

Embedding Spatial and Semantic Contexts for **Geo-Entity Typing** in **Smart City** Applications

Basel Shbita, Binh Vu, Fandel Lin, Craig A. Knoblock

USC Information Sciences Institute, Marina del Rey, CA

WebAndTheCity

11th International Smart City Workshop — Responsible Web and AI for Smart Cities
April 29, 2025

Agenda

- Intro
- Problem
- Challenges
- Approach
- Evaluation & Discussion
- Related Work
- Future Directions
- Conclusions

Intro

- Digitized Geo-Data
 - Rich sources of information
 - understanding human & environmental systems
 - describing human & natural activities
 - Labor-intensive to analyze
 - Often require grounding & additional contextual information

• e.g., demographics, geology, stratigraphy, other

Problem

- Embed geospatial data into high-dimensional vector space
 - Preserve its semantic meaning & relationships between entities
 - enabling semantic typing/labeling of geospatial entities
 - Downstream tasks such as Smart City apps

Challenges

stream [799887]

"Everything is related to everything else. But near things are more related than distant things."

Approach

geospatial

semantic

- Method to embed:
 - Geometric attributes (shape)
 - Spatial attributes (area, length)
 - Neighborhood context (nearby geo-entities)

to generate a representation that can learn & infer properties about geo-entities

Approach – cont'd

Data

Nodes - dots used to mark locations

Ways - connected line of nodes

Relation - used to create more complex shapes

CA OSM Snapshot

	shp_type	count
0	Polygon	4876318
1	LineString	4176529
2	Point	1000170
3	MultiPolygon	12694
4	GeometryCollection	1364

Relation: 10052899

Version #1

Changeset #74650407

Tags

ele	22
gnis:county_id	083
gnis:created	06/13/2000
gnis:feature_id	1871851
gnis:state_id	06
type	multipolygon
natural	water
water	reservoir

Members

▼ 2 members

Way 23145279 as outer Way 726021752 as inner

Approach - cont'd

- but, OSM data is
 - Inconsistent across regions
 - Varying-granularity
 - Noisy

Statements

Statements

2024 IEEE 18th International Conference on Semantic Computing (ICSC)

Automatically Constructing Geospatial Feature Taxonomies from *OpenStreetMap* Data

Basel Shbita

Information Sciences Institute
Department of Computer Science
University of Southern California
Marina del Rey, California
shbita@usc.edu

Craig A. Knoblock
Information Sciences Institute
Department of Computer Science
University of Southern California
Marina del Rey, California
knoblock@isi.edu

OSMonto - An Ontology of OpenStreetMap Tags

Mihai Codescu*, Gregor Horsinka*, Oliver Kutz

Till Mossakowski*,**, Rafaela Rau*

* DFKI GmbH Bremen, Germany

** Research Center on Spatial Cognition,

SFB/TR 8, University of Bremen, Germany

Approach – cont'd

- use taxonomy-constructor as an auxiliary tool to
 - Generate a lightweight taxonomy from OSM tag data


```
way id="232250107" visible="true" ver
2019-05-06T23:22:23Z" user="Enock4seth
 <nd ref="5058536215"/>
 <nd ref="1797433673"/>
 <nd ref="4992821222"/>
 <tag k="highway" v="tertiary"/>
<tag k="name" v="Nana Kana Street"/>
<way id="244376453" visible="true" ver
2015-04-02T14:55:17Z" user="sidneys" u
<nd ref="2517024878"/>
 <nd ref="2517024879"/>
 <nd ref="2517024880"/>
 <nd ref="2517024881"/>
<nd ref="2517024878"/>
<tag k="building" v="industrial"/>
<way id="244376454" visible="true" ver
2015-04-02T13:43:25Z" user="sidneys
```



```
{'apartments',
 'building',
 'driveway',
 'highway',
 'house',
 'residential'.
 'service'}
```

build taxonomy

service

counter	child	parent
15	house	building
14	service	highway
33	residential	building
22	residential	highway
2	apartments	building

driveway

Approach – cont'd

house 414 57 residential__building 29 primary 28 apartments__building residential_highway 21 service 11 commercial__building retail__building hotel__tourism platform alley hotel__building school__building tertiary industrial__building steps warehouse restaurant turning_circle motorway_link place_of_worship

driveway

school__amenity

Approach – cont'd

Approach - cont'd

$$L_q = -\log \frac{\exp(sim(e_q, e_+)/\tau)}{\sum_{i=0}^{K} \exp(sim(e_q, e_i) \cdot w_{q,i}/\tau)}$$

$$w_{i,j} = rac{d_{tree} - d_{i,j}}{d_{tree}}$$
 Normalized Temperature-scaled Cross Entropy Loss

class NTXentLossWithTaxonomy(NTXentLoss):

```
def __init__(self, taxonomy_matrix, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self.taxonomy_matrix = taxonomy_matrix

def compute_weights(self, a2, n, labels)

def _compute_loss(self, pos_pairs, neg_pairs, indices_tuple, labels)
```


Evaluation

• 8-fold SVC on embeddings

Data: 2k+ instances → 11 WD classes

16k+ instances → 18 OSM tags

Training: 200k CA OSM dump (2.3 tags avg)

	4 settings		WIKIDATA	<u> </u>	OpenStreetMap				
			m WD-2 $ m k$		OSM-16k				
Se	etting	Precisio	n Recall	F_1	Precisio	on Recall	F_1		
1	Ours _{shape}	0.497	0.506	0.501	0.473	0.512	0.492		
2	Ours _{shape+spatial}	0.506	0.545	0.525	0.491	0.536	0.513		
$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	$rac{ ext{Ours}_{ ext{full}}}{ ext{Ours}_{ ext{full}}}$ w/taxonomy	0.850 0.849	0.823 0.852	0.836 0.850	0.877 0.858	0.725 0.854	0.794 0.856		
otA	GPT-3.5-Turbo GeoVectors	0.198 0.819	0.209 0.834	0.121 0.826	0.145 0.833	0.063 0.815	$0.026 \\ 0.824$		

Evaluation – cont'd

	Precision	Recall	F_1	Support
high school	0.725	0.896	0.802	289
hospital	0.881	0.831	0.855	142
lake	0.834	0.872	0.852	179
light rail line	0.975	1.000	0.987	192
limited-access road	0.891	0.992	0.938	238
park	0.745	0.857	0.797	286
reservoir	0.838	0.778	0.807	153
school	0.615	0.179	0.277	134
single-family detached home	0.906	0.870	0.888	100
stream	0.995	0.958	0.976	192
street	0.972	0.867	0.917	241

<u>-</u>	igh school -	hospital -	lake -	ht rail line -	cess road -	park -	reservoir -	school -	lle-family hed home -	stream -	street -
street -	0.000	0.000	0.000	0.017	0.112	0.000	0.000	0.000	0.000	0.004	0.867
stream -	0.000	0.000	0.000	0.005	0.010	0.005	0.000	0.000	0.000	0.958	0.021
single-family detached home -	0.000	0.020	0.000	0.000	0.000	0.090	0.000	0.020	0.870	0.000	0.000
school -	0.478	0.037	0.000	0.000	0.000	0.276	0.000	0.179	0.030	0.000	0.000
reservoir -	0.000	0.000	0.190	0.000	0.000	0.026	0.778	0.007	0.000	0.000	0.000
Tue Label bark -	0.087	0.021	0.003	0.000	0.000	0.857	0.010	0.010	0.010	0.000	0.000
limited-access road -	0.000	0.000	0.000	0.000	0.992	0.000	0.000	0.000	0.000	0.000	0.008
light rail line -	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
lake -	0.000	0.000	0.872	0.000	0.000	0.017	0.112	0.000	0.000	0.000	0.000
hospital -	0.063	0.831	0.007	0.000	0.000	0.063	0.000	0.028	0.007	0.000	0.000
high school -	0.896	0.010	0.000	0.000	0.000	0.073	0.000	0.017	0.003	0.000	0.000

			parking	retail	apartments	residential	,		commercial_landuse -	Predic	p industrial landuse -	b ibel	trac.						reserv
		school -	parking_amenity -	retail_building -	apartments_building -	residential_building -	warehouse -	- esnou	_landuse	_landuse -	_landuse	golf_course -	track_leisure -	park -	beach -	poom	lake	puod	reservoir_water -
	reservoirwater -									0.004	0.004	0.037		0.041		0.041			
	pond -	0.000	0.044	0.002	0.000	0.001	0.000	0.002	0.000	0.009	0.002	0.011	0.007	0.041	0.016	0.044	0.039	0.710	0.071
	lake -	0.000	0.010	0.000	0.000	0.000	0.000	0.001	0.000	0.003	0.000	0.037	0.000	0.059	0.013	0.050	0.585	0.081	0.162
	wood -	0.005	0.020	0.000	0.000	0.002	0.000	0.000	0.000	0.004	0.000	0.037	0.004	0.025	0.018	0.748	0.028	0.027	0.083
	beach -	0.000	0.015	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.005	0.000	0.028	0.901	0.014	0.009	0.017	0.009
	park -	0.020	0.070	0.003	0.000	0.003	0.009	0.006	0.002	0.043	0.000	0.053	0.008	0.665	0.053	0.020	0.007	0.020	0.016
	track_leisure -	0.002	0.005	0.000	0.000	0.000	0.001	0.000	0.000	0.011	0.000	0.002	0.937	0.027	0.004	0.002	0.000	0.005	0.002
	golf_course -	0.001	0.007	0.000	0.000	0.000	0.001	0.000	0.000	0.010	0.000	0.863	0.003	0.055	0.010	0.019	0.003	0.008	0.020
True	industrial_landuse -	0.006	0.011	0.035	0.025	0.015	0.362	0.011	0.038	0.005	0.482	0.001	0.000	0.000	0.000	0.001	0.000	0.001	0.007
True Label	retaillanduse -	0.004	0.037	0.043	0.000	0.000	0.007	0.000	0.010	0.847	0.000	0.005	0.000	0.035	0.008	0.000	0.000	0.003	0.000
c	ommercial_landuse -	0.027	0.049	0.349	0.092	0.055	0.065	0.029	0.261	0.016	0.048	0.000	0.000	0.005	0.001	0.001	0.000	0.001	0.001
	house -	0.026	0.002	0.027	0.098	0.170	0.015	0.628	0.024	0.000	0.005	0.000	0.000	0.001	0.000	0.002	0.000	0.000	0.002
	warehouse -	0.008	0.012	0.060	0.019	0.016	0.658	0.010	0.039	0.003	0.168	0.002	0.000	0.002	0.000	0.000	0.000	0.000	0.002
	residentialbuilding -	0.026	0.000	0.061	0.155	0.673	0.011	0.030	0.018	0.001	0.021	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000
a	partmentsbuilding -	0.032	0.005	0.114	0.558	0.208	0.018	0.010	0.040	0.000	0.010	0.000	0.000	0.002	0.000	0.002	0.000	0.000	0.000
	retailbuilding -	0.015	0.050	0.556	0.102	0.061	0.048	0.004	0.105	0.028	0.022	0.000	0.002	0.005	0.001	0.000	0.000	0.000	0.000
	parking_amenity -	0.073	0.441	0.104	0.004	0.001	0.010	0.002	0.053	0.108	0.005	0.006	0.006	0.097	0.034	0.025	0.007	0.017	0.008
	school -	0.791	0.028	0.042	0.043	0.029	0.007	0.015	0.018	0.000	0.007	0.000	0.007	0.010	0.000	0.002	0.000	0.001	0.002

OSMTag	WikidataClass	
amenity=police	police station	
amenity=restaurant	restaurant	
amenity=restaurant	business	
amenity=school	academy school	
amenity=school	community school	
amenity=school	primary school	
amenity=school	high school	
amenity=school	private not-for-profit educational institution	
amenity=school	public educational institution of the United States	
amenity=school	school	
amenity=school	school building	
amenity=school	state school	
amenity=studio	radio station	
amenity=telephone	red telephone box	
amenity=theatre	theatre	
amenity=theatre	movie theater	
amenity=university	private not-for-profit educational institution	
amenity=university	public educational institution of the United States	
artwork_type=sculpture	sculpture	
artwork_type=sculpture	statue	
artwork_type=statue	statue	
artwork_type=statue	sculpture	
building=church	church building	
building=house	English country house	

Related Work

- ML for Geospatial Classification (Castelluccio 2015, Klemmer 2023, Kaczmarek 2023, Xu 2022, Yan 2021)
 - Employ CNNs, GNNs, and GCNs for: building footprints & urban land-use classification
 - Do not address the incorporation of external (open) knowledge
- Geospatial Embedding Techniques (Tempelmeier 2021, Jenkins 2019, Li 2022)
 - Develop unsupervised embedding such as GeoVectors & SpaBert
 - Do not address shape or explicit spatial data for enhanced geo-entity representation
- OSM Embedding (Woźniak 2021)
 - Proposes embedding method for OSM regions using hexagonal grids
 - Does not address individual entities

Future Directions

- Advanced data modeling
 - More modalities
 - More data (e.g., rapidly changing geographies)
- Enhanced embedding techniques
 - Utilize textual information and deep learning attention mechanisms
 - Expand integration of textual data
- KG expansion
 - Apply & integrate with additional domains like archaeology & environmental sciences
- Dynamic semantic modeling
 - Create more sophisticated & evolving semantic models for accurate representation across multiple domains

Conclusions

19

- Takeaways
 - Method for geo-referenced entity embedding on the web
 - self-supervised
 - leverages geometric, spatial, & semantic contexts
 - weighted contrastive learning
 - enables seamless semantic typing for integration on the web
 - fuels further discovery & enrichment
- Thanks for Listening!

