
Automated Generation of Control
Concepts Annotation Rules Using
Inductive Logic Programming
April 24, 2022

As part of the
Graphical Symbol Expression Network (GraSEN) project

 DARPA’s Recovery of Symbolic Mathematics from Code (ReMath) program

Abha Moitra
GE Research

Basel Shbita
University of Southern California / GE Research (intern)

Intro

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

• Cyber-Physical Systems (CPS)
• Physical systems in which mechanism
 is controlled by computer-based algorithms
• Include micro-controller software
• Control theory connects applied math to CPS engineering
- Primitive and higher-level (composite) mathematical concepts
§ Constant, gain, saturation
§ Output signal, error signal
§ PID controller

June 1, 2023 2

Engine

ARM platform
binary

x86 platform
binary

Expert

Intro

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

• Cyber-Physical Systems (CPS)
• Physical systems in which mechanism
 is controlled by computer-based algorithms
• Include micro-controller software
• Control theory connects applied math to CPS engineering
- Primitive and higher-level (composite) mathematical concepts
§ Constant, gain, saturation
§ Output signal, error signal
§ PID controller

June 1, 2023 3

Engine

ARM platform
binary

x86 platform
binary

??

Expert

• How can we can we reverse engineer a legacy product?

• How can we route relevant parts of the software to experts?

• How can we recover mathematical structures implemented in software?

Requires fully manual analysis by highly specialized experts!

Expert

Intro

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

• Cyber-Physical Systems (CPS)
• Physical systems in which mechanism
 is controlled by computer-based algorithms
• Include micro-controller software
• Control theory connects applied math to CPS engineering
- Primitive and higher-level (composite) mathematical concepts
§ Constant, gain, saturation
§ Output signal, error signal
§ PID controller

• But
• How can we can we reverse engineer?
• How can we route relevant parts of the software to experts?
• How can we recover mathematical structures implemented in software

Require fully manual analysis by highly specialized experts!

June 1, 2023 4

Engine

ARM platform
binary

x86 platform
binary

??

• Bridging the gap between binary code analysts & domain SMEs

• Binary à code analysis framework à Expert

• How?
• binary decompilation
• semantic code pattern analysis

bin
code Semantic

model
IR

Goal

April 24, 2022 5

Pre-defined semantic model

Decompiled C file

Semantic Model

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

Expert

??

SADL

OWL

How can we leverage the semantic model for domain-
knowledge acquisition & discovery to assist the SME?

Generate Annotation Rules!

How?

UI, Data transformation, &

Inductive Logic Programming!

SADL

Inductive Logic Programming (ILP)

April 24, 2022 6

• ILP
• Advantages:
- Requires small amounts of data
- Uses expressive FOL (First-Order Logic)
- Takes background knowledge into account
• Used for classification & prediction
- Bioinformatics, NLP
• Given background knowledge (B) & specific observations (E+, E-)

induce general rules (hypothesis, H)
• Aleph, an ILP system
- A Learning Engine for Proposing Hypotheses
- Learning from entailments (LFE)

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

ILP Logic
Programming

Machine
 Learning

Artificial Intelligence

builder(alice).
builder(bob).

enjoys_lego(alice).
enjoys_lego(claire).

happy(alice). happy(bob).
happy(claire).

enjoys_lego(A) happy(A)A. builder(A)

Problem Definition

April 24, 2022 7

• Generate classification (annotation) rules for math & control concepts using ILP
• Input
- (OWL) data representing basic code elements in a CPS program (e.g., variables, functions, operators)
- Positive & negative examples the objective concept (identified by the SME)
• Output
- (Prolog) program describing the objective concept (e.g., constants, error signals, PI controller)
• Iterative process – if the generated rule identifies false positive à add example & repeat

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

Decompiled C file Semantic ModelOWL

GraSEN
ILP

constant(A) :-
 outputs(A,B), var_explicit(B), var_assigned_once(B),
 xfunction(A,C), func_not_in_loop_block(C).

Expert

Prolog program

Approach

April 24, 2022 8Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

• Runs Aleph
• Induce a hypothesized clause (H)
• Query new positives

• Pythonic module
• Translates OWL to background knowledge (B)
- Rules & instances
• Invokes an interactive UI
- Inspect & select positive & negative instances (E+, E-)

Iterative process

Refine E+/E- & re-run until a satisfactory rule is achieved

Generating the ILP Data (owl2aleph)

April 24, 2022 9

Background
knowledge (B) file

Positive examples
(E+) file

Negative examples
(E+) file

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

OWL data I/F Variable disambiguation

Usage attributes

DB of “code statements”

Expression Tree attributes

Functionality-Block attributes

Construct definite clauses & constraints

Materialize instance data

Local HTTP Server

Inspect & select positive &
negative hyperedge instances for

the objective concept

Generating the ILP Data (owl2aleph)

June 1, 2023 10

Background
knowledge (B) file

Positive examples
(E+) file

Negative examples
(E+) file

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

OWL data I/F Variable disambiguation

Usage attributes

DB of “code statements”

Expression Tree attributes

Functionality-Block attributes

Construct definite clauses & constraints

Materialize instance data

Local HTTP Server

Inspect & select positive &
negative hyperedge instances for

the objective concept

hypothesis definition

signatures of functions

concepts for rules

instance data

positive/negative hyperedges

Generating the ILP Data (owl2aleph)

June 1, 2023 11

Background
knowledge (B) file

Positive examples
(E+) file

Negative examples
(E+) file

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

OWL data I/F Variable disambiguation

Usage attributes

DB of “code statements”

Expression Tree attributes

Functionality-Block attributes

Construct definite clauses & constraints

Materialize instance data

Local HTTP Server

Inspect & select positive &
negative hyperedge instances for

the objective concept

hypothesis definition

signatures of functions

concepts for rules

instance data

positive/negative hyperedges

generate .f & .n files

add as positive

add as negative

negative hyperedgespositive hyperedges

Rule Generation from ILP Data (SWI-Prolog)

April 24, 2022 12

• Aleph
• Takes {.b, .f, .n} files as input
• Runs via SWI-Prolog
• Outcome is a classification rule in domain terms

• The classification rules generated can be:
• Inspected and used to query all positives
• Re-generated with new data

- New examples (+/-)
- New knowledge in the form of clauses

• Manually refined & vetted

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

+ -
negative examplespositive examples

Bottom (most-specific) clause

Best (reduced) clause

Best (reduced) clause

Evaluation

April 24, 2022 13Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

• Dataset
• three OWL files
• 8,974 triples
• 61 math & control instances
- 9 different classes of concepts

• Results
• 7/9: perfect F1 score
- Small training data
- Significant reduction in # literals
• 2/9: low F1
- not enough data to separate

positives from negatives
• Time complexity is excellent < 1s

Evaluation

April 24, 2022 14Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

• Dataset
• three OWL files
• 8,974 triples
• 61 math & control instances
- 9 different classes of concepts

• Results
• 7/9: perfect F1 score
- Small training data
- Significant reduction in # literals
• 2/9: low F1
- not enough data to separate

positives from negatives
• Time complexity is excellent < 1s

constant(A) :-
 outputs(A,B), var_explicit(B), var_assigned_once(B),
 xfunction(A,C), func_not_in_loop_block(C).

gain(A) :-
 xfunction(A,B), has_operator_mult(B).

picontroller(A) :-
 outputs(A,B), var_implicit(B),
 xfunction(A,C), has_operator_add(C).

Discussion

April 24, 2022 15

• Platform is feasible & effective in terms of time, completeness & robustness
• Results are satisfying (simple & composite concepts)
• Quality of ILP generated rules depends on supplied input

• Still, many challenges exist:
• Local vs. global variables (structs, enumerations, etc…)
• In-line code (implicit vs. explicit)
• Pointers
• Implementation “style” (e.g., saturation: if/else vs. arithmetic)

• Looking forward:
• Rules can be folded back into the semantic model
- Learn multiple level of knowledge

• Use probabilistic soft-logic on instance data to introduce confidence
• Joint-classification
- Incorporate higher level (or system) knowledge (e.g., there is a single integrator in the code)

• Augmentation
- Layout features
- Memory allocations

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

Conclusion

April 24, 2022 16

• An automated platform for generating classification rules for math & control concepts
• SME not required to know language formalism to describe knowledge in detail
• Fast, iterative induction with human-in-the-loop
• Structured & semantic
• Easily extended & refined, automatically or manually
• Handy during design/engineering
- Incorporate feedback
- Generate explanations

Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming (ILP)

