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Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

• Cyber-Physical Systems (CPS)
• Physical systems in which mechanism
     is controlled by computer-based algorithms
• Include micro-controller software
• Control theory connects applied math to CPS engineering
- Primitive and higher-level (composite) mathematical concepts
§ Constant, gain, saturation
§ Output signal, error signal
§ PID controller
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• How can we can we reverse engineer a legacy product?

• How can we route relevant parts of the software to experts?

• How can we recover mathematical structures implemented in software?

Requires fully manual analysis by highly specialized experts!
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• But
• How can we can we reverse engineer?
• How can we route relevant parts of the software to experts?
• How can we recover mathematical structures implemented in software

Require fully manual analysis by highly specialized experts!
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• Bridging the gap between binary code analysts & domain SMEs

• Binary à code analysis framework à Expert

• How?
• binary decompilation
• semantic code pattern analysis 

bin
code Semantic 

model
IR
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Pre-defined semantic model

Decompiled C file

Semantic Model
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Expert

??

SADL

OWL

How can we leverage the semantic model for domain-
knowledge acquisition & discovery to assist the SME?

Generate Annotation Rules!

How?

UI, Data transformation, &

Inductive Logic Programming!

SADL



Inductive Logic Programming (ILP)
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• ILP
• Advantages:
- Requires small amounts of data
- Uses expressive FOL (First-Order Logic)
- Takes background knowledge into account
• Used for classification & prediction
- Bioinformatics, NLP
• Given background knowledge (B) & specific observations (E+, E-) 

induce general rules (hypothesis, H)
• Aleph, an ILP system
- A Learning Engine for Proposing Hypotheses
- Learning from entailments (LFE)
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ILP Logic 
Programming

Machine
 Learning

Artificial Intelligence

builder(alice).
builder(bob).

enjoys_lego(alice).
enjoys_lego(claire).

happy(alice). happy(bob).
happy(claire).

enjoys_lego(A) happy(A)A. builder(A)



Problem Definition
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• Generate classification (annotation) rules for math & control concepts using ILP
• Input
- (OWL) data representing basic code elements in a CPS program (e.g., variables, functions, operators)
- Positive & negative examples the objective concept (identified by the SME)
• Output
- (Prolog) program describing the objective concept (e.g., constants, error signals, PI controller)
• Iterative process – if the generated rule identifies false positive à add example & repeat 
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Decompiled C file Semantic ModelOWL

GraSEN 
ILP

constant(A) :-
   outputs(A,B), var_explicit(B), var_assigned_once(B),
   xfunction(A,C), func_not_in_loop_block(C).

Expert

Prolog program



Approach
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• Runs Aleph
• Induce a hypothesized clause (H)
• Query new positives

• Pythonic module
• Translates OWL to background knowledge (B)
- Rules & instances
• Invokes an interactive UI
- Inspect & select positive & negative instances (E+, E-)

Iterative process

Refine E+/E- & re-run until a satisfactory rule is achieved



Generating the ILP Data (owl2aleph)
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Background 
knowledge (B) file

Positive examples 
(E+) file

Negative examples 
(E+) file
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OWL data I/F Variable disambiguation 

Usage attributes

DB of “code statements”

Expression Tree attributes

Functionality-Block attributes

Construct definite clauses & constraints

Materialize instance data

Local HTTP Server

Inspect & select positive & 
negative hyperedge instances for 

the objective concept
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OWL data I/F Variable disambiguation 

Usage attributes
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hypothesis definition

signatures of functions

concepts for rules
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Background 
knowledge (B) file

Positive examples 
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OWL data I/F Variable disambiguation 

Usage attributes

DB of “code statements”

Expression Tree attributes

Functionality-Block attributes

Construct definite clauses & constraints

Materialize instance data

Local HTTP Server

Inspect & select positive & 
negative hyperedge instances for 

the objective concept

hypothesis definition

signatures of functions

concepts for rules

instance data

positive/negative hyperedges

generate .f & .n files

add as positive

add as negative

negative hyperedgespositive hyperedges



Rule Generation from ILP Data (SWI-Prolog)
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• Aleph
• Takes {.b, .f, .n} files as input
• Runs via SWI-Prolog
• Outcome is a classification rule in domain terms

• The classification rules generated can be:
• Inspected and used to query all positives
• Re-generated with new data

- New examples (+/-)
- New knowledge in the form of clauses

• Manually refined & vetted
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+ -
negative examplespositive examples

Bottom (most-specific) clause

Best (reduced) clause

Best (reduced) clause
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• Dataset
• three OWL files
• 8,974 triples
• 61 math & control instances
- 9 different classes of concepts

• Results
• 7/9: perfect F1 score
- Small training data
- Significant reduction in # literals
• 2/9: low F1
- not enough data to separate 

positives from negatives
• Time complexity is excellent < 1s
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constant(A) :-
   outputs(A,B), var_explicit(B), var_assigned_once(B),
   xfunction(A,C), func_not_in_loop_block(C).

gain(A) :-
   xfunction(A,B), has_operator_mult(B).

picontroller(A) :-
   outputs(A,B), var_implicit(B),
   xfunction(A,C), has_operator_add(C).



Discussion
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• Platform is feasible & effective in terms of time, completeness & robustness
• Results are satisfying (simple & composite concepts)
• Quality of ILP generated rules depends on supplied input

• Still, many challenges exist:
• Local vs. global variables (structs, enumerations, etc…)
• In-line code (implicit vs. explicit)
• Pointers
• Implementation “style” (e.g., saturation: if/else vs. arithmetic)

• Looking forward:
• Rules can be folded back into the semantic model
- Learn multiple level of knowledge

• Use probabilistic soft-logic on instance data to introduce confidence
• Joint-classification
- Incorporate higher level (or system) knowledge (e.g., there is a single integrator in the code)

• Augmentation
- Layout features
- Memory allocations
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Conclusion
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• An automated platform for generating classification rules for math & control concepts
• SME not required to know language formalism to describe knowledge in detail
• Fast, iterative induction with human-in-the-loop
• Structured & semantic
• Easily extended & refined, automatically or manually
• Handy during design/engineering
- Incorporate feedback
- Generate explanations

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)


