Learning High Accuracy Rules for Object Identification

Sheila Tejada Wednesday, December 12, 2001 Committee Chair: Craig A. Knoblock Committee: Dr. George Bekey, Dr. Kevin Knight, Dr. Steven Minton, Dr. Daniel O'Leary

Integrating Restaurant Sources

Zagat's Restaurant **Department of Health Guide Source Restaurant Rating Source** ·~ & @ @ & & • • A Location 1907 ZAGATSURVEY. 💷 Customize Your Se Environmental - Key to Ra - Tell Us Health Alphabetical By Cuisine By Food Ranking Best Deals Los Angeles B|C|D|E|G|H|||J|K|L|M|O|P| RISITIUIVIWIYIZ Apple Pan, The American Arnie Morton's of Chicago Steakhouses Art's Deli Delis Asahi Ramen Noodle Shops ARIADNE Establishment Ratings **Baja Fresh Mexican** Bel-Air Hotel Californian Inspected retail food establishments receive a letter grade or a Belvedere, The Pacific New Wave score according to their inspection score. Benita's Frites Fast Food **Information** Bernard's Continental Score of 90 to 100 are "A" establishments owerPoint - Jaa... Netscape - IEnvirone Point - Jos Netscape - IZagat P **Mediator Question:** What is the **Review** and **Rating** for the Restaurant "Art's Deli"?

Ariadne Information Mediator

Multi-Source Inconsistency

Zagat's Restaurant Guide Source

Department of Health Restaurant Source

How can the same objects be identified when they are stored in inconsistent text formats?

Application Dependent Mapping

Observations:

• Mapping objects can be application dependent

Mapped?

• Example:

Steakhouse The 128 Fremont Street

702-382-1600

→ <u>B</u>

Binion's Coffee Shop 128 Fremont St. 702/382-1600

- The mapping is in the application, not the data
- User input is needed to increase accuracy of the mapping

Key Ideas for Mapping Objects

• Learning important attributes for determining a mapping

• Learning general transformations to recognize objects

Mapping rules:

Name > .9 & Street > .87 => mapped

Name > .95 & Phone > .96 => mapped

Transformation Weights

- Transformations can be more appropriate for a specific application domain
 - Restaurants, Companies or Airports
- Or for different attributes within an application domain
 Acronym more appropriate for the attribute Restaurant Name than for the Phone attribute
- Learn likelihood that if transformation is applied then the objects are mapped

Transformation Weight = P(mapped | transformation)

Thesis Statement

By simultaneously learning to tailor mapping rules and transformation weights to a specific domain, an object identification system can achieve high accuracy without sacrificing domain independence.

Contributions

- Approach to learning mapping rules that achieve high accuracy mapping while minimizing user involvement
- Only approach developed to tailor a general set of transformations to a specific domain application

• Novel method to combine both forms of learning to create a robust object identification system

Overview

- Approach
 - Computing textual similarity
 - Learning important attributes for mapping
 - Mapping rule learning
 - Learning transformation weights
- Experimental Results
- Related Work on Object Identification
- Conclusions & Future Work

• Candidate Generator:

UserInput

- Judge textual similarity of mappings
- Reduce number of mappings considered for classification
- Mapping Learner:
 - Active learning technique to learn mapping rules and transformation weights
 - Minimize the amount of user interaction

• Candidate Generator returns sets of similarity scores

Name	Street	Phone
.9	.79	.4
.17	.3	.74
	• • •	

Types of Transformations

Type I Transformations

- Equality (Exact match)
- Stemming
- Soundex (e.g. "Celebrites" => "C453")
- Abbreviation (e.g. "3rd" => "third")

Type II Transformations

- Initial
- Prefix (e.g. "Deli" & "Delicatessen")
- Suffix
- Substring
- Acronym (e.g. "California Pizza Kitchen" & "CPK")
- Drop Word

Applying Type I Transformations

- Employs Information Retrieval Techniques
- One set of attribute values broken into words or tokens - "Art" "s" "Delicatessen"
- Apply Type I transformations to tokens
 - "Art" "A630" "s" "S000" "Delicatessen" "D423"
- Enter tokens into inverted index
- Tokens from second set used to query the index
 - Transformed query set: "Art" "A630" "s" "S000" "Deli" "Del" "D400"

Applying Type II Transformations

• Type II transformations improve measurement of similarity

Attribute Similarity Function

- Transformations determine similarity of attribute values
- Attribute Similarity Function:
 - Cosine Measure with a TFIDF

$$\sqrt{\sum_{i=1}^{t} (\mathbf{w}_{ia})^2 \mathbf{x} \sum_{i=1}^{t} (\mathbf{w}_{ij})^2}$$

 $w_{ia} = (0.5 + 0.5 freq_{ia}) \times IDF_{i}$ $w_{ij} = freq_{ij} \times IDF_{i}$ $freq_{ia} = \text{frequency of term } i \text{ for attribute value } a$ $IDF_{i} = IDF \text{ of term } i \text{ in the entire collection}$ $freq_{ii} = \text{frequency of term } i \text{ in attribute value } j$

Name	Street	Phone	Total Score
.967	.973	.3	2.034
.17	.3	.74	1.182
.8	.5	.49	1.749
	••	•	

- The goal is to classify with high accuracy the proposed mappings while minimizing user input
 - Active learning technique
 - System chooses most informative example for the user to label

Mapping Rules

Set of S	Set of Similarity Scores		Mapping Rules	
Name	Street	Phone		
.967	.973	.3	Name > .8 & Street > .79 => mapped	
.17	.3	.74	Name > .89 => mapped	
.8	.542	.49	Street < .57 => not mapped	
.95	.97	.67		
	•••			

Mapping Rule Learner

Committee Disagreement

• Chooses an example based on the disagreement of the query committee

Examples N	/I1 M2	M3
Art's Deli, Art's Delicatessen CPK, California Pizza Kitchen Ca'Brea, La Brea BakeryYe Ye No	s Yes s No No	Yes Yes No

• In this case CPK, California Pizza Kitchen is the most informative example based on disagreement

Choosing Next Example

- The user labels the example, and the system updates the committee
- Mapping Rule Learner outputs classified examples

Transformation Weight Learner

Calculate Transformation Weights

P(mapped | transformation) =

P(transformation | mapped) P(mapped) P(transformation)

Examples	Classification	Labeled by
Art's Deli, Art's Delicatessen	Mapped	Learner
CPK, California Pizza Kitchen	Mapped	User
Ca'Brea, La Brea Bakery	Not Mapped	Learner

Recalculating Similarity Scores

Transformation	Mapped	Not Mapped	
(EQUAL "Art" "Art")	.8	.2	
(EQUAL "s" "s")	.8	.2	
(PREFIX "Deli" "Delicates	ssen") .1	.9	
Total mapped score m = .064			
Total not mapped score n = .004			
Normalized Attribute Similarity Score = m/(m + n)			
= .064/ (.064 + .004)			
Attribute Similarity Score = .941			

Experimental Results

- Three domains: Restaurant, Company, Airport
- Three types of experiments

CG

CG

- Active Atlas (Mapping Learner)

- Passive Atlas (Decision tree learner)

Candidate Generator (Baseline)

(only Stemming)

- Three Variations of Active Atlas
 - Without Transformation weight learning
 - Without using Dissimilarity for choosing queries
 - Without enforcing One-to-One Relationship
- Learned Weights and Rules

Restaurant Domain

112 mapped objects / 3310 mappings proposed

Restaurant Results

Active Atlas Results

Company Domain

294 mapped objects / 14303 mappings proposed

Active Atlas Results

Airport/Weather Domain

418 mapped objects / 17120 mappings proposed

Airport/Weather Results

Active Atlas Results

Applying Learned Weights & Rules

Application Domain	Total Number of Examples	Total Number of Test Examples	Average Accuracy
Restaurant	3310	662	.9989
Company	14303	2861	.9995
Airport	17120	3624	.9960

Related Work

- Key characteristics
 - Manual methods to customize rules for each domain
 - User-applied fixed threshold to match objects
 - No transformation weight learning
- Related work areas
 - Database Community (Ganesh et al, Monge&Elkan)
 - Information Retrieval (Cohen)
 - Sensor Fusion (Huang & Russell)
 - Record Linkage (Jaro, Winkler)

Database Community

- Removing duplicate records
 - Hernandez&Stolfo, Monge&Elkan
 - User-defined transformations
 - Manual generated mapping rules
- Data Mining
 - Work conducted by Pinheiro&Sun
 - User-defined transformations
 - Learned attribute model (supervised learning)
 - Work by Ganesh et al
 - Learned mapping rules (decision tree learner)

Information Retrieval

- Whirl Information Retrieval System (Cohen)
- Stemming is the only transformation
 - "CPK" would not match "California Pizza Kitchen."
- The user reviews ranked set of objects to determine the threshold of the match

Sensor Fusion & Record Linkage

- Appearance Model (Huang & Russell)
 - Appearance probabilities will not be helpful for an attribute with a unique set of instances
 - ("Art's Deli", "Art's Delicatessen")
- Record Linkage community (Jaro, Winkler)
 - Hand tailored domain specific transformations
 - The EM algorithm is applied to classify the data into three classes:
 - Matched
 - Not matched
 - To be reviewed
 - Unsupervised learning technique

Conclusions

- Novel approach combines both mapping rule learning and transformation weight learning to create a robust object identification system
- Learns to classify examples with 100% accuracy
- Requires less user involvement than other baseline techniques (Passive Atlas & Information Retrieal)

Future Work

- Noise in User Labels
- Learning Specific Transformations Weights
- Learning to Generate New Transformations
- Scaling: Approach currently applied to sets of examples on the order of 10,000. What are the issues for millions?
- Reconciling textual differences