Data Acquisition for Real-time Decision-making under Freshness Constraints

Shaohan Hu, Shuochao Yao, Haiming Jin, Yiran Zhao, Yitao Hu, Xiaochen Liu, Nooreddin Naghibolhosseini, Shen Li, Akash Kapoor, William Dron, Lu Su, Amotz Bar-Noy, Pedro Szekely, Ramesh Govindan, Reginald Hobbs, Tarek Abdelzaher

Chaotic, dynamic environments
In response, need to decide...
what course of action to take
how to carry it out

Medic team staffed

Food store not flooded

Resource Limitation Environment Dynamics

Order?

Intuition

Maximize probability of short-circuiting per unit cost

OR

- First examine the course of action that's most likely to succeed
- Within a course of action, first examine the condition that's most likely to fail

ØR

key: Short-circuit probability cost

Some random ordering

Some random ordering

Some random ordering

Latest Deadline First (LDF)

Latest Deadline First (LDF)

LDF - Latest Deadline First

- Inspired by EDF: data objects with later freshness deadlines are retrieved sooner
- Optimal: if LDF cannot avoid freshness deadline violation, no sequential order can

Greedily rearrange LDF order to reduce the expected data retrieval cost

Increment parallel retrieval level until freshness constraints are met

vLDF Data Retrieval

- Compute LDF order
- Greedily rearrange LDF order to reduce the expected data retrieval cost
- Gradually increment parallel retrieval level until freshness constraints are met

Evaluation

Simulation experiments
 An application scenario

Simulation Experiments

Baselines

- LCF Lowest Cost Source First
- SCB Shortcircuit Benefit only
- PbP Probability based Prediction

Settings

- % fast changing data: 40~100%, default 70%
- # Action size: 4~10, default 6
- Data object size: 3~5 MB, default 3.45 MB
- Network bandwidth: 3.5~6.5 KBps, default 5 KBps
- Transmission latency fluctuation: -3~3 min, default 0

Varying % of fast changing data

Varying action size

Varying data object size

Varying network bandwidth

Varying network transmission fluctuation

Application: Route Finding

- Find routes for <src, dst> pairs
 - Each candidate route: AND of its segments
 - Routing result: OR of all candidate routes
- Visual verification for route segment conditions

Results of 5 Runs

vLDF Cost (KB)	PbP Cost (KB)	vLDF Time (s)	PbP Time (s)
516	685	164	255
343	598	150	206
319	485	160	248
506	1093	165	372
524	1042	175	206

Conclusion

- Environment dynamics & resource limitations affect real-time decision-making
- Efficient data acquisition algorithm
- Promising results through simulations and concrete route finding application scenario

