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Abstract

Data scientists often need to find relevant data from vari-
ous multimedia sources (e.g., organizational databases, data
lakes) by submitting query of any media type. Current cross-
media retrieval models finds a common representation across
multiple media by jointly modeling the encoded features
from different modalities. However, supervised and semi-
supervised models require a large number of annotated data.
In practice, fine-tuning a retrieval model with class label de-
pendence is not only expensive and time-consuming, but of-
ten impossible. Moreover, semantic gap between the low level
data features and high level human comprehensible features
hinder the understanding of the cross-media retrieval results.
We present WeS-JEm, a weakly supervised open-learning
framework for jointly learning data representations from all
modalities in a shared low dimensional vector space, by ex-
ploring the structural components of the data samples. The
framework characterizes and formulates responses to differ-
ent novelties encountered during multimodal retrieval from
unknown application domains, user requirements, or tempo-
ral changes. WeS-JEm follows a three-step process: (1) Dif-
ferent modalities of data are translated to textual descriptions.
(2) Weak similarity labels are generated among data samples
by comparing topics and different structural elements (enti-
ties, relationships, and events) of the text. (3) Vector repre-
sentations are learned for the data samples in the joint em-
bedding space by exploring the relationships among the top-
ics and structural elements. We address the supervision bot-
tleneck problem, and show that topics and structural features
can be used as a weak-supervision source, as well as pro-
vide a better semantic representation for retrieval of simi-
lar multi-modal data. Initial experiments are conducted us-
ing documents and videos as multi-modal sources, and topic
as weak labels. In comparison to unsupervised methods, LSI
and LDA, our model showed promising performance to cap-
ture the similarities in the low dimensional space.

Introduction
Finding relevant data from large data sources is the pre-
requisite for any data analysis task. Current data discovery
systems require human hours to sift through the large in-
flux of multi-media data (e.g., text, image, video, audio, and
3-D model) for data preparation task. Multi-modal informa-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion retrieval takes queries in one modality to retrieve rel-
evant data from other modalities, augmenting information
from a single source with information from other sources.
Cross-modal retrieval results can be improved if context is
introduced in learning the relevance. For example, upload-
ing the image of a person in google search returns images
of similar cloths that the person is wearing. User experience
would improve if the search results include the images of
similar cloths, videos of people wearing similar cloths, or
places where these kind of cloth can be purchased.

Previous works on multi-modal information retrieval have
followed the idea of projecting modality-specific features
from different modalities into a shared embedding space.
(Rasiwasia et al. 2010; Andrew et al. 2013; Wang et al.
2015; Kan, Shan, and Chen 2016; Peng et al. 2017; Zhang
et al. 2017; Zhai, Peng, and Xiao 2013) focuses on corre-
lation learning to learn the projection function, using both
pairwise information and class labels. (Feng, Wang, and Li
2014; Hu et al. 2019) uses auto-encoders to find correla-
tions. Metric learning methods (Faghri et al. 2017; Xu et al.
2019; Wei et al. 2020; Sah, Gopalakrishnan, and Ptucha
2020) learn a distance function over data objects based on
a loss function. Attention mechanism (Sah, Gopalakrishnan,
and Ptucha 2020), (Luo et al. 2020; Wang et al. 2017) pro-
poses pre-training models for better generalization. While
the aforementioned learning methods exhibit good perfor-
mance on benchmark datasets, they suffer from the lack of
labeled training samples for data discovery in practice. In
open world environment, test data distribution is almost al-
ways different from the training data distribution. Current
works do not focus on the noise in the input data, or the data
relevance change over time. Many of the learning methods
focus only on uni-modal or bi-modal retrieval, and cannot
generate results for queries of all media types. Moreover,
most of the above models suffer from the lack of explainable
reasoning on how two different multimedia data are similar.

We propose a Weakly Supervised Joint Embedding
model (WeS-JEm) for multi-modal information retrieval.
Our model adopts the metric learning approach (Bellet,
Habrard, and Sebban 2013) as the backbone, and proposes to
build a data information network as the weak signal genera-
tor. It has four components, including a translation module,
a weak label generator module, a data information network,
and multi-task learning. In detail, we first generate a dense



video caption from the videos using a proposal and caption-
ing module. Then we learn the weak labels using existing
single modal encoders and text feature extractors. The sep-
arate stream design allows scalability to very large datasets
in retrieval tasks. Finally, we create a data information net-
work among all different modalities in terms of their sim-
ilar features. A multi-task joint objective performs on the
network, which aims to learn better representation for each
data sample while maintaining multiple degrees of similar-
ity among them. The objective function aims to maintain the
inter-connection between different data modalities based on
their structural features. Even in the absence of the weak la-
bels, the objectives can be adapted to be trained in an unsu-
pervised setting. The translation module and the weak label
generation module are independent of the embedding archi-
tecture and can be replaced.

Furthermore, we discuss and formalize novelties in mul-
timodal retrieval task in terms of data shift. As part of our
framework, we add a novelty detection and characteriza-
tion criterion. Finally, we design a pre-training strategy for
handling out-of-distribution inputs. It has three parts in our
setting. We pretrain the video encoder separately on video
captioning task. The weak label generation does not need
any pre-training. Then the graph object representations will
be pre-trained under the relationship objectives in the final
stage. Our contributions are summarized as follows:
1. We propose a multi-modal joint embedding model which

is pre-trained with weak supervision. The model can use
existing video and image translation models along with
the text feature extractors. WeS-JEm can be applied to
any application domain for cross modal retrieval.

2. The multi-task joint objective function is built upon a
data information network based on how different data
samples interact with each other via their structural fea-
tures.

3. We characterize and formulate novelties in multimodal
information retrieval. Proposed framework includes a
novelty detection and response module for open-world
learning. To the best of our knowledge, this is the first
framework that formalizes novelty for cross-modal re-
trieval task.

4. WeS-JEm has the flexibility to take into account any user
provided features and similarity labels during the joint
multi-task training. This allows it to be adapted by ap-
plication domains which already have extracted features.
Preliminary experiments demonstrate our model’s effec-
tiveness on retrieval and similarity evaluation tasks.

Related Works
Correlation Learning. Traditional cross-modal retrieval
models focus on correlation learning to project data in-
stances into a latent common subspace. (Rasiwasia et al.
2010) implements linear projection using canonical corre-
lation analysis to optimize only the pairwise information.
(Zhang et al. 2017) learns the common features using class
labels as a linkage to model correlations. Joint representa-
tion learning (Zhai, Peng, and Xiao 2013) constructs graphs
to jointly model the correlation and semantic information

with sparse and graph regularization. For non-linear pro-
jection, deep Canonical Correlation Analysis (DCCA) (An-
drew et al. 2013) uses modality specific subnetworks. (Wang
et al. 2015) extends DCCA with an auto-encoder regulariza-
tion term. Multi-view Deep Network (Kan, Shan, and Chen
2016) uses a view-specific and a common sub-network to
learn the common space. (Peng et al. 2017) overcome using
only shallow networks for common stage with hierarchical
networks.

Metric Learning. (Liong et al. 2016) proposes a deep cou-
pled metric learning approach with two hierarchical non-
linear transformations. (Frome et al. 2013) used a hinge rank
loss as objective function to map visual and semantic fea-
tures into the shared space. (Faghri et al. 2017) minimized
the loss function using hard negatives with a variant triplet
sampling. (Xu et al. 2019) introduced an additional regular-
ization in the loss function with a modality classifier as part
of the adversarial learning. (Wei et al. 2020) enables differ-
ent weighting on positive and negative pairs with an univer-
sal weighting framework and a polynomial loss function.

With recent advancements in encoder-decoder networks
(Devlin et al. 2018; Ji et al. 2012), (Luo et al. 2020; Wang
et al. 2017) provides a solution of pre-training the model on
a large scale dataset. (Feng, Wang, and Li 2014) used cor-
respondence autoencoders to find correlations between im-
ages and text. (Hu et al. 2019) removes the dependency of
jointly learning from all modalities by predefining a com-
mon subspace. (Wang et al. 2021) avoids explicitly learn-
ing a common space by integrating relation learning. (So-
laiman and Bhargava 2021) computes modality specific sim-
ilarities with neural tensor networks. (Sah, Gopalakrishnan,
and Ptucha 2020) uses attention mechanism to align multi-
modal embeddings learned through a multimodal metric loss
function. (Boult et al. 2021) describes a unified framework
for formal theories of novelty in learning algorithms, which
is applied towards different domains, including multi-agent
game, and open world image recognition. (Liu et al. 2021)
discusses a self initiated open world learning agent with the
example of a conversational bot in a hotel. (Langley 2020)
discusses characterization and changes of environments in
which a radically autonomous physical agent can operate.

Most of these models require annotated labels specifying
which data samples belong to the same category. The nov-
elty frameworks does not explain information retrieval as a
domain. WeS-JEm has close resemblance to metric learn-
ing and intermediate fusion approaches. Our approach dif-
fers from existing works in terms of representation learn-
ing methodology and independent module flexibility. Like
(Song and Soleymani 2019), we also use modality specific
encoders for translation module. The main difference in our
proposed metric learning approach lies in building the data
information network, and using the structural features as
weak labels. Our method does not require annotated labels
and we choose the positive and negative pairs such that sim-
ilarity in structure is maintained. This work has the capabil-
ity to take both the data instance and data features as query.
WeS-JEm is capable of not only encoding the ontological
information, but also pairwise and semantic information, if
available.



Discussed existing works on retrieval task assume simi-
lar training and testing data distribution, and do not reflect
on the novelties encountered during test. Existing works
on novelty theories have proposed well-established frame-
works, but to the best of our knowledge, this is the first work
to formalize novelties in a domain with heterogeneous train-
ing instances and user-system interdependence.

Methodology
Problem Formulation and Overview
Multi-modal information retrieval is defined as retrieving
the results of all modalities by submitting a query of any
modality. Existing works tackle the problem in two phases:
cross-media feature learning, and similarity measurement.
The main contribution of this work is in cross-media feature
learning. Formally, we consider the problem of information
retrieval from a dataset D with a collection of data from m
modalities. We denote the j-th sample of the i-th modality
as xi

j . Modalities can include text documents, tweets, video
snippets, images, and others.

The main goal of this work is to jointly learn high-quality
vector representations for individual data samples from un-
labeled multi-modal data set. We design our embedding
function F to map the multi-modal data samples into a low
dimensional vector space, such that multiple degrees of sim-
ilarity are preserved in the embedding space. During in-
ference, the similarity between two projected data samples
sim(F(xv

p),F(xt
q)) will be measured in the joint space, us-

ing the existing methods such as the Cosine or the Euclidian
distance.

Our main insight is that representing data in terms of dif-
ferent structural features through which different modalities
of data can be similar, can provide us with a source of weak
supervision for cross-modal retrieval. Our motivation comes
from how structural representation of a raw unstructured text
allows readers to infer better knowledge. Structural repre-
sentation of a document entails topics, entities, events, and
relationships in the document. Let A = {A1, A2, . . . , An}
be a set of corresponding features from each data sample.
The k-th value of a feature p is denoted by Ak

p . Features
consist of topics, metadata, and mid-level structural units
(entities, events, relationships etc.) of a data sample that can
infer further higher order structures from them in a bottom-
up manner. The goal of using topics and structural units as
features is to infer an explainable understanding of how dif-
ferent data samples are similar (or, dissimilar). A data sam-
ple xi

j is a combination of any subset of A. Features are
generated automatically in two steps - 1) a textual descrip-
tion of each data sample is generated from any modality; 2)
topics, entities, and events are extracted from the textual de-
scriptions and are considered as weak labels for two reasons.
First, the quality of the extracted structural units rely on the
choice of the extraction models, and can be noisy. Second,
output generated from the modality specific textual descrip-
tors can be ambiguous and noisy.

For our approach, first, we utilize the existing neural net-
work approaches to find a translation from different modal-
ities of data to a textual representation. Then, we create

a data information network by connecting data samples to
their features via their interactions. Finally, we construct a
structure-infused textual representation, by jointly embed-
ding in a single space the data samples, the features in which
these data samples are similar, and the similarity labels as-
sociated with them. We define a multi-task learning objec-
tive capturing the interaction information, by aligning the
representation of the data samples, defined by their textual
content, with the representation of structural features, based
on their on their common relations. Moreover, we formal-
ize novelties or data shift that occurs during test time for
retrieval task. We also characterize novelties and include ap-
propriate response for different types of novelties.

Translation Module
Videos → Textual Description. To extract an initial rep-
resentation of videos, we resort to dense video captioning
(DVC). We will use a version of dense video captioning de-
scribed in (Xu et al. 2018). DVC localizes distinct events
in video streams and generates a description for that. As a
feature extraction stage, it uses 3D convolutional network
(C3D) to encode all incoming frames. For identifying the
event boundaries, maintaining the temporal information is
important and (Xu et al. 2018) preserves this using convolu-
tion and pooling in spatiotemporal space. Using the features
from the first stage, in the proposal network, variable-length
temporal event proposals are generated and in the final cap-
tioning module, they generate a caption for those proposals.

After we have a caption for the whole video, we create the
information network from the textual descriptions of all the
data samples.

Information Network across Data Samples
There are multiple direct relationships among the data sam-
ples and their features. Features can have semantic relation-
ships between them. We define a simple data information
graph G = {V,E} consisting of several different types of
vertices and edges, as follows -

• Let AT ⊂ V denote the set of the topics.
• Let An ⊂ V denote the set of the named entities. An is

derived from a knowledge base such as, NELL (Mitchell
et al. 2015), YAGO (Tanon, Weikum, and Suchanek
2020), Wikidata.

• Let Aevent ⊂ V denote the set of the events. Aevent is a
sentence describing certain real world events.

• Let x ⊂ V denote the set of the data samples. x has a
data modality attribute.

• Let Asim ⊂ V denote the set of user defined similarity
labels.

The graph vertices are connected via a set of edges de-
scribed hierarchically, as follows:

• ExAT
⊂ E: All data samples are connected to their cor-

responding topics. Note that a data sample can be con-
nected to more than one topic.

• ExAevent
⊂ E: All data samples are connected to the

events that it describes.
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• ExAn ⊂ E: All data samples are connected to the enti-
ties it describes. Note that an entity may be described by
many different data samples.

• ExAsim ⊂ E: If user has defined a similarity between
two data samples, both of them are connected to that sim-
ilarity label.

In addition to the relations expressed in the graph, all the
graph nodes are also associated with textual content. Let
Atext denote the set of the textual representations of the
data samples. Topics, entities, similarity label, and events
also have their own text representation.

Multi-Task Learning
After we have defined the information graph, we need to de-
sign the embedding function to map the graph objects into a
low dimensional vector space, such that the graph relation-
ships are preserved in the embedding space. In the embed-
ding space, the relations originally defined over the vertices
in the information graph are expressed as a similarity score

between the vectors representing these vertices. The rela-
tionships between the features themselves are also expressed
as a similarity score between the vectors representing them.
To force these relationship constraints on the data samples,
we consider this as a multi-task learning problem, over all
the relations in the graph. Jointly learning over all the rela-
tionships allows the weak labels to propagate through ele-
ments and enforce multiple degrees of similarities. For ex-
ample, if a document and a video, or two documents have
same topic, they should have similar embedding. In paral-
lel, if the two data samples are discussing about the same
event, they should have similar embedding. Our embedding
function should jointly reflect these similarities.

For each individual graph relation, R, we can define the
learning objective as follows:

LR =
∑
i

L(oi, s
p
i , s

n
i ) (1)

L(oi, s
p
i , s

n
i ) = y log sim(oi, s

p
i )) +

(1− y) log(1− sim(oi, s
n
i )))

(2)

where sim(oi, s
p
i ) = σ(eoi · espi );

sim(oi, s
n
i ) = σ(eoi · esni )

In equation 1, for each object, oi in the graph participat-
ing in relation R, spi and sni refers to positive and negative
examples, respectively. eoi refers to the vector embedding
of the graph object oi, and y is the label. The objective of
the model is to maximize the similarity with a positive ex-
ample and minimize the similarity with a negative example.



So, y = 1 for (oi, s
p
i ) pairs and y = 0 for (oi, sni ) pairs since

they have been sampled from the noise distribution.
Next, we introduce different learning objectives associ-

ated with different relations.
Features to Features (ATAT /AnAn/AeventAevent):

These objective functions place the same type of features
with similar context together in the embedding space. The
similarity in context refers to similar word or sentence em-
bedding. If the topics, named entities, or events have embed-
ding value within a certain threshold, they are considered
similar.

Data Sample to Data Sample (xDxV /xDxD/xV xV ):
Currently, in this work, data samples refer to videos (xV )
and documents (xD). This objective function maximizes the
similarity of the data samples pair (xi, xj) with the moti-
vation that data objects discussing about similar events be-
tween similar entities on similar topics should be semanti-
cally similar. We select the positive pairs for respective ob-
jective function in following ways:

1. xx− topics. If data samples are annotated and topic an-
notations are available, we pair the data samples which
belong to the same group.

2. xx − events − entities. For named entities and events,
we can consider them together to select the pairs since
entities separately does not contribute towards two docu-
ment or videos being similar. So, data samples discussing
about common events between a threshold number of
common entities belong to the same pair.

3. xx− label. Two data samples with a user-provided posi-
tive similarity between them should have similar embed-
ding.

4. xx− embedding. If initially two data samples have text
embedding representation (atext ⊂ Atext) within a cer-
tain threshold, they are placed in the same embedding
space. The threshold is determined empirically for each
application domain.

Data Samples to Features (xAT /xAevent/xAn): This
objective tends to maximize the similarity of data samples to
their features. For example, if we only consider topics as the
only feature, we want to place the data samples belonging
to a certain topic closer to that topic. In the embedding
space, the data sample vectors should be closer to the topic
embedding vectors.

Joint Objective Function. Finally, we combine the loss
functions of all the learning objectives to define our joint
embedding loss function. The set of possible learning objec-
tives, O = {ATAT , AnAn, AeventAevent, xDxV , xDxD,
xV xV , xAT , xAevent, xAn} is expandable as we consider
more features in future. We experimented with different
combinations of these objective functions. So, the combined
loss function is

Ltotal =
∑

i∈Os,Os⊂O

λiLi (3)

Here, Os refers to the selected objective functions and λi

refers to the weight applied to the objective function i. For

our experiments we set the value of λi to 1 for all the objec-
tives.

Initial Representation of Graph Elements: For all ob-
jects in the graph, the initial representation is chosen from
different representations for text. We experimented with dif-
ferent initial representations for text, and then use a hidden
layer to map the initial representations in the joint embed-
ding space. This linear layer filters out the important features
from the initial representation for the joint embedding. For
an initial representation, t of a text, the hidden layer com-
putes it’s embedding e as follow.

e = f(Wt+ b) (4)

Reasoning Over the Data Information Network
Our end goal is to use the vector representations of the data
samples and features to extract all relevant data samples
from the database given a particular data sample. The rel-
evance can be defined directly over the embedding space,
by comparing the similarity of the vectors representing re-
spective data samples. We can calculate a relevance score by
taking the graph structure into account, by exploiting inter-
dependencies among features.

Weak Supervised Baseline. To use the information graph
that we built, we use the information from graph directly
without any learning. This is achieved by counting the paths
from one data sample to a given data sample or a given fea-
ture. Let P (a, b) define the set of paths from given data sam-
ple a to another data sample b. Each path is associated with
a weight w. Weights are assigned to each path considering
the features that exists in the path. Initially, we can consider
all weights to 1. But in reality some degrees of similarity
have higher precedence. For example, a user defined simi-
larity should have the highest priority. We hypothesize the
following feature order to assign the weights based on the
priority assigned by domain experts -

Asim > Atext > AT > Aevent, An|Au (5)

So a path with ExAsim
has a higher weight than a path with

ExAtext
. Given the graph G, edges connect a data sample to

its features, and then features to other data samples having
the same features. The relevance score between a and b is
then defined as:

Rel(a, b) =

∑
i∈P (a,b) wi∑

b∈B

∑
i∈P (a,b) wi

(6)

where B is the set of all the data samples in the database.
In case we need to find all the data samples given a fea-

ture, we can retrieve them directly from the graph structure.
Let Np(f, b) define the number of paths from given feature
f to a data sample b. The relevance score between f and b is
then defined as:

Rel(f, b) = I ∗Np(f, b) (7)

where I is an indicator variable. I = 0, if there is no path
between f and b, otherwise I = 1.



Similarity Based Score. Given a data sample, or a feature
a and their embedding ea the relevance score with other data
sample b with embedding eb is:

Rel(a, b) = sim(ea, eb) (8)

where sim() is the cosine distance between the vectors rep-
resenting the given data sample, or feature and the other data
sample.

Formalization of Novelties
Data Shift in Multimodal Data Retrieval Task
Existing works in multi-modal information retrieval de-
fines it in different ways. In supervised setting, following
our previous notations, Let the training data be Dtr =
{(xi

j , y
i
j)}

ni

j=1
, where ni is the number of samples in i-th

modality, xj ∈ X is a training example following the train-
ing distribution Ptr(x). yj ∈ Ytr is the corresponding class
label of xj and Ytr is the set of all class labels that appear
in Dtr. Each modality have their own training distribution
Ptr(x

i), but for simplicity purpose, we are going to denote
training distribution as only Ptr(x). For unsupervised set-
ting, yj is absent in Dtr. In our weakly supervised setting,
class labels are still absent, but the extracted features act
as weak labels and amplifies similarity signal among data
samples through the network structure. The retrieval task
refers to estimating probability of a data sample being rel-
evant to a query given the data sample and a query sample,
P (R|xp, xq), where xp, xq ∈ X , and R is the corresponding
relevance label.

Following the discussion in (Liu et al. 2021) and
(Moreno-Torres et al. 2012), we define the three main types
of data shift that can happen during testing for Multimodal
Data Retrieval Task.

Covariate shift refers to the distribution change of the
input variable x between training and test phases, i.e.,
Ptr(R|xp, xq) = Pte(R|xp, xq) and Ptr(x) ̸= Pte(x). This
can refer to change in application domain while still dealing
with the same modalities in Ptr. This also can occur if user
starts to phrase their queries differently.

Prior probability shift refers to the distribution change of
the class variable y, or the relevance variable R, or the weak
feature variables A, i.e., in our framework, Ptr(xp|R, xq) =
Pte(xp|R, xq) and (Ptr(R) ̸= Pte(R) or Ptr(A) ̸=
Pte(A)). This includes not having extracted weak features
from a data sample during testing.

Concept drift refers to the change in the posterior prob-
ability distribution between training and test phases, i.e.,
Ptr(R|xp, xq) ̸= Pte(R|xp, xq) and Ptr(x) = Pte(x). This
can be a temporal effect or user requirement change over
time.

Besides the three types of data shifts, multimodal retrieval
faces one other type of change during testing, i.e., data sam-
ples that do not belong to the modalities that the framework
can handle. These are novelty or novel instances. This is
closely related to covariate shift and some framework may
handle novel instances as part of a known class.

Novelty Detection
We use the data information network to detect the changes
between pre-novelty and post-novelty environments. Dur-
ing inference with a novelty introduction, after the transla-
tion and weak feature extraction, we have the post-novelty
graph. We can use existing node discovery techniques to de-
tect change from the training time information network. In
case of a novel modality, our proposed framework would ei-
ther identify the new weak features (different from training
time), or tackle the new modality as part of the training dis-
tribution. In the later case, we may see a decline in the model
performance.

Definition 1 (Novel Instance). A test instance x is novel
if G(VPtr+x, E) is different from G(VPtr

, E). This can be
explained as having a knowledge base for the weak features
during training time (Atr). If during inference, we discover
weak features that are absent in Atr, we consider the in-
stance as novel.

Novelty Characterization and Response

Definition 2 (Characterization of Novelty). Characteriza-
tion of Novelty is the description of the novelty, according to
which appropriate course of actions are taken to respond to
the novelty. We characterize novelty based on the data shift
variations -
1. Covariate shift with change in application domain with

the modalities for which translation module is available
(covar-1).

2. Prior probability shift with novel weak features (prior-1).
3. Prior probability shift with no weak features (prior-2).
4. Prior probability shift with novel relevance label (prior-

3).
5. Temporal concept drift with previously relevant data be-

ing non-relevant (concept-1).
6. Covariate shift with new modality introduction (covar-2).

Novelty Response. For a generalized response, we pro-
pose to build a pre-trained retrieval model from WeS-JEm to
deal with the out-of-distribution (OOD) inputs. We adopt
a three level training strategy for our model. For the first
stage, we pre-train the translation module (DVC) with video
captioning and video retrieval task, following the strategy
in (Luo et al. 2020) and (Xu et al. 2016). JEDDi-Net is
trained on both the ActivityNet Captions (Krishna et al.
2017) dataset and MSR-VTT (Xu et al. 2016) dataset. MSR-
VTT has open domain video clips, and each clip has 20 cap-
tioning sentences labeled by human. For both cases, we used
the SPN module from (Xu et al. 2016) trained with the tem-
poral annotation of ground truth segments in the ActivityNet
Captions dataset with Sports-1M pretrained C3D weight ini-
tialized in (Tran et al. 2015). For the text encoder, we choose
between the pre-trained BERT (Devlin et al. 2018) Base un-
cased model and the pre-trained skip-thought model (Kiros
et al. 2015). Next, we extract the weak features from the
dense captions and document text using topic and event ex-
traction models such as (Angelov 2020; Wadden et al. 2019).



Finally, we train our weakly supervised model using the
joint objective loss function.

During inference, the translation module is able to gen-
erate captions for OOD inputs, which includes input from
new modalities as in (covar-2), i.e., image or LIDAR. Both
image and LIDAR modality can be handled as a variant of
the video translation module. Both BERT and skip-thought
can generate text embedding for any textual input. This takes
care of the novel weak features (prior-1). Finally, the linear
layers in WeS-JEm would be able to map the OOD inputs
into the pre-trained joint embedding space. The final simi-
larity score between data samples in the embedding space
would produce the relevance between new samples.

With the encounter of a (prior-2) novelty, if the system
is allowed to learn, in proposed joint embedding model,
the set of selected learning objectives becomes, Os =
{xDxV , xDxD, xV xV } where only the xx − embedding
objective function is considered, as each data sample would
include an initial representation from the textual descrip-
tions.

Finally, when encountered with any of the last of the three
types of novelties, an information retrieval system needs
to re-learn. In case of a novel modality introduction, the
long-time response is to learn or gather a new translation
method. In our model, we include this as a Relevance Feed-
back module. The new relevance label provided by a human
annotator holds more importance than previous relevance la-
bels. To make a distinction between this newly provided la-
bel and old label between (xp, xq), during re-training, we
encode this by assigning more priority to the new similarity
label, Anew

sim > Aold
sim.

Experiments
The first set of experiment compares the embedding ap-
proach for single modality information retrieval (text →
text) when there is only topics are available as feature.
We call this model Data with Topics to Data Vectors
(DT2DVec). We experimented with the following represen-
tations for caption document of videos, documents, and top-
ics -

• random initialization of the document,

• average of pre-trained GloVe word embedding (300d) of
filtered tokens from the document,

• Skip-Thought (Kiros et al. 2015) for capturing the global
context of the document,

• BERT-Base uncased model for generation of text repre-
sentation T from the token sequence t of the document.

These initial representations are mapped into a hidden
layer to map them into the joint embedding space as part
of the retrieval model, as shown in equation 4.

Negative Sampling. As in (Mikolov et al. 2013), we used
negative sampling to train the model. Our goal is to mini-
mize the similarity of the target object, oi and samples drawn
from the noise distribution, Pn(oi) with k negative samples
for each data sample. DT2DVec investigated with a number
of choices for Pn(oi).

Table 1: Performance Comparison Results of DT2DVec

LSA LDA DT2DVec

Inter-similarity 0.76 0.66 0.61

Intra-similarity 0.45 0.28 0.047

1. Following (Mikolov et al. 2013), we pick Pn(oi) from
the uniform distribution of the objects in the dataset. Ob-
jects in the dataset consist of the documents from video
captions, text, and topics of the texts and videos. The uni-
form distribution of the objects in the dataset d is U(d)
raised to the 3/4rd power with U(d) being the frequency
of objects in the respective dataset. Documents are differ-
ent from words, as words can appear multiple times in a
document where often documents do not appear multiple
times in a dataset.

2. Given, we have the annotated topics for documents, we
consider the noise distribution of each topic t, Pn(t) from
the document samples of other topics. Any data sample
that is not annotated with topic t belongs to Pn(t).

For batch training, DT2DVec adopted the following ap-
proaches: (2a) Let us assume there are p number of posi-
tive pairs in a batch, and the set of topics of these pairs is
POST . If the mode of POST is topic t, then we pick neg-
ative examples from Pn(t) for this batch. The intuition be-
hind the approach is the closer graph objects in the embed-
ding space should have similar distribution; (2b) We select
variable number of negative examples for each batch. Neg-
ative examples are selected from Pn(t) of each topic in the
positive pairs, weighted by the number of positive pairs from
each topic.

Dataset and Experimental Setup. For the performance
evaluation of DT2DVec, we used the 20 Newsgroups dataset
(Lang 1995) with twenty annotated topics. We compared
DT2DVec with two baseline topic modeling approaches -
LSA (Deerwester et al. 1990) and LDA (Blei, Ng, and Jor-
dan 2003). For evaluation, we split each document into two
parts, and test if (1) the topics of the first half are similar
to topics of the second half (inter-similarity); (2) halves of
different documents are mostly dissimilar (intra-similarity).
We use cosine similarity to measure the difference between
the two vectors of half document topics. For inter-similarity,
higher similarity score is better. For intra-similarity, the
lower the similarity, the better the vectors are. We present
the result for the random initialization of initial representa-
tion of text in Table 1. We used Pytorch (Paszke et al. 2017)
with binary cross entropy to train the unsupervised retrieval
model. Mini-batch gradient descend was used for optimiza-
tion with SGD (Duda 2019).

Results. (DT2DVec - Rand) performed significantly bet-
ter in recognizing the dissimilar documents than the baseline
models, LSA and LDA. There was around 43% improve-
ment in similarity score for dissimilar documents whereas
LSA outperformed our method by 10% for simiar docu-
ments. Figure 3 shows the embedding space of the docu-
ments using the DT2DVec model.



Figure 3: t-SNE Embedding of Documents using DT2DVec
with Random Initial Representation of Text

Multi-modal Retrieval. For the second set of experi-
ments, we are using the cross modal datasets described in
FemmIR (Solaiman and Bhargava 2021), Youcook2 (Zhou,
Xu, and Corso 2018), and MSR-VTT (Xu et al. 2016). We
evaluate only text-based video retrieval task on Youcook2
and MSR-VTT. For the text-based video retrieval task, we
use the captions as the input text queries to find the corre-
sponding video clips. We compare the performance of our
model with the following models - UniVL (Luo et al. 2020),
SDML (Hu et al. 2019), and CMPM+CMPC (Zhang and Lu
2018). We will include the results in future work.

Conclusion
This paper proposed a weakly supervised open world learn-
ing framework for multi-modal information retrieval. Our
methods involve no human annotation, show promising per-
formance compared to unsupervised approaches, and for-
malize novelties encountered during testing. In the future,
we would test our novelty characterization, detection and
adaptation framework with different datasets. We would also
include different modalities in our framework, and would
test the capability of the framework for domain generaliza-
tion.
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