
L2Explorer: A Lifelong Reinforcement Learning Assessment Environment

Erik C. Johnson, Eric Q. Nguyen, Blake Schreurs, Chigozie S. Ewulum, Chace Ashcraft, Neil M. Fendley,
Megan M. Baker, Alexander New, Gautam K. Vallabha

Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Rd.

Laurel, MD 21045

Abstract

Despite groundbreaking progress in reinforcement
learning for robotics, gameplay, and other complex do-
mains, major challenges remain in applying reinforce-
ment learning to the evolving, open-world problems
often found in critical application spaces. Reinforce-
ment learning solutions tend to generalize poorly when
exposed to new tasks outside of the data distribution
they are trained on, prompting an interest in contin-
ual learning algorithms. In tandem with research on
continual learning algorithms, there is a need for chal-
lenge environments, carefully designed experiments,
and metrics to assess research progress. We address
the latter need by introducing a framework for con-
tinual reinforcement-learning development and assess-
ment using Lifelong Learning Explorer (L2Explorer), a
new, Unity-based, first-person 3D exploration environ-
ment that can be continuously reconfigured to generate
a range of tasks and task variants structured into com-
plex and evolving evaluation curricula. In contrast to
procedurally generated worlds with randomized com-
ponents, we have developed a systematic approach to
defining curricula in response to controlled changes
with accompanying metrics to assess transfer, perfor-
mance recovery, and data efficiency. Taken together,
the L2Explorer environment and evaluation approach
provides a framework for developing future evaluation
methodologies in open-world settings and rigorously
evaluating approaches to lifelong learning.

In recent years, Deep Reinforcement Learning (DRL) ap-
proaches have begun to deliver powerful results for a variety
of compelling domains, including games such as Chess, Go,
and Shogi (Silver et al. 2018); Atari video games (Mnih et
al. 2013); more complex strategy video games (Berner et
al. 2019; Vinyals et al. 2019); and dexterous robotic ma-
nipulation (Rajeswaran et al. 2017). Despite the ground-
breaking success in training autonomous agents, resulting
policies tend to be very brittle and generalize poorly (Chan
et al. 2019). When presented with a new task or a task
variant, DRL approaches are susceptible to a performance
drop (Zhang et al. 2018; Kirk et al. 2021) due to the catas-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
DISTRIBUTION STATEMENT A. Approved for public release.
Distribution Unlimited.

trophic forgetting problem (French 1999; McCloskey and
Cohen 1989), which may not be overcome by domain ran-
domization strategies alone. As the field moves from envi-
ronments which are fixed to evolving, open-world scenarios,
current DRL approaches will be insufficient.

This performance gap has led to an interest in Continual
Learning, which seeks to design algorithms to learn over
sequences of tasks. In the related, but broader, concept of
Lifelong Learning (Chen and Liu 2018), an agent learns
over a lifetime of experiences (see Fig. 1) in an evolving
environment (for purposes of this paper, however, we treat
continual learning as synonymous with lifelong learning as
our approach is applicable to both concepts). Much recent
work has been on supervised classification under distribu-
tion shifts (Song et al. 2020) and learning a sequence of tasks
(Parisi et al. 2019; Hsu et al. 2018). Continual RL (Khetarpal
et al. 2020) seeks to create agents which can maintain per-
formance in the face of nonstationary distributions.

A key issue in developing Continual RL algorithms is how
to assess performance in a rigorous and informative way.
There are existing attempts to address this with procedurally
generated open worlds (Risi and Togelius 2020), which gen-
erate tasks using randomly parameterized environments. A
recent software framework has begun integrating metrics,
baselines, and environments for Continual RL (Powers et
al. 2021). We argue that successful Continual RL assess-
ment requires both sufficiently complex environments and
highly reconfigurable tasks, as well as carefully structured
experiments and metrics. We must also consider a multi-
dimensional approach to assessment (in terms of raw per-
formance, generalization, task transfer, and data efficiency).

To help address this need, we have developed Lifelong
Learning Explorer (L2Explorer), a first-person-view (FPV),
highly configurable UnityTM environment1. The environ-
ment allows for procedural generation through Python code
for open-ended task and task variant definitions. Moreover,
the environment is set up for testing lifelong learning curric-
ula with a set of lifelong learning metrics. While the Unity
environment itself is designed for Continual RL assessment,
this work also outlines an approach for taking complex, re-
configurable open-world environments and creating rigor-
ous evaluation for lifelong learning algorithms.

1https://unity.com/



Existing Environments for Continual RL
Many environments have been used to test DRL approaches,
including game environments. Extensive work, including
transfer learning studies, have been conducted with Atari
games (Mnih et al. 2013). This has been generalized into a
meta-learning framework that allows sampling of Atari-like
games (Staley et al. 2021). Complex strategy games have
also been leveraged in this context, including Starcraft 22,
team-based play in Dota 2 (Berner et al. 2019), and rogue-
likes such as Dungeon Crawl Stone Soup (Dannenhauer et
al. 2019). While impressive, many games can be limited for
Continual RL testing due to the lack of full configurablility.

Simulators of real-world systems, such as autonomous ve-
hicles, have also been extensively used. Two notable exam-
ples are the CARLA simulator (Dosovitskiy et al. 2017) for
autonomous driving and the AirSim package for unmanned
aerial vehicles (Shah et al. 2018). While these include pho-
torealistic images and realistic physics, the computational
complexity of the environments coupled with the design
time required to produce tasks and task variants can limit
their applicability to Continual RL testing.

There are also many FPV environments, which combine
some of the desirable features of game environments and
physical simulators. These are valuable for continual and
lifelong learning testing because they allow natural inclu-
sion of partial observations, multiple observation modes,
and proxies of real world tasks. These strengths come at the
downside of reduced task complexity and reduced fidelity.
Examples include the use of the Unity Environment through
the ML-Agents package (Juliani et al. 2018) and the proce-
durally generated Obstacle Tower (Juliani et al. 2019) envi-
ronment. The FPV game DOOM forms the basis of the Viz-
doom FPV environment (Kempka et al. 2016). Also related
are the real-world home and robot environment simulators
such as AI2Thor (Kolve et al. 2017), which also introduce
semantic object relationships into FPV environments.

In order to introduce the flexibility required for open-
world learning scenarios, increasing emphasis has been
placed on procedurally generated environments. These in-
clude the open-world game environments of XLand (Team
et al. 2021) and MiniHack (Samvelyan et al. 2021). These
represent major steps forward, but the lack of controllable
parameters limits the precision of testing that can be done in
these environments (Kirk et al. 2021).

Our environment and assessment framework, L2Explorer,
seeks to combine the strengths of different types of environ-
ments. The use of Unity allows for a visually complex world,
and ML-Agents exposes hooks that allow for principled pro-
cedural generation using flexible Python code. The environ-
ment has lower computational complexity than simulators
of autonomous cars or aerial vehicles. Finally, the critical
component is linking this procedurally generated environ-
ment to careful experimental design and metrics, similar to
CoRA (Powers et al. 2021). We aim to create an approach
that will also generalize and improve Continual RL assess-
ment utilizing other open-world environments.

2deepmind.com/research/open-source/
pysc2-starcraft-ii-learning-environment

Figure 1: Key considerations when assessing lifelong learn-
ing agents (a Lifelong Learning Machine, L2M) with open-
world environments. An agent’s lifetime is broken into
blocks of tasks (e.g., playing an individual sport) for training
and evaluation. Blocks generate metrics for assessing per-
formance. Our approach utilizes a highly flexible environ-
ment to generate curricula (lifetimes), tasks, and task vari-
ants. A multi-dimensional approach to metrics, going be-
yond raw performance, is required to capture the nuances
such as transfer and performance recovery. Controlled se-
quences of tasks can elucidate particular strengths and weak-
nesses in learners. Figure adapted from (New et al. 2022).

L2Explorer Design Approach
Similar to previous efforts to define key requirements for
lifelong learning evaluations (Farquhar and Gal 2018), we
developed key criteria for our framework which allow for
rigorous assessment of lifelong learning with an open-
ended, procedurally generated environment. We believe the
key criteria of our framework to be:
• Flexible description of multiple tasks: A programmatic

API to specify new tasks with a common specification
• Flexible control over task variants: Selection of key vari-

ables that can be modified within a task definition
• Notions of task relationships/similarity: While there is no

agreed upon approach to measure generic task similarity
for RL tasks, some notion of task similarity is required to
appropriately structure evaluation

• Control over degree of similarity: The environment needs
to be able to control the degree of similarity between con-
figurations to allow for abrupt and gradual transitions

• Parametric and random variation: The tasks require the
notion of parameters used to deterministically create vari-
ants, as well as intrinsic parameters that can be randomly
sampled, similar to the previous work (Kirk et al. 2021)

• Targeted testing curricula: A set of designed curricula and
tests, along with integrated metrics and baselines

Taken together, these factors address some of the limitations
that come with testing with open-world, procedurally gener-
ated environments.



Figure 2: Overview of L2Explorer Software system, consisting of a suite of Python tools which interact with a custom Unity
environment. The Python suite allows for execution of testing curricula, integration of standard agent code, and rapid reconfig-
uration of the unity environment through the reset channel. Logging and metrics computations are integrated. A custom asset
creator allows new Unity models to be incorporated into the framework to maximize extensibility.

Continual RL Assessment
In L2Explorer, we build on the standard formalism for
RL agents using Partially Observable Markov Decision
Processes (POMDPs). These consist of the tuple M =
(S,A,O,R, T, φ, p), where S is the state space, A is the
space of actions available to an agent, R : S × A× S → R
is the reward function, T (s′|s, a) is the state transition func-
tion, and p is the distribution of initial states. The system
is partially observable as the state is not directly available
to the agent, which instead gets an observation from the
observation space O generated by the emission function
φ : S → O. The goal of the RL agent is to learn a policy
π(a|s).

π∗ = argmaxπ∈ΠEs∼p(s0)[R(s)]

where R(s), which is a real value, is the total expected re-
ward gained by the state.

We consider nonstationarities in the underlying POMDP
for both tasks and tasks variants. Of critical consideration
are S, A, T (s′|s, a), R, O, and φ. In continual reinforce-
ment learning, these are allowed to vary as a function of the
number of episodes to create a nonstationary POMDP.

To expose agents to nonstationarity in a meaningful way,
controlled variation in environment is required. It is rarely
practical to fully quantify distributions in high dimensional
POMDPs, so instead we seek useful and practical surrogates
for controlled manipulation of nonstationary POMDPs. We
propose that each curricula should have some desired testing
hypothesis relating to changing distributions in the underly-
ing POMDP. Different tasks and task variants can represent
particular distributions in the POMDP tuple, and altering pa-
rameters results in a shift in these distributions.

Achieving this requires some notion of task and variant
similarity. We propose exploiting the parameters of proce-
dural generation to create heuristics of similarity. For ex-
ample, if two task differ only by the probability distribution
used to place objects, a distance metric applied to the tasks’
distributions could be a proxy measure for the similarity. A
key caveat, however, is that heuristic notions of similarity
may not be inherently related to agent transfer. What seems
intuitively similar to a human may not correspond to posi-
tive transfer between tasks for an RL algorithm, and tasks
that may be similar for one algorithm may not be for an-
other (Carroll 2005). Research into measures of similarity,
transfer, and generalization is ongoing (Barreto et al. 2016;

Ma et al. 2020) and beyond the scope of this work.
L2Explorer variants are designed by selecting a subset of

procedural generation parameters that must be fixed, and a
subset that may be fixed or allowed to be sampled from a dis-
tribution. Differences in the parameter values may be passed
into the appropriate similarity heuristics. Tasks are assem-
bled into curricula with particular experimental goals, such
as determining sensitivity to changes in reward space, the
observation emission function, and so forth. This overall ap-
proach will allow for meaningful experimental design and
overcome limitations of completely randomly generated en-
vironments (Song et al. 2020; Kirk et al. 2021).

Curriculum Design Considerations
We utilize existing a lifelong learning evaluation framework
for curriculum design, as specified in (New et al. 2022) and
released open-source1. This can be seen in Fig. 1, where
an agent is pretrained and then deployed on a sequence of
tasks. A lifelong learner should be able to take such a fixed
curriculum and demonstrate learning over deployment. This
framework allows for pre-deployment training or parame-
ter selection before learning. The agent is then subjected
to a series of units of experience (e.g., rounds in a game)
that can be grouped into longer blocks. We assume blocks
can incorporate drift in the underlying distributions of the
POMDP. Periodically, the agent can be frozen and have its
capabilities tested in a separate evaluation block. Individual
environment metrics can be specified, then aggregated into
environment-agnostic lifelong learning metrics (detailed be-
low). In L2Explorer, similarity heuristics can be utilized to
order tasks and task variants into sequences of learning and
evaluation blocks.

Metrics
L2Explorer utilizes an existing set of lifelong learning met-
rics that characterizes the nuances of the performance curves
such as the one in Fig. 1. Full definitions can be found
in (New et al. 2022), with open-source implementations
available. Task-specific performance measures (e.g., total
reward, time to completion) generated during learning and
evaluation blocks enable computation of:

1https://github.com/darpa-l2m/l2metrics,
https://github.com/darpa-l2m/l2logger



Figure 3: Example subset of a reset JSON object. This shows
the available variables to procedurally generate variants of
the environment, agent, and objects. Each object can have
independently specified coordinates and interaction models,
and objects can be created dynamically within an episode.
On each reset call, a new JSON can be loaded into the envi-
ronment.

• Performance Maintenance: A measure of catastrophic for-
getting for a given task

• Forward Transfer: A measure of learning improvement
for a task, given learning experiences on a different task

• Backward Transfer: A measure of improvement on a pre-
viously learned task given learning experiences on a new
task

• Performance Relative to Single-Task Expert: Comparison
of lifelong learning agent to an expert agent trained only
on the task in question (e.g., the dashed lines in Fig. 1).

• Sample Efficiency: A measure of the experience required
for a lifelong learning agent to reach maximal perfor-
mance relative to a single task expert

Together, the metrics, curriculum design, and design phi-
losophy inform the development of the L2Explorer environ-
ment. Lessons from this approach can be generalized to as-
sessment with future open world exploration environments.

L2Explorer
L2Explorer is a software framework and testing environ-
ment which implements this overall design vision, including
integration with metrics and testing curricula. The project
builds on Unity ML-Agents (Juliani et al. 2018), which ex-
poses key parameters to create a reconfigurable, 3D, FPV

reinforcement-learning environment. Our custom Unity en-
vironment enables exploration and interaction with a world
specified through a JSON object format. Additional side
channels allow communication of observations, actions,
and debugging information. The Python code specifies the
world JSON objects, allows for creating testing curricula,
integrates metrics, and provides a Gym-compatible inter-
face (Brockman et al. 2016). An overview of the software
can be seen in Fig. 2, and is intended to be released open-
source. The package will provide testing curricula and base-
lines to assist development, and will allow users to fully cus-
tomize tasks, task variants, curricula, and even import cus-
tom 3D models into the environment.

Unity Executable
The core environment of L2Explorer is a custom Unity app
which instantiates a simulated world in response to a JSON
specification communicated through a Unity ML-Agents
side channel. This is activated when the reset function is
called, allowing each learning experience to take place in
a custom specified world. A partial example of a reset JSON
can be seen in Fig. 3. The format allows for specification
of environment specific parameters, including lighting con-
ditions, backgrounds, agent specific parameters, and object
specific parameters. Pre-caching 3D models enables rapid
world construction on reset.

The Unity environment exposes three custom communi-
cation channels seen in Fig. 2. These allow the reset func-
tionality, querying the current state of the world (returned
in the specified world JSON format), and sending debug-
ging information. Standard channels allow for the commu-
nication of actions (continuous or discrete) and observations
(state vectors and visual observations). Visual observations
include RGB images, grayscale depth images, and semantic
segmentation maps (segmented by the object “class”).

The agent model is, by default, a kinematic model con-
trolled by a linear and angular velocity term. Several agent-
object interaction models are specified. These can require an
agent to be in a nearby zone, require contact with the object,
or require the agent to take an “interact” action. Interaction
can result in a positive or negative reward, and can result in
the destruction of the object. There is dynamic respawning
through the side channels, allowing new objects to be speci-
fied during runtime. For certain task designs, this can be key
for learning with fixed episode step length.

A separate unity executable is provided to allow users to
prepare and save custom 3D models in an L2Explorer com-
patible format. These assets, once prepared, can be loaded
in during a reset action. This can allow for continued exten-
sibility of the environment.

Python Wrappers
In L2Explorer, Python wrappers allow for task specification
and agent development. The primary class, L2ExplorerTask,
is a wrapper for communicating with the Unity executable.
This class processes the raw observations to provide a re-
ward and observation to the agent. This allows for defini-
tions of alternative rewards functions in Python, such as soft
rewards, as well as any data filtering required for a task.



Figure 4: Variants which can be produced using the standardized JSON format through the reset function. Panel a) shows how
object properties can be manipulated, in this case turning blue targets into red ones. Panel b) shows the replacement of an
object of the same class with a different model, in this case swapping two trees. Panel c) shows how the reward structure can
be modulated with one reward object of value 100 becoming two reward objects with values 50 and −50. Panel d) shows the
manipulation of environmental conditions through changes in lighting. Panel e) shows how scene complexity can be varied
through placement of additional objects from different classes. Finally, Panel f) demonstrates how different observation modal-
ities including RGB, depth, and a semantic segmentation can be supplied to an agent.

Figure 5: Example task demonstrating integration of a Sta-
ble Baselines PPO agent for learning a simple object finding
task. Panel a) shows the visual input to the agent and Panel
b) an example learning curve. Standard Python agents using
the established Gym API can be rapidly tested in this frame-
work.

The Unity environment is configured during a reset func-
tion, utilizing the JSON specification (Fig. 3). This enables
the specification of curricula in Python, as well as the spec-
ification of procedural generation. Curricula are specified
through task-specific classes and a task-specific initial JSON
file. Learning and Evaluation Blocks can then be described
as above, along with variants of the task. The base JSON
file for the task is passed to the task class, and key-value
pairs are modified, if required, to create a variant. Modifi-
cations are drawn from discrete or continuous probability
density functions to create appropriate randomization. The
Gym-compatible environment class allows for integration of
standard baselines and custom algorithms. The agent obser-
vation space, O, is a tensor of number of pixels by number
of pixels by number of channels in the selected modalities,
and optionally state vector of size N . The action space a
is a 2-dimensional continuous valued vector (linear and an-
gular velocity), which can optionally be discretized. A third
dimension can be added for the binary “interact” action.

In addition to the core functionality, integration with a
Python logging package and Python metrics package for
lifelong learning is provided to enable the multi-dimensional
metrics evaluation. A command line interface (CLI) is also
provided for directly interfacing with and debugging the en-
vironment.

Example Use Cases
L2Explorer is a highly configurable and extensible environ-
ment that can provide insight into the performance of Con-
tinual RL algorithms. Towards this end, we present some
example tasks and curricula that will be refined into stan-
dardized benchmarking experiments.

Configuration of L2Explorer
Fig. 4 shows some aspects of the world that can be recon-
figured. These relate (indirectly) to the underlying POMDP,
including O, φ, and S, by altering the object properties, ob-
ject models, environmental complexity, environmental con-
ditions, and observation modality. The reward R and state
transition function T are more directly manipulated through
modifying the object interaction model, object reward, and
agent models. The extensible L2ExplorerTask class allows
for further manipulations such as soft reward functions and
observation state vectors.

Tasks
For each task a JSON is specified from which variants can
be created and randomization can be done. Each task has a
set of parameters which define the core task, parameters to
change to produce static variants, and parameters that can
be randomized within a variant. Fig. 5 shows an example of
performance curves for a Stable Baselines Proximal Policy
Optimization1. Developers of novel algorithms will be able
to exploit this interface to baseline directly against single
task experts. While L2Explorer is designed to be extensible,
several initial tasks have been developed:

• Find Objects: The agent interacts with objects to re-
ceive a positive reward. Environmental conditions, ob-
ject properties, and agent properties can be randomized.
Variant tasks include observation changes of the target
model, state space changes of the map layout, and agent-
interaction model changes

1https://github.com/DLR-RM/
stable-baselines3



Figure 6: Example curricula showing variations in observation and reward models to realize the evaluation framework (Fig. 1).
Between each variant, the reward structure and observation structure change, enabling analysis of performance and manipulating
the underlying POMDP. In Panel a) there is a positive reward associated with capturing the blue object. In the variant in Panel b)
a red object object is introduced which returns a negative reward when captured. In the variant in Panel c) a green object returns
a positive reward. Finally, in Panel d) the variants in Panel b) and Panel c) are mixed with different environmental conditions.

• Get to Goal: The agent receives positive reward for nav-
igating to a target position. Goal positions, map layouts,
and agent parameters can be randomized. Variants include
changes in visual landmarks, soft reward functions, and
the addition of negative reward objects

• Select Object: The agent receives positive reward for se-
lecting the correct object, negative reward for other ob-
jects. Reward probabilities can be manipulated as in a K-
armed bandit problem. Variants include changes in the re-
ward probability distribution and object models

• Moving Object: Similar to Find Objects, with a object
motion model. Variants allow for manipulation of the ac-
tion space and state transition space through changes in
the agent and object motion models

• Scavenger Hunt: The agent can obtain a series of rewards
by interacting with the right sequence of objects. Variants
include changes in visual landmarks, changes in the re-
ward distribution, and changes in the object models

Assessment Curricula
Tasks and task variants can be assembled into learning and
evaluation blocks such as in Fig. 6. In this example changes
in tasks can, through assumed heuristics such as a norm of
the object RGB color difference, approximate changes in the
observation space and reward space. The magnitude of pa-
rameter changes can also be used as a calculable surrogate
for similarity, although we reemphasize that such heuristics
do not necessarily indicate successful transfer learning.

Preliminary curricula are being developed for several key
sources of variability impacting Continual RL agents. First
is manipulation of the reward structure. Distributions of re-
wards and their associated objects can be shifted in grad-
ual or continuous ways. Changes in the state space and state
transition space can be probed through manipulations of the
maps, agent and object motion models, and interaction mod-
els. Changes to the observation emission function can be
probed through changes in environmental factors, observa-
tion modalities, and object models. Action space changes
can relate to the agent interaction model. The metrics will
allow the assessment of changes of different magnitudes.

Similarity measures are critical to the construction of
these curricula. We propose utilizing changes in the parame-
ters of the reset JSON to provide a usable, if limited, approx-
imation of similarity. Changes to individual object parame-
ters between tasks can be measured with chosen distance

metrics to approximate differences in similarity between the
tasks. Further, we may provide a mapping from non-numeric
values, such as a color specification of “green”, to numeric
ones, such as the array (0, 128, 0), which can then be
used with a distance measure to create another measure of
similarity between tasks. Object coordinates can also be dis-
cretized into occupancy maps to allow for distance computa-
tions. While this approach is clearly limited, it is simple and
useful for organizing curricula for algorithm assessment.

Conclusions
We have presented the design approach and implementation
of L2Explorer, a highly configurable, Unity-based environ-
ment for testing continual and lifelong learning systems. In
addition to the software system itself, we have argued for
a framework to approach lifelong learning assessment in
open-ended worlds. A key consideration is the integration
of appropriate metrics, experiment design, and curriculum
design into the framework.

To fully demonstrate the power of this approach, inte-
gration of single task baselines and Continual RL base-
lines (Khetarpal et al. 2020), including replay based ap-
proaches such as CLEAR (Rolnick et al. 2018), is needed.
In combination with baseline development, the project aims
to provide a set of canonical experiments for RL assessment
in a FPV environment. Moreover, we anticipate the design
framework can be reused. Without progress in assessment
frameworks, it will be a challenge to push the frontier of re-
inforcement learning in open-world environments.

Code Availability
The code for the L2Explorer framework will be
made open source at https://github.com/
lifelong-learning-systems/l2explorer.

Acknowledgments
Development of L2Explorer was funded by the DARPA
Lifelong Learning Machines (L2M) Program. The authors
would like to thank Olivia Lyons, Ji Pak, Sasha Smith, Bri-
anna Raphino, and Sydney Floryanzia for their help in the
early development of L2Explorer, and Angel Yanguas-Gil
for valuable feedback. The views, opinions, and/or findings
expressed are those of the authors and should not be inter-
preted as representing the official views or policies of the
Department of Defense or the U.S. Government.



References
Barreto, A.; Dabney, W.; Munos, R.; Hunt, J. J.; Schaul,
T.; Van Hasselt, H.; and Silver, D. 2016. Successor fea-
tures for transfer in reinforcement learning. arXiv preprint
arXiv:1606.05312.
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
Carroll, J. L. 2005. Task localization, similarity, and trans-
fer; towards a reinforcement learning task library system.
Chan, S. C.; Fishman, S.; Canny, J.; Korattikara, A.; and
Guadarrama, S. 2019. Measuring the reliability of reinforce-
ment learning algorithms. arXiv preprint arXiv:1912.05663.
Chen, Z., and Liu, B. 2018. Lifelong machine learning,
second edition. 12(3):1–207.
Dannenhauer, D.; Floyd, M. W.; Decker, J.; and Aha, D. W.
2019. Dungeon crawl stone soup as an evaluation domain
for artificial intelligence. arXiv preprint arXiv:1902.01769.
Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. CARLA: An open urban driving simu-
lator. In Proceedings of the 1st Annual Conference on Robot
Learning, 1–16.
Farquhar, S., and Gal, Y. 2018. Towards robust evaluations
of continual learning. arXiv preprint arXiv:1805.09733.
French, R. M. 1999. Catastrophic forgetting in connectionist
networks. Trends in Cognitive Sciences 3(4):128–135.
Hsu, Y.-C.; Liu, Y.-C.; Ramasamy, A.; and Kira, Z.
2018. Re-evaluating continual learning scenarios: A cat-
egorization and case for strong baselines. arXiv preprint
arXiv:1810.12488.
Juliani, A.; Berges, V.-P.; Teng, E.; Cohen, A.; Harper, J.;
Elion, C.; Goy, C.; Gao, Y.; Henry, H.; Mattar, M.; et al.
2018. Unity: A general platform for intelligent agents. arXiv
preprint arXiv:1809.02627.
Juliani, A.; Khalifa, A.; Berges, V.-P.; Harper, J.; Teng, E.;
Henry, H.; Crespi, A.; Togelius, J.; and Lange, D. 2019. Ob-
stacle tower: A generalization challenge in vision, control,
and planning. arXiv preprint arXiv:1902.01378.
Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; and
Jaśkowski, W. 2016. Vizdoom: A doom-based ai re-
search platform for visual reinforcement learning. In 2016
IEEE Conference on Computational Intelligence and Games
(CIG), 1–8. IEEE.
Khetarpal, K.; Riemer, M.; Rish, I.; and Precup, D. 2020.
Towards continual reinforcement learning: A review and
perspectives. arXiv preprint arXiv:2012.13490.
Kirk, R.; Zhang, A.; Grefenstette, E.; and Rocktäschel, T.
2021. A survey of generalisation in deep reinforcement
learning. arXiv preprint arXiv:2111.09794.
Kolve, E.; Mottaghi, R.; Han, W.; VanderBilt, E.; Weihs, L.;
Herrasti, A.; Gordon, D.; Zhu, Y.; Gupta, A.; and Farhadi,

A. 2017. Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474.
Ma, C.; Ashley, D. R.; Wen, J.; and Bengio, Y. 2020. Uni-
versal successor features for transfer reinforcement learning.
arXiv preprint arXiv:2001.04025.
McCloskey, M., and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. volume 24 of Psychology of Learning and Moti-
vation. Academic Press. 109–165.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
New, A.; Baker, M.; Nguyen, E.; and Vallabha, G. 2022.
Lifelong learning metrics. arXiv preprint arXiv:2201.08278.
Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter,
S. 2019. Continual lifelong learning with neural networks:
A review. Neural Networks 113:54–71.
Powers, S.; Xing, E.; Kolve, E.; Mottaghi, R.; and Gupta,
A. 2021. Cora: Benchmarks, baselines, and metrics as a
platform for continual reinforcement learning agents. arXiv
preprint arXiv:2110.10067.
Rajeswaran, A.; Kumar, V.; Gupta, A.; Vezzani, G.; Schul-
man, J.; Todorov, E.; and Levine, S. 2017. Learning com-
plex dexterous manipulation with deep reinforcement learn-
ing and demonstrations. arXiv preprint arXiv:1709.10087.
Risi, S., and Togelius, J. 2020. Increasing generality in ma-
chine learning through procedural content generation. Na-
ture Machine Intelligence 2(8):428–436.
Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T. P.; and
Wayne, G. 2018. Experience replay for continual learning.
arXiv preprint arXiv:1811.11682.
Samvelyan, M.; Kirk, R.; Kurin, V.; Parker-Holder, J.; Jiang,
M.; Hambro, E.; Petroni, F.; Kuttler, H.; Grefenstette, E.; and
Rocktäschel, T. 2021. Minihack the planet: A sandbox for
open-ended reinforcement learning research.
Shah, S.; Dey, D.; Lovett, C.; and Kapoor, A. 2018. Airsim:
High-fidelity visual and physical simulation for autonomous
vehicles. In Field and service robotics, 621–635. Springer.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science
362(6419):1140–1144.
Song, L.; Sehwag, V.; Bhagoji, A. N.; and Mittal, P. 2020.
A critical evaluation of open-world machine learning. arXiv
preprint arXiv:2007.04391.
Staley, E. W.; Ashcraft, C.; Stoler, B.; Markowitz, J.; Val-
labha, G.; Ratto, C.; and Katyal, K. 2021. Meta arcade:
A configurable environment suite for deep reinforcement
learning and meta-learning. In Deep RL Workshop NeurIPS
2021.
Team, O. E. L.; Stooke, A.; Mahajan, A.; Barros, C.; Deck,
C.; Bauer, J.; Sygnowski, J.; Trebacz, M.; Jaderberg, M.;
Mathieu, M.; et al. 2021. Open-ended learning leads to
generally capable agents. arXiv preprint arXiv:2107.12808.



Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in star-
craft ii using multi-agent reinforcement learning. Nature
575(7782):350–354.
Zhang, C.; Vinyals, O.; Munos, R.; and Bengio, S. 2018. A
study on overfitting in deep reinforcement learning. arXiv
preprint arXiv:1804.06893.


