
Decision making without prior knowledge in dynamic environments using
Bootstrapped DQN

Anonymous Authors

Abstract

Learning how to adapt and make real-time informed deci-
sions in unpredictable and dynamic environments to obtain
maximal rewards is a non-trivial task. Reinforcement Learn-
ing (RL) agents interact with such an environment and learn
optimal decision making policy through trial and error. This
premise leads to considering multiple changes in the ways
the environment interacts, without an agent having the per-
fect knowledge about it. In these scenarios, the development
of a framework, which can detect such dynamic behaviour is
crucial. In this paper, we put forward a holistic algorithm that
can determine changes in environment’s behavior and incre-
mentally improvises on its policies. In particular, we intro-
duce a Q-learning based framework to achieve efficient deep
exploration of the action space, whereby multiple instances
of Bootstrapped Deep Q-Network (DQN) are scheduled to
facilitate a dynamic detection of changes in environment’s
behavior. At each time step, the proposed method takes ac-
tions according to the policy of the currently active agent for
decision-making and is equipped with a change detection and
adaptation policy, which does not depend on prior knowledge
of the degree of uncertainty associated with the environment.

Introduction
In static environments, AI agents can follow rigid rules in
order to execute certain tasks. However, in dynamic real-
world environment, unexpected changes (i.e., novelties) can
occur, and the AI agent is expected to detect and adapt to
these changes in a timely manner. Recently, there has been
significant interest in building self-supervised learning sys-
tems that can perform amidst the uncertainty of real-world
tasks such as Chatbots (Pereira 2016) and self-driving cars
(Haliem, Aggarwal, and Bhargava 2021). In an open-world,
the agent interacts with the environment without having
the complete knowledge about this environment, but learns
through experience. This leads to a fundamental trade-off of
exploration versus exploitation (Liu et al. 2020). The agent
may improve its future rewards by brute force exploration of
understood states and actions, but this may require sacrific-
ing immediate rewards such as arriving at a decision. When
it comes to exploitation, the search is limited to high proba-
bility blocks of actions. But exploitation needs specific crite-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ria to select the right action space, which is difficult in a non-
stationary environment. Despite the RL advances, detecting
changes (novelties) and adapting to them in timely manner
is a significant challenge, particularly in dynamic real-world
mission critical systems. To learn efficiently an agent should
explore only when there are valuable learning opportunities.
In non-stationary environments, learning would be the most
beneficial when a change (i.e., novelty) occurs in the en-
vironment. Therefore, in addition to extended deep explo-
ration, the agent also exploits to detect the change.

Common dithering strategies, such as ϵ-greedy, approxi-
mate the value of an action by a numeric reward. Most of
the time, the action with the highest reward is selected, but
sometimes another action is chosen at random. In this paper,
we adopt bootstrap with random initialization as it can pro-
duce reasonable uncertainty estimates for neural networks at
low computational cost (Osband et al. 2016). Bootstrapped
DQN leverages these uncertainty estimates for efficient (and
deep) exploration, which in turn reduces learning times and
improves performance across most games.

Bootstrapped DQN

For efficient exploration, the agent needs to quantify un-
certainty in value estimates to be able to judge the poten-
tial benefit of exploratory actions. The bootstrap principle is
to approximate a population distribution by a sample dis-
tribution (Efron and Tibshirani 1994). The network con-
sists of a shared architecture with K bootstrapped “heads”
(neurons or nodes) branching off independently. Each head
is trained only on its bootstrapped sub-sample of the data
and represents a single bootstrap sample ψ(D). The shared
network learns a joint feature representation across all the
data, which can provide significant computational advan-
tages at the cost of lower diversity between heads. Boot-
strapped DQN explores in a manner similar to the provably-
efficient algorithm Posterior Sampling for Reinforcement
Learning (PSRL) (Osband, Russo, and Van Roy 2013), but it
uses a bootstrapped neural network to approximate a poste-
rior sample for the value. Unlike PSRL, bootstrapped DQN
directly samples a value function and so does not require
further planning steps. Therefore, bootstrapped DQN drives
deep exploration.

Non-Stationary Detection and Adaptation
To be able to detect novelties in non-stationary environ-
ments, it is intuitive to minimize dynamic regret, which is
the gap between the total reward of the optimal sequence
of policies and that of the learner. There are several works
in literature that adopt this approach such as: (Ortner, Ga-
jane, and Auer 2020; Cheung, Simchi-Levi, and Zhu 2020;
Domingues et al. 2021). However, the common issue with all
these works is that they rely heavily on having prior knowl-
edge on the degree of uncertainty of the world, such as how
much or how many times the distribution changes, which is
often unavailable in real-time.

In this work, we overcome this by adopting the black-box
reduction approach proposed in (Wei and Luo 2021), apply-
ing it to model-free RL environments using Bootstrap DQN
as our base algorithm. This approach is shown to achieve
optimal dynamic regret without any prior knowledge on the
degree of uncertainty. Here, the fundamental principle is to
schedule multiple instances of Bootstrapped DQN with dif-
ferent intervals in a carefully-designed randomized scheme,
which facilitates non-stationary detection with little over-
head. Unlike the approaches in (Jun et al. 2017; Daniely,
Gonen, and Shalev-Shwartz 2015), our approach does not
try to learn the best instance; instead, it follows the action
suggested by the instance with the current shortest scheduled
interval, and only updates this instance after receiving feed-
back from the environment. The reason is the instances with
shorter duration are responsible for detecting larger distri-
bution changes. In addition, it ensures that the algorithms do
not get blocked by the large interval instances and thus every
scale of distribution change is detected in a timely manner.

Problem Definition:
We consider a reinforcement learning (RL) framework that
covers a wide range of problems. Ahead of time, the learner
is given a policy set Π, and the environment decides T re-
ward functions f1,, fT : Π → [0, 1] unknown to the
learner. Then, in each round t = 1, ...T , the learner chooses
a policy πt ∈ Π and receives a reward Rt whose mean is
ft(πt). One way to measure non-stationarity is by measuring
the distribution drift between rounds t and t+1 by observing
how much the expected reward of any policy could change,
that is,maxπ∈Π|ft(π)−ft+1(π)|. However, to make our ap-
proach more general, we take a slightly more abstract way to
define non-stationarity using dynamic regret. The dynamic
regret of the learner is defined as D-REG =

∑T
t=1(f

∗
t −Rt),

where f∗t = maxπ∈Πft(π) is the expected reward of the
optimal policy for round t.

Proposed Approach:
MALG (Algorithm 2) is an algorithm that schedules and
runs several instances of Bootstrap DQN in a multi-scale
manner. MALG runs for an interval of length 2n, which is
called a block, for some integer n (unless it is terminated
by non-stationary detection). During initialization, MALG
uses Algorithm 1 to schedule multiple instances of Boot-
strap DQN within the block such that: for every m =

n, n − 1, ..., 0, partition the block equally into 2n−m sub-
intervals of length 2m, and for each of these sub-intervals,
with probability 2−

n−m
2 , schedule an instance of Bootstrap

DQN (otherwise skip this sub-interval). We use alg.s and
alg.e to denote the start and end time of a specific instance.

In each time t, the unique instance covering this time step
with the shortest length is considered as being active, while
all others are inactive. This makes the time complexity of
our algorithm linear so that it can perform reasonably well in
real-time. MALG follows the decision of the active instance,
and update it after receiving feedback from the environment.
All inactive instances do not make any decisions or updates.
We use g̃t to denote the scalar output by the active instance.

Algorithm 1: Scheduling Procedure
1 Input: n, I set of Bootstrapped DQN algorithm

instances.
2 for τ = 0, 1,2n−1 do
3 for m = n, n− 1,, 0 do
4 if τ is a multiple of 2m then
5 Schedule an algorithm (alg) using Rule 1

with probability 2−(n−m)/2, such that it
starts at alg.s = τ + 1 and ends at
alg.e = τ + 2m.

6 Rule 1: if ∃ i∗ ∈ I , such that i∗.history = 0 then
7 Schedule i∗.
8 else
9 Schedule i∗ = argmax i∈I i.history.

10 Remove initial i∗.history
2 samples from i∗ during

update.

Algorithm 2: Multi-Scale Bootstrap DQN (MALG)
1 Input: n, I set of Bootstrapped DQN algorithm

instances.
2 Initialization: Run Algorithm 1 with inputs.
3 At each time step t, let the unique instance be alg,

Output g̃ and st, at, rt, st+1.

Non-Stationarity Detection Mechanism:
To explain the non-statioanrity detection mechanism, we
first decompose the dynamic regret into two parts:∑t

τ=1(f
∗
τ − f̃τ) +

∑t
τ=1(f̃τ −Rτ)

where f̃τ is a scalar value output by the Bootstrap DQN at
the beginning of each round t. This is denoted g̃t to represent
the output of the active instance at time t. In a non-stationary
environment, both terms can be substantially large. If we
can detect the event that either of them is abnormally large,
we know that the environment has changed substantially,
and should just restart our base algorithm (Bootstrap DQN).
To address this issue, our main idea is to maintain differ-
ent instances of the Bootstrapped DQN to facilitates non-
stationary detection. However, we cannot have multiple in-
stances running and making decisions simultaneously, and
here is where the optimistic estimators f̃τ ’s can help. Specif-
ically, since the quantity Uτ = mins≤τ f̃s should always

 𝑓!∗

𝑈!

𝜏

𝐼

New Instance of
Bootstrapped DQN

Learner’s average
performance in new
Bootstrapped DQN instance

Figure 1: Non-stationary detection via multiple instances of
Bootstrapped DQN

be an upper bound of the learner’s performance in a sta-
tionary environment, if we find that the new instance of
Bootstrapped DQN significantly outperforms this quantity
at some point as illustrated in Figure 1, we can also infer
that the environment has changed, and prevent the first term
of the dynamic regret (≤

∑t
τ=1(f

∗
τ − Uτ)) from growing

too large by restarting. This way the framework is able to
adapt to the change by restarting its learning process to gain
the new knowledge imposed by the dynamic environment.

Algorithm 3: Non-Stationary Detection and Adap-
tation

1 Initialize: t = 1, I set of Bootstrapped DQN
algorithm instances.

2 for block : n = 0, 1, ... do
3 Set tn = t and initialize MALG (Algorithm 2)

for the block [tn, tn + 2m].
4 while t < tn + 2m do
5 Receive g̃t, πt from MALG, execute πt and

receive reward Rt.
6 Update MALG using { st, at, rt, st+1 }, and

set Ut = min τ∈[tn,t] g̃t.
7 Perform Test 1 and Test 2. Increment

t = t+ 1. If either test fails, restart from
Line 2.

8 Test 1: If t = alg.e for some order m algorithm, and
1
2m

∑alg.e
t=alg.sRt ≥ Ut +

δ
2m/2 , return fail.

9 Test 2: If 1
t−tn+1

∑t
τ=tn

(g̃τ −Rτ) ≥ 1√
t−tn+1

,
return fail.

Algorithm 3 runs MALG in a sequence of blocks with dou-
bling lengths (20, 21,). Within each block of length 2m,
the algorithm runs a new instance of MALG and records
the minimum optimistic predictor thus far for this block
Ut = minτ∈[tn,t]g̃τ . At the end of each time, Algorithm 3
performs two tests (Test 1 and Test 2), and if either of them
returns fail, it restarts from scratch.

The purpose of these two tests is to detect the event when
either of dynamic regret terms is abnormally large, which

will indicate that a novelty has occurred and the environment
has changed. Test 1 prevents the first term:

∑t
τ=1(f

∗
τ − g̃τ)

from growing too large by testing if there is some order-m
instance’s interval during which the learner’s average perfor-
mance 1

2m

∑alg.e
τ=alg.sRτ is larger than the promised perfor-

mance upper bound Ut by an amount of δ
2m/2 . On the other

hand, Test 2 presents the second term:
∑t

τ=1(g̃τ−Rτ) from
growing too large by directly testing if its average is large
than something close to the promised regret bound 1√

t−tn+1
.

Clearly, our algorithm doesn’t require the knowledge of
the degree of uncertainty of the environment, or the number
of distribution changes within the environment.

Conclusion and Future Work
We studied novelty detection and adaptation in dynamic en-
vironments using Reinforcement Learning. We propose a
Q-learning based framework that (1) utilizes Bootstrapped
DQN for efficient and deep exploration, (2) schedules mul-
tiple instances of Bootstrapped DQN to facilitate non-
stationary detection, (3) detects multiple changes in the en-
vironment by comparing the learner’s average performance
to the upper bound performance computed by the optimistic
estimators, and (4) adapts to the detected change by restart-
ing its learning process. Our framework achieves all of these
without any knowledge of the degree of non-stationary of
the environment, that is without knowing how much or how
many times the distribution changes, which is often unavail-
able specially with highly dynamic environments.

For future work, we will implement this algorithm on
different non-stationary environments such as: the Procgen
Benchmark1, which provides 16 unique environments de-
signed to measure both sample efficiency and generalization
in reinforcement learning. We will use this benchmark to
compare results across different environments and evaluate
the generalization of our approach.

Acknowledgments. This research is supported, in part, by
the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under the
contract number W911NF2020003. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
DARPA, AFRL, or the U.S. Government. We thank our team
members on this project for all the discussions to develop
this paper. Some of the ideas in this paper are based on our
learning from the SAIL-ON meetings.

References
Cheung, W. C.; Simchi-Levi, D.; and Zhu, R. a. 2020. Rein-
forcement learning for non-stationary markov decision pro-
cesses: The blessing of (more) optimism. In International
Conference on Machine Learning, 1843–1854. PMLR.
Daniely, A.; Gonen, A.; and Shalev-Shwartz, S. 2015.
Strongly adaptive online learning. In International Confer-
ence on Machine Learning, 1405–1411. PMLR.

1https://openai.com/blog/procgen-benchmark/

Domingues, O. D.; Ménard, P.; Pirotta, M.; Kaufmann, E.;
and Valko, M. 2021. A kernel-based approach to non-
stationary reinforcement learning in metric spaces. In Inter-
national Conference on Artificial Intelligence and Statistics,
3538–3546. PMLR.
Efron, B.; and Tibshirani, R. J. 1994. An introduction to the
bootstrap. CRC press.
Haliem, M.; Aggarwal, V.; and Bhargava, B. 2021. AdaPool:
A Diurnal-Adaptive Fleet Management Framework Us-
ing Model-Free Deep Reinforcement Learning and Change
Point Detection. IEEE Transactions on Intelligent Trans-
portation Systems 1–11. doi:10.1109/TITS.2021.3109611.
Jun, K.-S.; Orabona, F.; Wright, S.; and Willett, R. 2017. Im-
proved strongly adaptive online learning using coin betting.
In Artificial Intelligence and Statistics, 943–951. PMLR.
Liu, Y.; Liu, Q.; Zhao, H.; Pan, Z.; and Liu, C. 2020. Adap-
tive quantitative trading: An imitative deep reinforcement
learning approach. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 2128–2135.
Ortner, R.; Gajane, P.; and Auer, P. a. 2020. Variational re-
gret bounds for reinforcement learning. In Uncertainty in
Artificial Intelligence, 81–90. PMLR.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep exploration via bootstrapped DQN. Advances in neu-
ral information processing systems 29: 4026–4034.
Osband, I.; Russo, D.; and Van Roy, B. 2013. (More) effi-
cient reinforcement learning via posterior sampling. arXiv
preprint arXiv:1306.0940 .
Pereira, J. 2016. Leveraging chatbots to improve self-guided
learning through conversational quizzes. In Proceedings of
the fourth international conference on technological ecosys-
tems for enhancing multiculturality, 911–918.
Wei, C.-Y.; and Luo, H. 2021. Non-stationary Rein-
forcement Learning without Prior Knowledge: An Optimal
Black-box Approach. Proceedings of Machine Learning Re-
search 134: 1–55.

