

Building Spatio-Temporal Knowledge Graphs from Vectorized Topographic Historical Maps Oct 19th, 2022

Basel Shbita¹ Craig A. Knoblock¹, Weiwei Duan², Yao-Yi Chiang², Johannes H. Uhl³, and Stefan Leyk³

¹ Information Sciences Institute and Department of Computer Science, USC
² Spatial Sciences Institute and Department of Computer Science, USC
³ Department of Geography, University of Colorado Boulder

Agenda

- Problem
- Approach
- Querying the Data
- Evaluation
- Discussion
- Related work
- Future work
- Conclusion

Intro – Geospatial Data

- Raster
- Vector
 - Compact way to represent real-world topographic features
 - Points (locations, addresses)
 - Lines (roads, rivers)
 - Polygons (waterbodies, islands)
 - Digitized topographic historical maps
 - Rich sources of information
 - Labor-intensive to analyze across time & space
 - » i.e., domain, format, sources, tools
 - Sometimes we need more contextual information
 - » i.e., geographic, demographic

Problem Definition

How to transform & enrich digitized archival geo-data in an expressive & interoperable way to enable easy analysis over time & space?

Problem Definition

How to transform & enrich digitized archival geo-data in an expressive & interoperable way to enable easy analysis over time & space?

School of Engineering

Agenda

- Problem
- Approach
 - Feature Partitioning
 - Geo-entity Linking
 - RDF Generation & Data Modeling
- Querying the data
- Evaluation
- Discussion
- Related work
- Future work
- Conclusion

Motivation

- Analyze
 - Railroad network change
 - Decline of wetlands
- Unsupervised & automatic
 - Answer complex queries re human & environmental systems
- Utilize & follow semantic web & linked open data
 - Make data widely available to researchers across domains
 - Structured & semantic
 - Easy query & visualization
 - Utilize available knowledge on the web

Motivation

• Knowledge on the web?

Our Approach

- <u>Goal</u>: Generate building block geometries (i.e. geo entities) to represent the topographic features from different map sheets
 - Entity matching/linking & entity "partitioning" task
 - Represent common & distinct parts (changes) of the features
 - "granular building blocks"
 - e.g., railroad segments, wetland areas
 - Allow incremental additions over time

lines

- <u>How</u>? Algorithm to create a DAG of building-block geometries (nodes) and their relations (edges)
 - Spatially-enabled DB service to manipulate & transform spatial data
 - buffer (hyperparameter)
 - Incremental

vector data from various map editions ("initial" building blocks) foreach $i \in \mathcal{M}$ do for each $k \in \stackrel{ ext{current "building blocks"}}{\mathcal{L} ext{do}}$ $egin{aligned} \mathcal{F}_lpha &= \mathcal{F}_i igcap \mathcal{F}_k; \ \mathcal{F}_\gamma &= \mathcal{F}_k \setminus \mathcal{F}_lpha; \end{aligned}$ end $\mathcal{F}_{\delta} = \mathcal{F}_i \setminus (\bigcup_{j \in \mathcal{L}} F_j);$ end

Information Sciences Institute

end

end

- <u>Goal</u>: Link the generated entities to open KBs
 - Entity matching with OSM (external entities)
 - Enrich to fuel discovery
 - geoNames, LinkedGeoData, Wikidata
 - Wikipedia, USGS GNIS

- <u>How</u>? Sampling
 - Reverse geocoding for initial filtering
 - OSM feature type is known (i.e., railroad)
 - Determine confidence by frequency of (random) samples that match
 - N (# samples, hyperparameter) determined by coverage area

 $B_s =$ bounding box wrapping s;

 $\mathcal{L} = \text{reverse-geocoding}(B_s, T);$

for 1...N do

-topographic feature type

```
e = randomly sample a Point in segment s;
```

```
E = \text{reverse-geocoding}(e, T);
```

```
\mathcal{L}.\mathrm{add}(E);
```

\mathbf{end}

filter out instances with a single appearance in \mathcal{L} ; return \mathcal{L} ;

RDF Generation

- <u>Goal</u>: Transform & publish the data (construct \overline{KG})
 - Semantic data modeling task
 - Follows linked data principles
 - Useful semantic representation
 - Support downstream tasks by accommodating
 - qualitative spatial reasoning systems
 - quantitative spatial computation systems
- <u>How</u>? Construct a meaningful semantic model
 - OGC GeoSPARQL standard
 - Universal conventions
 - Hierarchically-driven queries

27

Agenda

- Problem
- Approach
- Querying the Data
 - ex. 1: Railroads
 - ex. 2: Wetlands
- Evaluation
- Discussion
- Related work
- Future work
- Conclusion

Ex. 1: Querying Railroads (CA)

Agenda

- Problem
- Approach
- Querying the Data
- Evaluation
- Discussion
- Related work
- Future work
- Conclusion

Evaluation

• Feature Partitioning

- Runtime
- # of nodes
- Geo EL
 - Runtime
 - Correctness
 - Precision, Recall & F1
- RDF
 - Query complexity
 - Query time
 - Query robustness

Datasets:

- Railroads:
 - Bray, CA (7)
 - Louisville, CO (4)
- Wetlands:
 - Bieber, CA (4)
 - Palm Beach, FL (3)
 - Duncanville, TX (3)

Results: Feature Partitioning

Partiti	oning stat	istics for CA	A railroads		
Year	# vecs	Runtime (s) # nodes		
1954	2382	<1	1		
1962	2322	36	5		
1988	11134	1047	11		
1984	11868	581	24		
1950	11076	1332	43		
2001	497	145	57		
1958	1860	222 🕇	85 🕈		
Partitioning statistics for CO railroads					
Year	# vecs	Runtime	(s) # nodes		
1965	838	<1	1		
1950	418	8	5		
1942	513	5	8		
1957	353	4	↓ 10 ↓		

Information Sciences Institute

		Partitioning statistics for CA wetlands				
	Y	ear	# vecs	Runtime (s)) # node	es
-	19	961	12	<1	1	
	19	993	17	<1	5	
	19	990	27	6	11	
	20	018	9	6 🕇	24	↓ _
	Partitioning statistics for FL wetlands					
		Yea	r #ve	cs Runtim	ne (s) # 1	nodes
		198	7 184	↓ <1	1	1
		195	6 531	180)	5
		202	0 532	2 113	9 🖡	13
		Part	itioning s	statistics for 7	ΓX wetlan	ds
		Year	# vecs	Runtime	(s) # no	odes
	-	1959	8	<1		1
		1995	6	<1	:	5
		2020	1	1	1	0 🖡
35						

School of Engineering

Results: Geo EL

Geo-entity linking results; Area is in square kilometers

_		Area	Precision	Recall	F_1
Ś	CA-baseline	120 30	0.193	1.000	0.323
ailroad	CA	420.39 N = 20	0.800	0.750	0.774
	CO-baseline	132 01	0.455	1.000	0.625
	СО	N = 20	0.833	1.000	0.909
Wetlands	CA-baseline	224.05	0.556	1.000	0.714
	CA	N = 20	1.000	1.000	1.000
	FL-baseline	27/03 08	0.263	1.000	0.417
	FL	N = 200	0.758	0.272	0.400
	TX*	16.62	-	-	-

RDF: Query Complexity

Results: RDF – Query Performance

Query time statistics (in milliseconds)

		avg	min	max
Railroads	SIM-CA	12	10	18
	SIM-CO	11	9	20
	DIFF-CA	10	8	20
	DIFF-CO	10	9	14
	UNIQ-CA	14	8	28
	UNIQ-CO	15	9	17
	SIM-CA	22	18	34
	SIM-FL	35	18	55
Wetlands	SIM-TX	21	12	44
	DIFF-CA	25	16	43
	DIFF-FL	32	18	60
	DIFF-TX	21	11	30
	UNIQ-CA	24	18	44
	UNIQ-FL	48	38	73
	UNIQ-TX	14	12	40

Query time ranges 10-48 [ms] No significant change with respect to - # of map editions we process

- Complexity of the query we compose

Agenda

- Problem
- Approach
- Querying the Data
- Evaluation
- Discussion
- Related work
- Future work
- Conclusion

Discussion

- Feasible & effective in terms of processing time, completeness & robustness
 - Runs only once for newly added resources
 - Follows LD principles
 - Does not require re-generation of data
 - URIs are preserved
- Still, many challenges exist
 - Complexity of changes in original topographic maps
 - Quality & level of detail
 - Crowdsourcing: availability, granularity (e.g., mud vs. wetland)

Related work

- Transforming geospatial vector data into RDF (Kyzirakos 2014, Usery 2012)
 - Do not address:
 - Geo entity inter-linking or intra-(distant) linking
 - Semantics
- Contextualizing geospatial data (Vaisman 2019, Smeros 2016)
 - Do not address:
 - Linking unlabeled geo entities
- Geospatial change analysis (Perez 2015, Kauppinen 2014)
 - Do not address:
 - Incremental process of change over time

Future work

- How can we do better?
 - Feature Partitioning:
 - Optimize buffer size hyperparameter (heuristics/learning)
 - Normalize & denoise the original data
 - Parallel processing
 - Geo EL:
 - + OSM bulk-read & joint matching (optimize hyperparameter \underline{N})
 - Expand to additional KBs (Wikidata, Yago2Geo)
 - Embed geometry features for type inference

Conclusion

- Unsupervised & automatic approach building contextualized spatio-temporal KGs from digitized topographic map archives
- Contributions
 - An incremental approach to compute topographic feature changes
 - A paradigm for geospatial data integration on the web
 - A hierarchy-driven semantic model for simple & efficient querying

- Source code & data available at:
 - https://github.com/usc-isi-i2/linked-maps

School of Engineering