
KR2RML:
An Alternative Interpretation of

R2RML for Heterogeneous Sources
Jason Slepicka
Chengye Yin

Pedro Szekely
Craig Knoblock

What’s the problem?
• Consuming Linked Data requires RDF

• Consuming other formats requires many languages
for querying, transforming, and mapping to RDF

Source Format Query Language Transformation
Language

Mapping Language

RDBMS SQL SQL R2RML, D2R, RML

XML XPath XSLT XSLT, RML, XR2RML

JSON jQuery JQ RML, XR2RML

CSV sed/awk sed/awk RML, XR2RML

Avro HiveQL, Pig Latin HiveQL, Pig Latin ?

Thrift Hive SerDe, Pig Latin HiveQL, Pig Latin ?

What would a good solution support?

• Hierarchical Input and Output Formats

• Forward Compatibility For New Formats

• Reusable Transformations

• Scalability to billions of triples

How does KR2RML (Karma R2RML)
achieve these goals?

Nested
Relational

Model

KR2RML Processor

Nested Relational Model

Transformations

• Structural

– Split, Glue, Fold, Unfold,

• Value

– Python User Defined Functions and Aggregations

• Filters

Transformation Example: Split

Transformation Examples: Glue

Transformation Examples: Python

Transformation Examples: Python

R2RML Applied to
Relational Data Model

R2RML Applied to
Relational Data Model

_:TriplesMap_1

_:SubjectMap_1

schema:Person

_:PredicateObjectMap_1

“name”

_:ObjectMap_1

schema:name

rr:predicate rr:column

rr:class

KR2RML applied to
Nested Relational Model

KR2RML applied to
Nested Relational Model

_:TriplesMap_1

_:SubjectMap_1

schema:Person

_:PredicateObjectMap_1

[“employees”,“name”]

_:ObjectMap_1

schema:name

rr:predicate rr:column

rr:class

KR2RML Processing

_:TriplesMap_4
(PostalAddress1)

RDF Generation Triples Map Processing Order

_:TriplesMap_3
(Place1)

_:TriplesMap_2
(Person1)*

_:TriplesMap_1
(Organization1)

KR2RML Processing: ObjectMap

KR2RML Processing: RefObjectMap

KR2RML JSON-LD Output
{

 "@context": "http://ex.com/contexts/iswc2015_json-context.json",

 "location": [

 {"address": { "streetAddress": "4676 Admiralty Way Suite 1001",

 "addressLocality": “Marina Del Rey", "postalCode": "90292",

 "addressRegion": "CA","a": "PostalAddress”},

 "name": "ISI - West","a": "Place","uri": "isi-location:ISI-West"},

 …],

 "name": "Information Sciences Institute”, "a": "Organization",

 "employee": [

 {"name": "Knoblock, Craig", "a": "Person”, "uri": "isi-employee:Knoblock/Craig",

 "jobTitle": ["Research Professor","Director"],

 "worksFor": "isi:company/InformationSciencesInstitute"},

 …],

 "uri": "isi:company/InformationSciencesInstitute"

}

Scalability

• Disallow joins because they’re too complicated for
KR2RML to come up for every big data use case

• Embedded in MapReduce and Storm

• To generate our human trafficking knowledge graph
of 4 billion triples, it takes 20 machines 10 hours over
50 million documents from dozens of sources.

• That’s ~6,000 triples per second per machine!

Conclusions

• KR2RML does not require modifications to the
language to support new hierarchical formats

• KR2RML mappings can be reused across
source formats without modification.

• A KR2RML processor can clean and transform
data in a reusable way across sources

• A KR2RML processor can materialize RDF from
heterogeneous sources in streaming or batch
on the order of billions of triples efficiently.

Questions?

