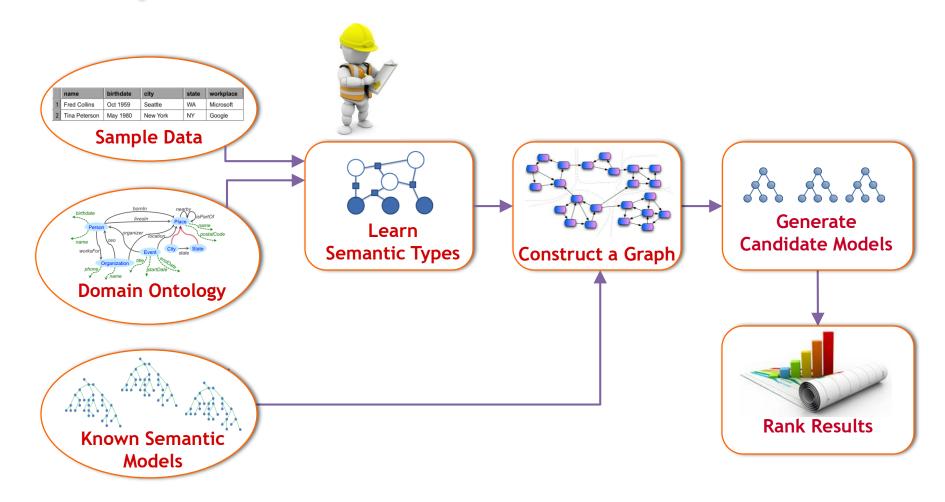
Impose constraints on Steiner Tree Algorithm

- Change weight of selected links to ϵ
- Add source and target of selected link to Steiner nodes





Karma Learns the Source Models Taheriyan et al., ISWC 2013, ICSC 2014

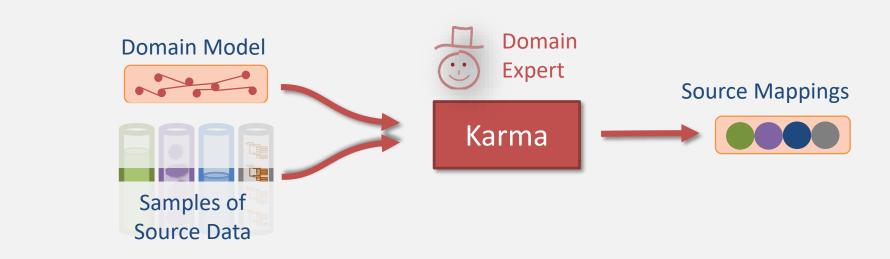


Karma Use Cases

University of Southern California

Pedro Szekely and Craig Knoblock

Source Mapping Phase

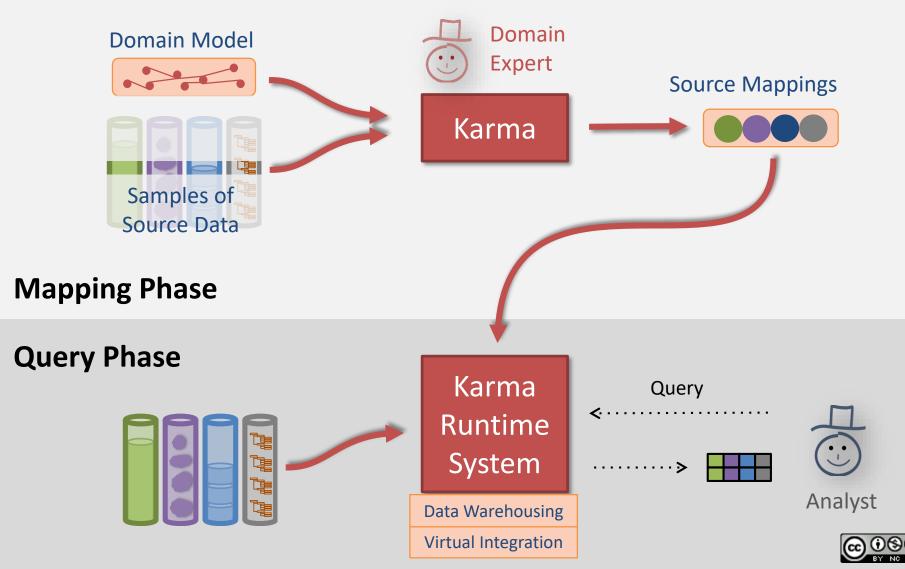


Mapping Phase

University of Southern California

Pedro Szekely and Craig Knoblock

Source Mapping and Query Time



University of Southern California

Pedro Szekely and Craig Knoblock

VIVO

- <u>VIVO</u> is a system to build researcher networks across institutions
- Used Karma to map the data about USC faculty to VIVO ontology and publish it as RDF
- VIVO ingest the RDF data

An interdisciplinary network

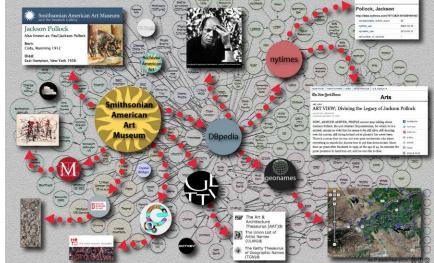
Enabling collaboration and discovery among scientists across all disciplines.

The network of scientists will facilitate scholarly discovery. Institutions will participate in the network by installing VIVO, or by providing semantic web-compliant data to the network.

• <u>Video</u>

Smithsonian American Art Museum

- Used Karma to convert data of 44000 museum objects to Linked Open Data
- Modeled according to <u>Europeana</u> <u>Data Model (EDM)</u>
- Linked the generated RDF to DBPedia, ULAN, NY Times Linked Data

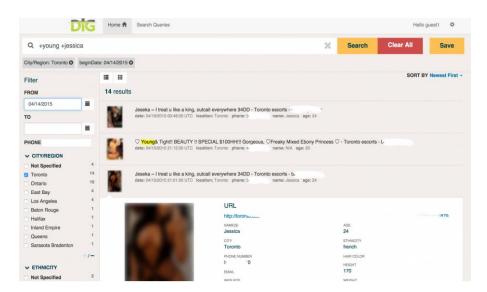


- News: <u>USC press</u>, <u>Viterbi</u>
- <u>Video</u>

DIG

- <u>DIG</u>: Domain-specific Insight Graphs
- Building and using knowledge graphs to combat human trafficking
- Used Karma to map extracted data and structured sources to shared domain ontology

News: <u>Forbes</u>, <u>Wired.co.uk</u>



Demo

Using Karma to map museum data to the CIDOC CRM ontology

https://www.youtube.com/watch?v=h3_yiBhAJlc

Discussion

- Automatically build rich semantic descriptions of data sources
- Exploit the background knowledge from (i) the domain ontology, and (ii) the known source models
- Semantic descriptions are the key ingredients to automate many tasks, e.g.,
 - Source Discovery
 - Data Integration
 - Service Composition

More Info

karma.isi.edu