

Linking and Building Ontologies of Linked Data

Rahul Parundekar, Craig A. Knoblock and Jose-Luis Ambite {parundek,knoblock,ambite}@isi.edu

University of Southern California

USC Viterbi Web of Linked Data

- Vast collection of interlinked information
- Different sources with different schemas

USC Viterbi Web of Linked Data

- Interlinked instances in the various domains
- Equivalent instances linked with owl:sameAs

Interlinked Instances

Disjoint Schemas

Objective 1: Find Schema Alignments

Ontologies of Linked Data

- Ontologies can be highly specialized
 - e.g. DBpedia has classes for *Educational Institutions*, *Bridges, Airports, etc.*
- But some can be rudimentary
 - e.g. in Geonames all instances only belong to a single class – 'Feature'
 - Derived from RDBMS schemas from which Linked Data was generated

Traditional Alignments

- There might not exist exact equivalences between classes in two sources
- Only subset relations possible

Restriction Classes

- A specialized class can be created by restricting the value of one or more properties
- The following Venn diagram explains a restriction class in Geonames with a restriction on the value of the featureCode property as 'S.SCH'

Objective 2: Find Alignments Between Restriction Classes

 Find and model specialized descriptions of classes

USC Viterbi School of Engineering

Domains

- Geospatial
 - Dbpedia
 - LinkedGeoData
 - Geonames
- Zoology
 - Geospecies
 - Dbpedia
- Genetics (Bio2RDF)
 - GenelD
 - MGI

Approach

Aligning Restriction Classes

Approach

Aligning Restriction Classes

- Find relation between the two restriction classes
 - Equivalent
 - Subset

Extensional Approach to Ontology Alignment

Set Representation	Relation
0	Disjoint
	r₁ ⊂ r₂
©	r ₂ ⊂ r ₁
0	$r_1 = r_2$
	Not enough support

Кеу:	
\bigcirc	Set of instance pairs where both $\rm r_1$ and $\rm r_2$ holds
\bigcirc	Set of instances from ${\rm O_1}$ where ${\rm r_1}$ holds
\bigcirc	Set of instances from O ₂ where r ₂ holds
()	Set of instances from ${\rm O_2}$ paired to instances from ${\rm O_1}$
•-·-•	Instance pairs where both $\rm r_1$ and $\rm r_2$ holds
••	Instance pairs where ${\bf r_1}$ holds

Lattice of Restriction Classes

- Instances belonging to a restriction class also belong to parent restriction class
 - e.g. restrictions from Geonames below

 This also results in a hierarchy in the alignments, which our algorithm exploits

Exploration of Hypotheses Search Space (LinkedGeoData with DBpedia)

1. Prune seed hypothesis if either restriction covers all instances in that source

2. Number of instance pairs supporting hypothesis must be above a threshold

3. Prune if the added constraint does not change the extension

4. Lexicographic ordering

Lexicographic ordering provides a systematic search by pruning hypotheses with reverse order

Relaxed Scoring

Set Representation	Relation	$P = \frac{ I(r_1) \cap r_2 }{ r_2 }$	$R = \frac{ I(r_1) \cap r_2 }{ r_1 }$	P'	R'
\bigcirc	Disjoint	= 0	= 0	≤ 0.01	≤ 0.01
()	r ₁ ⊂ r ₂	< 1	= 1	> 0.01	≥ 0.90
()	r ₂ ⊂ r ₁	= 1	<1	≥ 0.90	> 0.01
0	$r_1 = r_2$	= 1	= 1	≥ 0.90	≥ 0.90
	Not enough support	0 < P < 1	0 < R < 1	0.01 < P' < 0.90	0.01 < R' < 0.90

Compensates for missing, inconsistent in the data

Post-processing: Removing Implied Alignments

GEONAMES restriction	DBPEDIA restriction
•	rdf:type=dbpedia:EducationalInstitution
geonames: featureCode=geonames: S.SCH & geonames: inCountry=geonames: US	rdf:type=dbpedia:EducationalInstitution

Keep the simpler definition &

Remove the implied definition

Key:

 $r_i \longrightarrow r_j$: Subset relations $(r_i \subset r_j)$ found by the algorithm.

 $r_i \cdot \cdot \cdot \cdot r_i$: Implied subset relations.

 $r_i^j \rightarrow r_j^i$: Subset relation by construction.

T: Transitivity in subset relations.

One relation can be eliminated.

C: Cycle in subset relations. Hence, all classes are equivalent.

x : Relation eliminated by the rule.

: Relation retained by the rule.

Removing Implied Alignments

Cascading

Key:

 $r_i \longrightarrow r_j$: Subset relations $(r_i \subset r_j)$ found by the algorithm.

 $r_i \cdots r_i$: Implied subset relations.

 $r_i^i \rightarrow r_i^i$: Subset relation by construction.

T: Transitivity in subset relations.

One relation can be eliminated.

C: Cycle in subset relations. Hence,

all classes are equivalent.

× : Relation eliminated by the rule.

: Relation retained by the rule.

USC Viterbi School of Engineering

Results: Geospatial Domain

#	ŧ	LINKEDGEODATA restriction	DBPEDIA restriction	Relation
1		rdf:type=lgd:node	rdf:type=owl:Thing	$r_1 = r_2$
2	2	rdf:type=lgd:aerodrome	rdf:type=dbpedia:Airport	$r_1 = r_2$
3	3	rdf:type=lgd:island	rdf:type=dbpedia:Island	$r_1 = r_2$
4	ı	lgd:gnis_%3AST_alpha=NJ	dbpedia:Place#type=	$r_1 = r_2$
			http://dbpedia.org/resource/City_(New_Jersey)	$r_1 - r_2$
5	5	rdf:type=lgd:village	rdf:type=dbpedia:PopulatedPlace	$r_1 \subset r_2$
#	ŧ	GEONAMES restriction	DBPEDIA restriction	Relation
6	Ó	geonames:featureClass=geonames:P	rdf:type=dbpedia:PopulatedPlace	$r_1 = r_2$
7		geonames:featureClass=geonames:H	rdf:type=dbpedia:BodyOfWater	$r_1 = r_2$
8		geonames:parentFeature=http://sws.geonames.org/3174618/	dbpedia:City_region=http://dbpedia.org/resource/Lombardy	$r_1 = r_2$
9		geonames:featureCode=geonames:S.SCH	rdf:type=dbpedia:EducationalInstitution	$r_1 = r_2$
1		geonames:featureCode=geonames:S.SCH &	rdf:type=dbpedia:EducationalInstitution	$r_1 - r_0$
		geonames:inCountry=geonames:US		$r_1 = r_2$
1	1	geonames:featureCode=geonames:T.MT	rdf:type=dbpedia:Mountain	$r_1 \subset r_2$

Results: Zoology Domain

#	GEOSPECIES restriction	DBPEDIA restriction	Relation
12	geospecies:inKingdom=http://lod.geospecies.org/kingdoms/Aa	rdf:type=dbpedia:Animal	$r_1 = r_2$
13		dbpedia:order=http://dbpedia.org/resource/Lepidoptera	$r_1 = r_2$
14		dbpedia:kingdom=http://dbpedia.org/resource/Animal & dbpedia:order=http://dbpedia.org/resource/Lepidoptera	$r_1 = r_2$
		dbpedia:genus=http://dbpedia.org/resource/Falcon	$r_1 = r_2$
16	geospecies: hasOrderName=Primates	dbpedia:order=http://dbpedia.org/resource/Primates	$r_2 \subset r_1$

#	GEOSPECIES restriction	GEOSPECIES restriction	Relation
20	geospecies: has KingdomName=Animalia	geospecies:inKingdom=http://lod.geospecies.org/kingdoms/Aa	$r_1 = r_2$
	geospecies: hasClassName=Insecta	geospecies:inClass= http://lod.geospecies.org/bioclasses/aQado	$r_1 \subset r_2$
22	geospecies:inFamily= http://lod.geospecies.org/families/amTJ9	geospecies:hasSubfamilyName=Sigmodontinae	$r_2 \subset r_1$

Results: Genetics Domain

[#	MGI restriction	GENEID restriction	Relation
[17	bio2rdf:subType=Pseudogene	bio2rdf:subType=pseudo	$r_1 = r_2$
			geneid:chromosome=17 & bio2rdf:subType=pseudo	$r_1 = r_2$
	19	bio2rdf:chromosomePosition=-1.00 & mgi:genomeStart=4	geneid:chromosome=4 & bio2rdf:subType=pseudo	$r_2 \subset r_1$

Results: Alignments Found

• Equivalences, Subset alignments before and after removing implied alignments

Source 1	Source 2	$\#(r_1 = r_2)$	$\#(r_1 = r_2)$	$\#(r_1 \subset r_2)$	$\#(r_1 \subset r_2)$	$\#(r_2 \subset r_1)$	$\#(r_2 \subset r_1)$
(O_1)	(O_2)	total	best matches	before	after	before	after
LinkedGeoData	DBpedia	158	152	2528	1837	1804	1627
Geonames	DBpedia	31	19	809	400	1384	1247
Geospecies	DBpedia	509	420	9112	2294	6098	4455
MGI	GeneID	10	9	2031	1869	3594	2070
Geospecies	Geospecies	94	88	1550	1201	-	-

Datasets: http://www.isi.edu/integration/data/LinkedData

Related Work

- Euzenat et al. Ontology Matching
 - Terminological
 - Structural
 - Semantic
- FCA-Merge, Duckham et al.
 - Use extensional techniques
- GLUE
 - Uses an extensional technique after performing machine learning operations

Conclusion

- Our algorithm generates alignments, consisting of conjunctions of restriction classes
 - Extensional approach on Linked Data
 - Use of restriction classes
- Alignments based on the actual data
 - We determine the relationships based on the data
 - Schemas of linked sources can be readily modeled and used
- Algorithm also able to
 - Specialize ontologies where original were rudimentary
 - Find complimentary hierarchy across an ontology

Future Work

How to actually understand these alignments

[#	MGI restriction	GENEID restriction	Relation
[17	bio2rdf:subType=Pseudogene	bio2rdf:subType=pseudo	$r_1 = r_2$
	18	bio2rdf:subType=Pseudogene & mgi:genomeStart=17	geneid:chromosome=17 & bio2rdf:subType=pseudo	$r_1 = r_2$
	19	bio2rdf:chromosomePosition=-1.00 & mgi:genomeStart=4	geneid:chromosome=4 & bio2rdf:subType=pseudo	$r_2 \subset r_1$

- Scalability
 - Pre-procesing of the sources
 - Faster alignment processing

