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Abstract 
AI systems today are often brittle to changes open world en-
vironments that were not previously anticipated by their de-
signers. This brittleness can be a source of both reduced per-
formance and (at times, catastrophic) failure. In this research, 
we seek to address this challenge with a general-purpose rea-
soning architecture that automatically adapts to open world 
environments that present novelty to the agent. The approach 
combines and extends probabilistic programming inference 
and planning under uncertainty to (1) recognize novelty when 
it occurs, (2) incrementally characterize the novelty as obser-
vations of the novelty accrue, and (3) continually adapt its 
task-based reasoning to the evolving understanding of the 
novelty in order to maximize task performance. Extending 
Bayesian and statistical inference, the system is designed to 
recognize and characterize novelty rapidly (e.g., with 10’s of 
observations) rather than requiring massive data sets for 
training, facilitating online adaptation. We demonstrate the 
research approach with an instantiation in two game domains 
in which unanticipated novelty can be injected at random 
times during a tournament. Empirical evaluation of the ap-
proach over a range of novelty types shows the expected de-
crease in performance when novelty is first injected, with a 
rapid (typically within a fraction of a single game), online re-
covery of performance during task execution as novelty is de-
tected and characterized, and with stable, improved task per-
formance in the later stages of the tournament after the nov-
elty has been fully or (nearly-fully) characterized. 

 Introduction   

An important capability of an intelligent agent is to be able 
to handle novel situations that differ from what it has previ-
ously encountered. In the past, AI systems have generally 
struggled to exhibit this capability. Learning-based systems 
struggle with out-of-distribution inputs, while knowledge-
based systems struggle with situations that differ from their 
precoded knowledge. The challenges and requirements for 
AI systems to handle novelty have been well captured by 
(Langley 2020). 

As a simple illustrative example, imagine an agent play-
ing a game of Monopoly with three friends. Unbeknownst 
to her, the friends have changed the rules. Perhaps they have 
changed the dice so that they are loaded towards lower 
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numbers. Or perhaps all prices and rents associated with 
Boardwalk have doubled. Alternatively, perhaps the players 
start the game with $200 instead of $1,500.  

These three examples illustrate the three challenges an 
agent that can handle novelty must overcome. In the case of 
the loaded dice, the agent must be able to detect the novel 
probability distribution over die rolls. In the case of prices 
and rents associated with Boardwalk, the agent can quickly 
detect the novelty when it sees a different purchase price, 
but it must be able to characterize the nature of the novelty 
precisely in order to play well, without having to see all the 
possible prices and rents. In the case of starting the game 
with $200, although detection and characterization are 
straightforward, this is a completely different strategic situ-
ation that would never be encountered in the standard game, 
and the agent must know how to reason and plan in this new 
situation. If the agent cannot overcome these challenges, it 
will fail miserably in novel situations. If the agent does over-
come these challenges, it will have a significant advantage 
over agents that are unable to adapt. 

Previous approaches to automatically handling novel en-
vironments include work in transfer learning (Senator 2011) 
and reinforcement learning techniques (Kaelbling et al. 
1996), however these are both focused on adapting ahead of 
time to the new environment, and don’t include the ability 
to adapt in an online fashion during execution. Meta reason-
ing (Cox 2005), analogical reasoning (Veloso 1992), case-
based reasoning (Marling et al. 2002), and related technolo-
gies reason about inaccuracies in the agent’s knowledge, but 
don’t focus on novel changes in the mechanisms of the 
world. One of the closest research areas is in cybersecurity 
(Friedman et al. 2014; Schulte et al. 2015), where systems 
attempt to automatically generate new code to make their 
systems handle novel inputs or novel behavior caused by 
cyber attackers, however these systems are typically work-
ing with narrow changes to repair exploitable bugs in the 
application code.  

 



In this work, we seek to develop AI agents that can handle 
novel situations in open worlds by combining learning-
based and knowledge-based approaches in an integrated ar-
chitecture. Our architecture, named Coltrane, combines hi-
erarchical probabilistic programming, which enables the 
agent to detect novelty; a discovery process to characterize 
novelty; and a planning approach that uses fundamental 
principles to determine how to act in new situations. In par-
ticular, Coltrane makes four fundamental contributions that 
contribute to novelty handling: 
1. A combination of Bayesian and statistical inference to 

weigh different hypotheses and detect novelty 
2. A formalization of a scientific discovery process using 

probabilistic program synthesis to characterize novelty 
3. A principled planning method based on Monte Carlo tree 

search and adaptive heuristics for strategizing in novel 
situations 

4. An architecture that combines all the above elements, in-
cluding a knowledge compilation process that ensures 
that new knowledge is compiled into a form that can be 
readily exploited by the first principles planner 

Coltrane is a general framework that is not tied to any par-
ticular domain. We demonstrate our framework in a novel 
Monopoly domain and are currently also developing its ap-
plications to a Minecraft variant; application to Angry Birds 
is also planned. In Monopoly, we have demonstrated the 
ability to adapt to a range of different kinds of novelty. Spe-
cifically, we study class novelty, in which new kinds of en-
tities are introduced into the environment; attribute novelty, 
in which the attributes of entities are changed; and represen-
tational novelty, in which the representations of entities in 
the environment are changed. These constitute levels 1-3 in 
Senator’s novelty hierarchy (Senator 2019). 

Working in conjunction with an independent evaluator 
(identity redacted for blind review), we evaluate Coltrane’s 
ability to handle levels 1-3 of novelty. We show that our 
agent is indeed able to adapt to unanticipated novel situa-
tions. In particular, in the presence of novelty, our agent is 
able to detect the novelty, characterize the novelty, and 
achieve greater than pre-novelty performance after novelty 
is introduced. 

Research Approach – Integrated Symbolic 
and Probabilistic Architecture for General 

Purpose Reasoning in the Presence of Unan-
ticipated Novelty  

Our research approach tightly integrates probabilistic pro-
gram inference, probabilistic program synthesis, and sym-
bolic reasoning and planning inside a single integrated agent 
architecture to enable online adaptation to unanticipated 
novelty. 

The Coltrane system architecture is shown in Figure 1. 
The core of Coltrane’s execution is a sense-decide-act cycle 
using modules (1), (2), and (3) in a loop that interacts with 
the world. Unlike typical sense-decide-act architectures, the 
sense portion uses probabilistic program inference (PPI) to 
include Coltrane’s confidence for each sensed instance.  

Coltrane extends this traditional execution when novelty 
is detected. When surprising observations are sensed by PPI 
(1) that do not match the existing model of the world in the 
knowledge representation, PPI triggers the probabilistic pro-
gram synthesis (PPS) module (4) to generate multiple can-
didate representational novelty hypotheses. Those new hy-
pothesis representations (along with Coltrane’s confidence 
in each) extend the knowledge representation hierarchy (2), 
and can then be used for planning, along with all of the pre-
vious knowledge.  

Each time through the sense-decide-act loop, the confi-
dences in each hypothesis are updated by PPI (1) as new ob-
servations accrue, refining and selecting among the candi-
date hypotheses, and allowing Coltrane to progressively 
converge on an accurate characterization of the novelty.  

Throughout this process, the sense-decide-act loop con-
tinues, with Coltrane continuing to reason and act in the 
world using its best characterization at each time point. De-
pending on the confidence in the new knowledge, this can 
involve working around the new uncertain elements in the 
world; using them in a way that is robust to their different 
possible characterizations; or a combination of the two. 

In a traditional agent system, the knowledge representa-
tions are optimized for reasoning. With novelty introducing 
new representations, this optimization must be performed 
online in response to newly introduced foundational ele-
ments of the world that are characterized by PPS. This is the 
role of the Knowledge Compilation (5) module in Coltrane.  

Figure 1: The Coltrane architecture tightly integrates probabilistic 
program inference and synthesis with planning to allow novel 

representations to be created and reasoned about in a traditional 
sense-decide-act cycle. 



Hierarchical Probabilistic Programming for detec-
tion of novelty 
Coltrane organizes its knowledge about the domain using 
hierarchical probabilistic programming. This knowledge in-
cludes both specific information about the current situation 
(like the current assets of the players and their location on 
the board), as well as more general information that govern 
how the situation develops (like the die roll distributions and 
prices). Coltrane’s hierarchical probabilistic programming 
is implemented in Scruff (Pfeffer & Lynn 2018), a frame-
work for building AI systems that sense, reason, and im-
prove over time based on the cognitive theory of predictive 
coding (Clark 2013; Friston 2008; Rao & Ballard 1999). 
Predictive coding is based on the principle that the brain 
does not simply process sensory data bottom-up; rather, it 
makes predictions about what it expects to see and processes 
the errors from its predictions to produce beliefs. In predic-
tive coding, knowledge is organized hierarchically, with 
higher layers representing more general or abstract con-
cepts. Each layer generates predictions for the layer below 
and receives error signals from the layer below. Scruff is a 
computational implementation of predictive coding using a 
Bayesian formulation and message passing inference based 
on belief propagation. In Scruff, each node of the hierarchy 
is represented as a probabilistic program that generates a 
node at the layer below. 

 
Figure 3: Simple hierarchy for die rolls 

For example, consider how an agent might model the roll of 
a single die. The agent’s knowledge includes both the spe-
cific results of die rolls as well as knowledge about how die 
rolls are generated. Figure 3 shows a simple hierarchy for 
die rolls. At the bottom layer are the individual Die Rolls. 
At the layer above is a Die Distribution that generates indi-
vidual die rolls. In the baseline game, this is a uniform dis-
tribution over the numbers 1-6; in our example above, it is a 
non-uniform distribution over the same numbers; in other 
examples, it might include other numbers as well. The die 
distribution is generated by the Die Type at the layer above. 
For example, the starting Die Type might generate distribu-
tions over small positive integers, with uniform distributions 
being preferred. At the top of this hierarchy is a Die Type 
Generator, which can generate other kinds of dice, such as 

dice with faces that tell the player to move their piece to a 
specific location on the board.  

While interacting with the environment, Coltrane main-
tains beliefs about each of the nodes in the hierarchy using 
Bayesian inference. However, the total set of possible hy-
potheses for nodes might be infinite; for example, there are 
an infinite number of sets of integers that could be the faces 
of a die. Therefore, rather than attempting to maintain a full 
probability distribution over all hypotheses, Coltrane uses a 
lazy representation of hypothesis space. It does this by ex-
plicitly maintaining a small number of hypotheses for each 
node and leaving open the possibility that the true value of 
the node is none of the current hypotheses. Coltrane uses 
statistical tests to identify when the current hypotheses are 
insufficient to explain the data. Statistical tests are used be-
cause there are no explicit alternatives to compare to using 
Bayes rule. When no current hypothesis explains the data, 
novelty is detected. 

For example, if a die roll of 8 is observed, any hypothesis 
that says the maximum possible roll is 6 is invalidated. If a 
die roll results in “Go to Boardwalk”, the baseline Die Type 
hypothesis is invalidated. For the loaded die, the process is 
slower; over time, statistics are accumulated about die rolls, 
and when it becomes exceedingly unlikely that the rolls are 
generated by a uniform distribution, the baseline Die Distri-
bution hypothesis is invalidated. 

Probabilistic program synthesis for characteriza-
tion of novelty 
Once novelty is detected, it must be characterized by syn-
thesizing new hypotheses that better explain the data. In 
general, there may be ambiguity as to the correct new hy-
pothesis, particularly with partial observability. For exam-
ple, when we observe that the price of a property is double 
what it was before, we might not observe the rents associ-
ated with the property, so there are many different possible 
hypotheses about those rents. One hypothesis is that all rents 
associated with that property are doubled; a second is that 
the purchase price, but not the rents of all properties in the 
monopoly are doubled; and a third is that only that particular 
price is doubled.  Therefore, Coltrane maintains multiple hy-
potheses about the novelty simultaneously. Over time, evi-
dence will be accumulated that will strengthen or weaken 
each of these hypotheses, or perhaps invalidate them all, re-
sulting in further hypotheses needing to be synthesized. 

Figure 2: Hypergraph fragment for hypotheses about die rolls 



Because the number of possible hypotheses can be infi-
nite, the synthesis process must be carefully controlled. We 
formalize the synthesis process using a hypergraph. Figure 
2 shows an example of a small fragment of a hypergraph for 
hypotheses about die rolls. Nodes in the hypergraph repre-
sent hypotheses. Hypernodes represent hypotheses that can 
coexist. Edges represent the synthesis of a new set of coex-
isting hypotheses from a previous hypothesis; edges are an-
notated by evidence that invalidated the previous hypothesis 
and led to the synthesis of the new hypothesis. 

Our approach to probabilistic program synthesis contrasts 
with most previous work (e.g. (Lake et al. 2015; Saad et al. 
2019). Normally, synthesis proceeds by searching over a do-
main specific language (DSL) of programs to find the best 
program that combines prior probability with likelihood of 
data. We also use a DSL of programs in the language of hy-
potheses for a node, but search is incremental, taking only 
small steps as required by observations, proceeding using an 
Occam’s Razor principle to only prefer small changes. Our 
approach is based on the idea that when novelty is intro-
duced in an existing domain (which is the focus of our re-
search), it will usually be implemented by relatively small 
changes to the domain, rather than needing to learn entirely 
new concepts from scratch. 

Architecture for Planning with Uncertainty from 
Novelty 
Once novelty has been characterized, the Coltrane system 
must decide what actions to take to achieve its goals. The 
requirement to adapt to novelty online, as it occurs, means 
that extended periods of machine learning or re-encoding of 
knowledge are infeasible. For example, when the price of a 
Monopoly property is changed, the system must then make 
its next move within a reasonable amount of time, continu-
ing to play the game in the face of potentially partially char-
acterized novelty. In addition, the reasoning element should 
be generally applicable to a variety of reasoning domains, 
handling uncertainty, adversarial or multi-agent domains, 
and partial knowledge. To be relevant, it must scale to do-
mains with significant reasoning complexity and approach-
ing real-world applications. 
 Coltrane combines Monte Carlo tree search (MCTS) with 
structured knowledge heuristics and knowledge compilation 
to reason in response to novelty (Chaslot et al. 2008). 
MCTS, with enhancements, has been successful in address-
ing multiple game domains (Silver et al. 2016) as well as 
general gameplaying (Genesereth & Björnsson 2013). Fig-
ure 4 depicts the approach. MCTS is an online policy learn-
ing search function that represents nodes as states and links 
as actions. MCTS iterates over four stages of reasoning: (1) 
Selection, select the next leaf node L to explore according to 
current rankings; (2) Expansion, add a child node C to the 
tree according to legal or preferred actions; (3) Simulation, 

playout the new child node according to a simple policy 
(e.g., random moves) to estimate the reward R of that new 
action; and (4) Backpropagation, use R to update the values 
from C  to the root of the tree. We apply the UCT explore/ex-
ploit reasoning to enact these steps (Gelly & Wang 2006).  
 MCTS uses the newly characterized novelty knowledge 
representations: leveraging new and changed actions; work-
ing around obstacles and using the previously understood 
aspects of the domain; or combinations of the two to best 
meet the goals. For example, MCTS may take advantage of 
improved mortgage rates to gain more cash to build houses 
faster than opponents. 
 To enable scaling of reasoning to domains such as novel 
Monopoly, we enhance the basic algorithm with: (1) nov-
elty-aware simple and complex strategy heuristics that are 
factored into each node’s favorability along with the reward  
signal following (Baier & Winands 2014); and (2) 
knowledge compilation that computes ramifications of nov-
elty in ways that are useful to the planning. 

 Coltrane’s strategy heuristics are used to bias the search, 
and they can be single-step or multi-step. For example, one 
heuristic prefers to maintain a single-step cash reserve to 
avoid bankruptcy at all times, and another prefers to make 
multi-step successive purchases and trades to obtain valua-
ble monopolies. The heuristics are built using the same do-
main model primitives that are characterized by novelty, al-
lowing them to automatically adapt and be invalidated when 
the parts of the world they rely on are modified due to nov-
elty. For example, when novel prices and rents are intro-
duced, the heuristic to obtain high value monopolies adjusts 
to the newly advantageous monopolies.  

Knowledge compilation in the Coltrane architecture is de-
signed to create optimized representations of the 

Figure 4: MCTS with heuristics for addressing novelty 



ramifications of inferred novelty for use by reasoning. It is 
inspired by the intuitions humans have when a new novel 
information is understood, e.g. when a person discovers that 
the rents on all of the railroads in Monopoly are 10x their 
previous value, they intuitively know that these properties 
are strategically valuable. Coltrane’s knowledge compila-
tion uses dynamic programming and other compilation tech-
niques to provide declarative versions of these ramifica-
tions. These are computed when novelty is incrementally 
characterized, and made available directly to MCTS, which 
can use them for early cut-offs of projections, partial evalu-
ation functions, or as elements of heuristics, providing im-
proved reasoning and scalability that is novelty aware.   

Demonstration by Applying to Game Domain 
with Unanticipated Novelty Injection  

We have demonstrated our architecture using the games 
of Monopoly and Polycraft (a Minecraft video game vari-
ant). We worked with independent evaluators. One devel-
oped a Monopoly simulator called GNOME that includes 
the ability to introduce novelty into the game. GNOME also 
provides standard Monopoly-playing agents to provide op-
ponents for Coltrane. One developed a pogo stick construc-
tion task within the Polycraft environment. To create the 
pogo stick, the agent must find trees in the environment, 
break them to get logs, craft the logs into sticks and planks, 
create a tree tap to get rubber from the tree sap, and finally 
combine the ingredients at a crafting table to create the pogo 
stick. Each action incurs a cost, and the task is to construct 
the pogo stick while minimizing cost. 

Coltrane played tournaments consisting of 20-50 games 
with three standard opponents in Monopoly and alone in Po-
lycraft. At some point during a tournament, novelty may be 
introduced. As much as possible, this novelty was designed 
to be important enough that failure to handle the novelty 
would cause a severe deterioration of performance, or alter-
natively cause a failure to exploit a significant new oppor-
tunity. In some tournaments, no novelty is introduced to 
check for false positives.  

To ensure a challenging and interesting environment for 
studying novelty, we limited Coltrane to only be able to ob-
serve events that happen during the game. For example, we 
did not allow Coltrane to simply survey the board for new 
properties; it could only discover a new property if a player 
landed on it. 

Description of Domains with Level 1-3 Novelty 
GNOME implements Monopoly with near-standard rules 
and includes the ability to inject novelty at different levels. 
Polycraft uses the underlying Minecraft engine with a sym-
bolic application programmer’s interface (API) to observe 
and take actions in the world. We studied Coltrane’s ability 

to handle levels 1-3 of Senator’s novelty hierarchy (Senator 
2019). Level 1 is class novelty, which corresponds to the 
appearance of new entities with unknown attributes in the 
environment. For example, there may be a new property on 
the board, or a new card in the Chance deck. Level 2 is at-
tribute novelty, which corresponds to changes in the attrib-
utes of entities, such as changes in prices and rents, the 
amount paid for street repairs, or a change to the color of a 
property, which determines the sets of properties that con-
stitute monopolies. Changes in probability distributions, 
such as over die rolls or cards, also fall under level 2 novelty. 
Level 3 is representational novelty. Representational nov-
elty is harder to define precisely. In GNOME, it includes 
changes to the topology and structure of the game board, 
such as properties taking up multiple spaces on the board. 

Instantiation of COLTRANE for Example Games 
For detection, we used Scruff to build hierarchies of the sort 
shown in Figure 3. In Monopoly, we built hierarchies for 
many aspects of the game, including: 

 Dice For this test instantiation, we model dice as sets of 
variable size, where each individual die is modeled in a 
manner similar to Figure 3. In our experiments, we have 
focused on lower levels of hierarchy, modeling a wide 
range of distributions over integers, but we have not yet 
modeled other kinds of faces. Changes to the number of 
dice or content of faces are rapid to detect, while changes 
to distributions take time and require statistical tests. 

 Cards We modeled changes to the content of existing 
cards (e.g. amount paid or Go To target) in the Chance and 
Community Chest decks, addition or removal of cards, and 
changes to the distributions over cards. Changes to the 
contents of known existing cards are obvious to detect, ad-
ditions take time but are detected as soon as the additional 
card is turned up, while removals and changes to distribu-
tions require more time and tests. 

 Prices and rents We modeled changes to a wide variety 
of prices and rents in the game. Although these do not pre-
sent a challenge to detection, they do present an interesting 
opportunity for characterization (see below). 

 Colors In Monopoly, colors of properties are significant, 
as they define the sets of properties that can support houses 
and hotels. We modeled the possibility that the colors of 
properties could change, which can be detected easily but 
provides interesting opportunities for characterization. 

 Board structure We modeled the board as a graph of lo-
cations, which allows for a wide range of changes to the 
structure of the board. Since we do not allow Coltrane to 
see the full board, novelty is only detected when it lands 
at a different location from expected based on the die roll. 

In Polycraft, we built hierarchies for individual actions, in-
cluding breaking blocks, moving between locations, 



crafting each recipe, and applying tools. Each action’s 
preconditions and effects were modelled as lists of symbolic 
changes in the environment. The model elements of each ac-
tion are the nouns in the precondition of each action, and 
these are arranged hierarchically according to the class hier-
archies in Polycraft (e.g., a log is a type of block). 

Characterization 

For each of the above aspects of the game for which we 
modeled novelty, we used our incremental probabilistic pro-
gram synthesis based on the Occam’s Razor principle to 
characterize the novelty. For some aspects of the games, 
such as dice or cards, the characterization is relatively sim-
ple, but others open a rich set of possibilities. 

When a new monetary amount, such as a price or rent is 
observed, novelty is immediately detected, but a question 
arises as to how general or specific that the change is. There 
are two dimensions of generality. One dimension is in the 
entity to which the new amount applies. For example, if the 
purchase price for Boardwalk is doubled, does that mean 
that the purchase price for Park Place, which has the same 
color, is doubled? What about other properties on that side 
of the board? What about all properties on the board? The 
second dimension is in the type of monetary amount. For 
example, if the base rent of a property is doubled, does that 
apply to all other rents of the property? What about mort-
gage price and price for building houses?  

Our synthesis process considers all these possibilities. 
When a new monetary amount for a price on a property is 
observed, it generates the cross-product of entity clusters 
containing that property and price category clusters contain-
ing that price. For each of these possibilities, a new hypoth-
esis is synthesized saying that for all properties in the entity 
cluster and all prices in the price category, the price is ad-
justed, relative to baseline, in a manner consistent with the 
observed monetary amount. Over time, new monetary 
amounts will be observed that confirm or invalidate these 
hypotheses. This mechanism enables Coltrane to quickly 
characterize significant changes to the game rules that have 
a major impact on game play, for example, that all rents with 
hotels on all properties on the board have doubled. With this 
rule change, a winning strategy is to race to build as many 
hotels as possible. Coltrane’s characterization explores the 
infinite hypothesis space incrementally similar to scientific 
exploration, applying Occam’s Razor. 

A similar process applies to property colors. When we en-
counter a new color for a property, Coltrane synthesizes 
multiple new hypothesizes, including the hypothesis that 
only that property has changed color, the hypothesis that all 
properties in the set have changed color, and the hypothesis 
that that set has traded colors with another set. 

For board structure, as we discussed, novelty is detected 
when a player lands on a different location from that which 
was expected based on die rolls. When this happens, 

characterization is quite challenging because there are so 
many possible explanations. Coltrane’s synthesis process 
searches through a space of board mutilations, such as addi-
tion of locations, removal of locations, and swapping of lo-
cations. Because of the large number of possibilities, Col-
trane sometimes maintains thousands of concurrent hypoth-
eses about the board structure before narrowing them down. 
Coltrane’s representation allows for arbitrarily large boards, 
so the set of possible hypotheses is infinite, requiring our 
lazy hypergraph search using the Occam’s Razor principle. 

For Polycraft actions, Novelty is detected when actions 
do not have their predicted effects, and the characterization 
of that novelty is estimated by transformations that change 
existing actions into new actions. These include an effect 
change transformation (e.g., the cost of an action is halved) 
that applies at various levels of the hierarchy and a speciali-
zation transformation (e.g., a new breaking action is created 
for a when you hold an axe). 

Planning 

For planning in Monopoly, we implemented the MCTS-
UCT algorithm to conduct adversarial tree search (Browne 
et al. 2012) using a domain model of the non-novel GNOME 
Monopoly simulation. This search evaluates the nodes in the 
tree according to the player making the decision, and the fa-
vorability values are propagated accordingly. For random 
actions such as dice rolls or card draws, the node favorabil-
ity value is backpropagated by the expected value, i.e., the 
weighted probabilities of the outcomes for each player. For 
planning in Polycraft, we implemented a hierarchical task 
network (HTN) representation of the domain and used the 
MCTS-UCT algorithm to search the plan space. 

The Monopoly instantiation includes heuristics that are 
common in high-level play, creating trade offers for prop-
erty groups that showed the highest return-on-investment 
(ROI), calculated as the ratio between rents and prices. We 
also created heuristics to help the agent maintain a cash re-
serve to avoid overspending and therefore going bankrupt 
too often, which we discovered early in our testing as a re-
sult of the value focused heuristics and node evaluations. 
The Polycraft instantiation uses HTN recipes to constrain 
the plan space and uses the cost of actions as the main heu-
ristic. Because all of the representations in the system are 
modifiable by novelty characterization, each of these heu-
ristics automatically adapt to novelty when it is discovered 
and characterized. 

The Monopoly instantiation includes compiled 
knowledge in the form of a cash-flow heuristic, which com-
putes the probability weighted expectation of cash income 
minus cash payout from the current board per player. This 
is computed for all starting board positions and combina-
toric variations so that the relevant values are accessed via a 
look up table. This compiled knowledge was applied after a 
simulation cut-off of 100 game actions (which is about 10-



20 turns of Monopoly). This compiled knowledge showed a 
significant increase in win rate during initial testing, par-
tially because it avoids the signal attenuation of long Mo-
nopoly games with a random simulation policy while 
providing a strong indication of overall favorability in the 
base game. The expected cash-flow is recompiled when the 
board state changes (e.g., a property is purchased) and when 
novelty is characterized. 

Evaluation Results 

 We present two sets of experiments for each domain. The 
first set of experiments test Coltrane’s ability to detect, char-
acterize, and respond to specific forms of novelty known 
precisely by our team. Experiments were conducted on an 
Intel i7 Dell laptop  32GB of ram; a 100 game trial took be-
tween 1 and 2 hours. Table 1 shows the individual novelties 
chosen for this test. These novelties were chosen to cover 
the space of novelties that Coltrane is able to detect and rea-
son about, some may have a limited impact on play strate-
gies (such as N1) and some may have a great impact on play 
strategies (such as N10). Table 2 shows the internal monop-
oly test detection and characterization F1 scores for these 
novelties, running in 10 trials of 10 games each. Coltrane 
can accurately detect and characterize most of these novel-
ties in the span of a few games, and card and dice novelties 
take longer due to partial information and infrequent events. 
Table 3 shows the novelty reaction performance for these 
novelties in tournaments of 100 games. Coltrane can recover 
from novelty introduction to increase its win rate for a ma-
jority of these novelties, with results significant at p=0.01 in 
N9, N10, and in total, calculated by Fisher’s exact test. 
 The second set of experiments includes studies performed 
by the independent evaluator, where they introduced unan-
ticipated novelties into the game and tested the performance 
of Coltrane against those novelties. These novelties were 
unknown to our team; even now, only a small subset of these 
novelties have been revealed to us, to allow for future ex-
perimentation. These experiments represent a true test of 
Coltrane’s ability to handle unanticipated novelty.  

Table 1: Internal Monopoly testing novelties 

Novelty Category Description 
N0 Prices Increase street and general repairs card costs 
N1 Spatial Swap Boardwalk and Park Place positions 
N2 Dice Change probability distributions on dice 
N3 Prices Increase tax penalty 
N4 Prices Increase Virginia Ave. rent 10x 
N5 Prices Increase price of railroads 4.5x 
N6 Dice Change die to 1d6 
N7 Color Change colors for Park Place, Boardwalk, 

Baltic Ave. 
N8 Prices Increase rents for Indiana Ave. 
N9 Prices All Red properties to 0.25x price, 10x rent 
N10 Spatial Increase Boardwalk to 10 spaces 

Table 2: Internal Monopoly test detection and characterization 

Novelty 

Novelty De-
tection F1 
score 

Novelty type 
Characterization 
F1 score 

Games until 
Characterized 

N0 0.000 0.000 N/A 
N1 1.000 1.000 2 
N2 0.667 0.889 25 
N3 0.889 1.000 4 
N4 1.000 1.000 2 
N5 1.000 1.000 4 
N6 0.667 0.667 100 
N7 1.000 1.000 3 
N8 1.000 1.000 2 
N9 0.947 0.9474 2 
N10 1.000 1.000 4 

Table 3: Internal Monopoly novelty reaction performance results 

Novelty 

Detection 
off wins / 

100 games 

Detection 
on wins / 

100 games 

Win 
percent 
change p value 

N0 45 38 -15.6% 0.399 
N1 45 40 -11.1% 0.740 
N2 52 50 -3.8% 0.888 
N3 40 41 2.5% 1 
N4 45 48 6.7% 0.777 
N5 50 54 8.0% 0.671 
N6 52 59 13.5% 0.393 
N7 39 45 15.4% 0.474 
N8 34 45 32.4% 0.148 
N9 43 64 48.8% 0.005 
N10 39 61 56.4% 0.003 

Total 484 / 1100 545 / 1100 12.6% 0.010 

 
 Table 4 shows the results of the Monopoly independent 
evaluation, and Table 7 shows the result for Polycraft. About 
120 trials with 20 games per trial were run in each domain. 
Most of the trials contained a single novelty that was intro-
duced partway through the trial, and some small number of 
trials contained no novelty. The M1 metric shows the num-
ber of novel examples needed for detection, i.e., the number 
of games before Coltrane detected novelty. 
 In Monopoly, on average the Coltrane system detected 
the novelty after 6.79 games out of the 20 game trial. This 
number dropped to .32 games for the trials in which Coltrane 
detected novelty at all. When novelty was detected, it was 
often within a single game. The M2 metric shows the nov-
elty detection performance, i.e., is the percentage of games 
in which novelty was present and Coltrane reported a nov-
elty detection. The accuracy of the novelty detection was 
66.11%, indicating that most of the unanticipated novelties 
were detected by Coltrane’s inference. The M3 metric 
shows the novelty reaction performance, which is the per-
centage of wins post-novelty introduction in a 4 player agent 
game. Coltrane’s win rate went from 50.01% pre-novelty to 
51.81% post-novelty when playing against rule-based 
agents that were specifically developed to handle the nov-
elty. This win rate dropped and recovered quickly as novelty 
was characterized. and is three times the win rate of the other 



players in the game, indicating strong recovery and play 
post-novelty. 

Table 4: Independent Monopoly evaluation results 

 
Mean Std. Error 

M1: # of Novel Examples Needed 6.79 0.49 
M2: Novelty Detection Performance 0.6611 0.0104 
M3: Novelty Reaction Performance 0.5181 0.036 

 
 Table 5 shows the internal Polycraft testing novelties, and 
Table 6 shows the detection and performance results on 
these novelties. These Polycraft novelties were relatively 
straightforward to detect, as they each include noticeable 
changes to the items and blocks in the world or the outcomes 
of actions. Coltrane addressed the Item novelties, some of 
the Blocks novelties, and the Recipe novelty at pre-novelty 
performance levels. It was unable to accommodate the Ob-
stacle novelty (the movement API requested teleportation), 
the distractor novelty, and some Blocks novelties. The dis-
tractor and blocks novelties seemed to cause the Coltrane 
planner to time out with a large number of objects to be hy-
pothesized about and planned over.   

Table 5: Internal Polycraft testing novelties 

Novelty Category Description 
NP0 Item Wooden Axes are introduced that decrease the 

cost for chopping trees. Axes are in inventory 
NP1 Item Axes are on the ground 
NP2 Item Axe recipe is given 
NP3 Obstacle Wooden fences are introduced that surround 

trees 
NP4 Blocks Some of the Oak Trees are changed to Jungle 

Trees, which decrease the cost of collecting 
rubber 

NP5 Blocks The number of logs produced when chopping 
down a tree increases by a variable amount 

NP6 Distractor The outer wall blocks surrounding the arena 
are changed from bedrock to a different type 
of block 

NP7 Recipes Recipes are incorrectly altered, such that they 
would be rotated in a 3x3 crafting table 

  

Table 6: Internal Polycraft test detection and performance 

Novelty 
Novelty Detection 
F1 score 

Novelty Performance Score on 
Last 10 games (173K mean on 
base game) 

NP0 1.000 178K 
NP1 1.000 171K 
NP2 1.000 163K 
NP3 1.000 0 
NP4 1.000 62K 
NP5 1.000 173K 
NP6 1.000 0 
NP7 1.000 169K 

 
In Polycraft, on average the Coltrane system detected the 
novelty after 2.75 games, and, in practice, Coltrane either 
detected novelty in the first game introduced or not at all. 

The M2 novelty detection performance captured 64% of 
novelties introduced. The M3 novelty reaction perfor-
mance showed 34% of novelty games completed with a 
pogo stick. 

Table 7: Independent Polycraft evaluation results 

 
Mean 

M1: # of Novel Examples Needed 2.75 
M2: Novelty Detection Performance 0.64 
M3: Novelty Reaction Performance 0.34 

Conclusions 

This paper describes a new architecture and implementa-
tion of the Coltrane system that combines and extends prob-
abilistic programming inference and planning under uncer-
tainty to (1) recognize novelty when it occurs, (2) incremen-
tally characterize the novelty as observations of the novelty 
accrue, and (3) continually adapt its task-based reasoning to 
the evolving understanding of the novelty in order to max-
imize task performance. We evaluated Coltrane on two do-
mains with a set of unanticipated novelties and in a set of 
internal tests to show generality of performance. We found 
that Coltrane demonstrates this performance in the stochas-
tic game of Monopoly and the deterministic game of Po-
lycraft with novelties introduced.  

Coltrane represents a new approach to creating resilient 
AI systems that can extend beyond their initial learning and 
knowledge encoding. Future work may: enhance Coltrane’s 
Probabilistic Program Inference and Probabilistic Program 
Synthesis to detect and characterize new and wider ranges 
of novelty; enhance Coltrane’s novelty aware planning to 
react to these novelties; apply Coltrane to new domains that 
have different inference, representation, and reasoning re-
quirements; and extend these approaches to improve the per-
formance of other AI systems under novelty. 
  



Ethics Statement 

We expect the work described in this paper to have sig-
nificant benefit to society, and in particular to mitigate some 
of the ethical concerns with AI. Current AI systems’ brittle-
ness in the face of novelty is a serious ethical problem, be-
cause they are liable to persist with their behaviors even 
when it becomes unsafe. For example, a self-driving car that 
cannot recognize a novel situation where all the vehicles in 
front of it are exiting a lane may lead it to continue to drive 
in that lane, leading to a crash, as happened in a Tesla crash 
in China. One of the principles of our approach is to reason 
about representational uncertainty, so when faced with mul-
tiple hypotheses after detecting novelty, Coltrane could be-
have conservatively. This approach has the potential of 
making AI systems safer. 
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