Iteratively Learning Conditional Statements in Transforming Data by Example

Bo Wu and Craig A. Knoblock University of Southern California

Introduction

Motivation

A Data Table

Accessi on	Credit	Dimensions	Medium	Name
01.2	Gift of the artist	5.25 in HIGH x 9.375 in WIDE	Oil on canvas	John Mix Stanley
05.411	Gift of James L. Edison	20 in HIGH x 24 in WIDE	Oil on canvas	Mortimer L. Smith
06.1	Gift of the artist	Image: 20.5 in. HIGH x 17.5 in. WIDE	Oil on canvas	Theodore Scott Dabo
06.2	Gift of the artist	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	Oil on canvas	Leon Dabo
09.8	Gift of the artist	12 in 14 in HIGH x 16 in 18 in WIDE	Oil on canvas	Gari Melchers

Programming by Example

	Raw Value	Target Value
R1	5.25 in HIGH x 9.375 in WIDE	9.375
R2	20 in HIGH x 24 in WIDE	24
R3	Image: 20.5 in. HIGH x 17.5 in. WIDE	17.5
R4	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	119.15
		\sim

. . .

R5	12 in 14 in HIGH x 16 in 18 in WIDE	nuðl

Problem:

Learn accurate conditional statements efficiently for data with heterogeneous formats using few examples

Previous Approach

Transformation Program

Transform(value)

Conditional Statement

```
label = classify(value)
```

switch label:

case "format1":

BNK: blankspace NUM[0-9]+: 98

UWRD[A-Z]: I

LWRD[a-z]: mage

WORD[a-zA-Z]

START: END:

Branch

Transformation Program

Branch Transformation Program

```
pos_1 = value indexOf('BNK', 'NUM', -1)
pos_2 = value indexOf('NUM', 'BNK', 2)
output=value.substr(pos<sub>1</sub>, pos<sub>2</sub>)
```

case "format2":

```
pos_3 = value indexOf(","NUM",2)
pos_4 = value indexOf('NUM','BNK',-1)
output=value.substr(pos<sub>3</sub>, pos<sub>4</sub>)
```

return output

Our Approach

Main Idea

Learning the conditional statement iteratively

Our Approach

Data Preprocessing

String	9.75 in 16 in HIGH										
Tokens		START NUM(9) Period(.) NUM(75) BNK LWRD(in) VBAR() NUM (16) BNK LWRD(in) BNK UWRD(H) UWRD(I) UWRD(G) UWRD(H)									
Token counts	NUM 3										
Feature Vector	LWRD 0	NUM .21 0		:	0.21	0.07	= 0.07				

Our Approach

Constraints

- Two Types of Constraints:
 - Cannot-merge Constraints:
 - Ex:

5.25 in HIGH x 9.375 in WIDE	9.375
9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	13.75
20 in HIGH x 24 in WIDE	24

- Must-merge Constraints:
 - Ex:

D1	5.25 in HIGH x 9.375 in WIDE	9.375
LI	20 in HIGH x 24 in WIDE	24

P2 9.75 in | 16 in HIGH x 13.75 in | 19.5 in WIDE 13.75

P3 Image: 20.5 in. HIGH x 17.5 in. WIDE 17.5

Constrained Agglomerative Clustering

Distance Metric Learning

Distance Metric (Weighted Euclidean) Learning

$$d(x,y) = ||x - y||_w = \sqrt{\sum_i w_i (x_i - y_i)^2}$$

Objective Function

$$\begin{split} & argmin_{w>0} \sum_{i} \|x_{i} - e_{x_{i}}\|_{w} + a * g(w) - b * h(w) \\ & g(w) = ln(\sum_{X_{m}} \sum_{x_{i}, x_{j} \in X_{m}, i \neq j} \|x_{i} - x_{j}\|_{w}) \\ & h(w) = ln \sum_{X_{r}} \max_{x_{i}, x_{j} \in X_{r}} \|x_{i} - x_{j}\|_{w} \end{split}$$

Close to each other

Too far away

Our Approach

Utilize Unlabeled data in Learning Classifier

Partition 1						
	5.25 in HIGH x 9.375 in WIDE	9.375				
Examples	20 in HIGH x 24 in WIDE	24				
	Image: 20.5 in. HIGH x 17.5 in. WIDE	17.5				
	T					
	26 in. HIGH x 23 in. WIDE					
Unlabeled	19.75 in HIGH x 22.75 in WIDE x 0.25 in DE	ΕP				
	33.5 in HIGH x 39 in WIDE					

	Partition 2			
Examples	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE			
	12 in 14 in HIGH x 16 in 18 in WIDE			
20.25 in 19.75 in HIGH x 15.75 in 15.875				
Unlabeled 55 in HIGH x 46 in 290 in WIDE				

Filter unlabeled data

- Filter unlabeled data on the boundary
- Only choose top K unlabeled data

Learn a SVM classifier

Results

Evaluation

- Dataset: 30 editing scenarios
 - Museum
 - Google Refine and Excel user forums
- Comparing Methods:
 - -SP
 - The state-of-the-art approach that uses compatibility score to select partitions to merge
 - SPIC
 - Utilize previous constraints besides using compatibility score
 - DP
 - Learn distance metric
 - DPIC
 - Utilize previous constraints besides learning distance metric
 - DPICED
 - Our approach in this paper

Results

Success Rates:

	DPICED	DPIC	DP	SPIC	SP
SccRate	1	1	0.97	0.77	0.77

Time and Examples:

	Total Time (seconds)	Examples	Constraint Number
DPICED	3.9	5.4	6.1
DPIC	6.4	6.8	6.6
DP	8.3	6.8	17.6
SPIC	21.3	6.8	260.1
SP	26.5	6.9	305.8

Related Work

- Wrapper induction approaches
 - WIEN [Kushmerick, 1997], SoftMealy [Hsu et al., 1998], STALKER [Muslea et al., 1999]
- Programming-by-example approaches
 - FlashFill[Gulwani, 2011][Perelman et al., 2014], Data Wrangler [Kandel et al., 2011], SmartEditor [Lau et al. 2003]
- Clustering with constraints
 - Clustering with constraints [Xing et al., 2002][Bilenko et al., 2004][Bade et al., 2006][Zhao et al., 2010]
 [Zheng et al., 2011]

Discussion

- Iteratively learn conditional statements in PBE setting
 - Improve the efficiency
 - Learn more accurate conditional statements
 - generate a small number of branches.
- Incorporate ML tools as external functions in inductive programming

Future Work

- Integrate the partitioning and classification steps
 - Reduce accumulated errors
- Improve GUI to help user verifying the data
 - Identify unseen formats
 - Identify incorrectly classified records

• Thanks