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Dew point can help 
predict humidity!

Humidity, dew point 
and temperature are 
inter-correlated



Problem

• Context: Machine learning systems deployed in an open 
environment
• May access features that are previously unseen in the 

labeled training set 

• Goal: Improving a machine learning model by automatically
identifying and using features that are not in the training 
set
• Without additional labels
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How to Leverage New Features?

• Approach 1: Ignore them

• But new features may contain complementary information over 
original features
• Extreme case: new feature = label



How to Leverage New Features?

• Approach 1: Ignore them

• But new features may contain complementary information over 
original features
• Extreme case: new feature = label

• Approach 2: Predict new features and combine them with original 
features

But prediction can be very challenging…



Related Work: Heterogeneous domain adaptation 

• Most existing approaches attempt 
to match the feature space of two 
domains: ignoring new features 
just maximizes the match! [Dai et 

al., 2008; Socher et al., 2013; Zhou et 
al., 2014; Kulis et al., 2011;Wang and 
Mahadevan, 2011; Argyriou et al., 
2008; Duan et al., 2012; Shi et al., 
2010; Harel and Mannor, 2010; Wei and 
Pal, 2011; Yeh et al., 2014]

• Some work require additional 
labels to leverage new features 
[Zhao and Hoi, 2010; Hou and Zhou, 
2016]

Heterogeneous domain adaptation [Pan and Yang, 2010]

Source domain

Target domain



Our Approach:

Learning with previously Unseen Features (LUF)



Our Approach - Intuition
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matching the joint distribution p(humidity, temperature)
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Two sets have the same joint distributions!

Our Approach - LUF



Two sets of samples mixed as much as possible

Our Approach - LUF

Two sets have the same joint distributions!



Two sets of samples mixed as much as possible

Minimize cross-domain k-nearest neighbor distances
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Two sets of samples mixed as much as possible



Minimize cross-domain k-nearest neighbor distances

’s k neighbors in the target 
domain  
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Minimize cross-domain k-nearest neighbor distances

’s k neighbors in the target 
domain  

’s k neighbors in the 
target domain  

non-smooth in  , because neighbors are dependent on   : alternating optimization 

Our Approach - LUF



Empirical Study



Regression Tasks

Errors in regression tasks

Ignore new features

Predict new features

New features 

Similar trend on classification tasks



• A weather station contains several sensors

• Sensor failure happens

Sensor Adaptation for Weather Station

Time Temp. Humidity Wind 
Speed

8:50 AM 24.2 16.7 4.3

8:55 AM 24.3 ? 3.0

9:00 AM 24.8 ? 3.9

9:05 AM 25.2 ? 1.4



• A weather station contains several sensors

• Sensor failure happens

• When a sensor fails, we allow it to access the same sensor from a nearby 
station
• But directly using the new sensor may perform poorly!

Sensor Adaptation for Weather Station

Time Temp. Humidity Wind 
Speed

8:50 AM 24.2 16.7 4.3

8:55 AM 24.3 ? 3.0

9:00 AM 24.8 ? 3.9

9:05 AM 25.2 ? 1.4

Nearby station

Time Humidity

8:50 AM 17.6

8:55 AM 16.8

9:00 AM 16.3

9:05 AM 17.9



Sensor Adaptation for Weather Station

Can we reconstruct the failed sensor using the remaining sensors 
and new sensor?

remaining sensors failed sensor

new sensor



Reconstruction errors

Average improvement: 17.9%

Sensor Adaptation for Weather Station

Predict new features

Ignore new features

failed sensor



Thank You!

Question?


