
An Integrated Architecture for Online Adaptation to Novelty in Open

Worlds using Probabilistic Programming and Novelty-Aware Planning

Paper ID:
Bryan Loyall, Avi Pfeffer, James Niehaus, Tyler Mayer, Paola Rizzo, Alex Gee, Sanja Cvijic, William Manning, Mary Kate Skitka,

McCoy Becker, Sevan Ficici, Peter Galvin, Glenn Takata, John Steigerwald

Charles River Analytics, Inc.

Abstract
AI systems today are often brittle to changes open world en-
vironments that were not previously anticipated by their de-
signers. This brittleness can be a source of both reduced per-
formance and (at times, catastrophic) failure. In this research,
we seek to address this challenge with a general-purpose rea-
soning architecture that automatically adapts to open world
environments that present novelty to the agent. The approach
combines and extends probabilistic programming inference
and planning under uncertainty to (1) recognize novelty when
it occurs, (2) incrementally characterize the novelty as obser-
vations of the novelty accrue, and (3) continually adapt its
task-based reasoning to the evolving understanding of the
novelty in order to maximize task performance. Extending
Bayesian and statistical inference, the system is designed to
recognize and characterize novelty rapidly (e.g., with 10’s of
observations) rather than requiring massive data sets for
training, facilitating online adaptation. We demonstrate the
research approach with an instantiation in two game domains
in which unanticipated novelty can be injected at random
times during a tournament. Empirical evaluation of the ap-
proach over a range of novelty types shows the expected de-
crease in performance when novelty is first injected, with a
rapid (typically within a fraction of a single game), online re-
covery of performance during task execution as novelty is de-
tected and characterized, and with stable, improved task per-
formance in the later stages of the tournament after the nov-
elty has been fully or (nearly-fully) characterized.

 Introduction

An important capability of an intelligent agent is to be able
to handle novel situations that differ from what it has previ-
ously encountered. In the past, AI systems have generally
struggled to exhibit this capability. Learning-based systems
struggle with out-of-distribution inputs, while knowledge-
based systems struggle with situations that differ from their
precoded knowledge. The challenges and requirements for
AI systems to handle novelty have been well captured by
(Langley 2020).

As a simple illustrative example, imagine an agent play-
ing a game of Monopoly with three friends. Unbeknownst
to her, the friends have changed the rules. Perhaps they have
changed the dice so that they are loaded towards lower

Copyright © 2021, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

numbers. Or perhaps all prices and rents associated with
Boardwalk have doubled. Alternatively, perhaps the players
start the game with $200 instead of $1,500.

These three examples illustrate the three challenges an
agent that can handle novelty must overcome. In the case of
the loaded dice, the agent must be able to detect the novel
probability distribution over die rolls. In the case of prices
and rents associated with Boardwalk, the agent can quickly
detect the novelty when it sees a different purchase price,
but it must be able to characterize the nature of the novelty
precisely in order to play well, without having to see all the
possible prices and rents. In the case of starting the game
with $200, although detection and characterization are
straightforward, this is a completely different strategic situ-
ation that would never be encountered in the standard game,
and the agent must know how to reason and plan in this new
situation. If the agent cannot overcome these challenges, it
will fail miserably in novel situations. If the agent does over-
come these challenges, it will have a significant advantage
over agents that are unable to adapt.

Previous approaches to automatically handling novel en-
vironments include work in transfer learning (Senator 2011)
and reinforcement learning techniques (Kaelbling et al.
1996), however these are both focused on adapting ahead of
time to the new environment, and don’t include the ability
to adapt in an online fashion during execution. Meta reason-
ing (Cox 2005), analogical reasoning (Veloso 1992), case-
based reasoning (Marling et al. 2002), and related technolo-
gies reason about inaccuracies in the agent’s knowledge, but
don’t focus on novel changes in the mechanisms of the
world. One of the closest research areas is in cybersecurity
(Friedman et al. 2014; Schulte et al. 2015), where systems
attempt to automatically generate new code to make their
systems handle novel inputs or novel behavior caused by
cyber attackers, however these systems are typically work-
ing with narrow changes to repair exploitable bugs in the
application code.

In this work, we seek to develop AI agents that can handle
novel situations in open worlds by combining learning-
based and knowledge-based approaches in an integrated ar-
chitecture. Our architecture, named Coltrane, combines hi-
erarchical probabilistic programming, which enables the
agent to detect novelty; a discovery process to characterize
novelty; and a planning approach that uses fundamental
principles to determine how to act in new situations. In par-
ticular, Coltrane makes four fundamental contributions that
contribute to novelty handling:
1. A combination of Bayesian and statistical inference to

weigh different hypotheses and detect novelty
2. A formalization of a scientific discovery process using

probabilistic program synthesis to characterize novelty
3. A principled planning method based on Monte Carlo tree

search and adaptive heuristics for strategizing in novel
situations

4. An architecture that combines all the above elements, in-
cluding a knowledge compilation process that ensures
that new knowledge is compiled into a form that can be
readily exploited by the first principles planner

Coltrane is a general framework that is not tied to any par-
ticular domain. We demonstrate our framework in a novel
Monopoly domain and are currently also developing its ap-
plications to a Minecraft variant; application to Angry Birds
is also planned. In Monopoly, we have demonstrated the
ability to adapt to a range of different kinds of novelty. Spe-
cifically, we study class novelty, in which new kinds of en-
tities are introduced into the environment; attribute novelty,
in which the attributes of entities are changed; and represen-
tational novelty, in which the representations of entities in
the environment are changed. These constitute levels 1-3 in
Senator’s novelty hierarchy (Senator 2019).

Working in conjunction with an independent evaluator
(identity redacted for blind review), we evaluate Coltrane’s
ability to handle levels 1-3 of novelty. We show that our
agent is indeed able to adapt to unanticipated novel situa-
tions. In particular, in the presence of novelty, our agent is
able to detect the novelty, characterize the novelty, and
achieve greater than pre-novelty performance after novelty
is introduced.

Research Approach – Integrated Symbolic
and Probabilistic Architecture for General

Purpose Reasoning in the Presence of Unan-
ticipated Novelty

Our research approach tightly integrates probabilistic pro-
gram inference, probabilistic program synthesis, and sym-
bolic reasoning and planning inside a single integrated agent
architecture to enable online adaptation to unanticipated
novelty.

The Coltrane system architecture is shown in Figure 1.
The core of Coltrane’s execution is a sense-decide-act cycle
using modules (1), (2), and (3) in a loop that interacts with
the world. Unlike typical sense-decide-act architectures, the
sense portion uses probabilistic program inference (PPI) to
include Coltrane’s confidence for each sensed instance.

Coltrane extends this traditional execution when novelty
is detected. When surprising observations are sensed by PPI
(1) that do not match the existing model of the world in the
knowledge representation, PPI triggers the probabilistic pro-
gram synthesis (PPS) module (4) to generate multiple can-
didate representational novelty hypotheses. Those new hy-
pothesis representations (along with Coltrane’s confidence
in each) extend the knowledge representation hierarchy (2),
and can then be used for planning, along with all of the pre-
vious knowledge.

Each time through the sense-decide-act loop, the confi-
dences in each hypothesis are updated by PPI (1) as new ob-
servations accrue, refining and selecting among the candi-
date hypotheses, and allowing Coltrane to progressively
converge on an accurate characterization of the novelty.

Throughout this process, the sense-decide-act loop con-
tinues, with Coltrane continuing to reason and act in the
world using its best characterization at each time point. De-
pending on the confidence in the new knowledge, this can
involve working around the new uncertain elements in the
world; using them in a way that is robust to their different
possible characterizations; or a combination of the two.

In a traditional agent system, the knowledge representa-
tions are optimized for reasoning. With novelty introducing
new representations, this optimization must be performed
online in response to newly introduced foundational ele-
ments of the world that are characterized by PPS. This is the
role of the Knowledge Compilation (5) module in Coltrane.

Figure 1: The Coltrane architecture tightly integrates probabilistic
program inference and synthesis with planning to allow novel

representations to be created and reasoned about in a traditional
sense-decide-act cycle.

Hierarchical Probabilistic Programming for detec-
tion of novelty
Coltrane organizes its knowledge about the domain using
hierarchical probabilistic programming. This knowledge in-
cludes both specific information about the current situation
(like the current assets of the players and their location on
the board), as well as more general information that govern
how the situation develops (like the die roll distributions and
prices). Coltrane’s hierarchical probabilistic programming
is implemented in Scruff (Pfeffer & Lynn 2018), a frame-
work for building AI systems that sense, reason, and im-
prove over time based on the cognitive theory of predictive
coding (Clark 2013; Friston 2008; Rao & Ballard 1999).
Predictive coding is based on the principle that the brain
does not simply process sensory data bottom-up; rather, it
makes predictions about what it expects to see and processes
the errors from its predictions to produce beliefs. In predic-
tive coding, knowledge is organized hierarchically, with
higher layers representing more general or abstract con-
cepts. Each layer generates predictions for the layer below
and receives error signals from the layer below. Scruff is a
computational implementation of predictive coding using a
Bayesian formulation and message passing inference based
on belief propagation. In Scruff, each node of the hierarchy
is represented as a probabilistic program that generates a
node at the layer below.

Figure 3: Simple hierarchy for die rolls

For example, consider how an agent might model the roll of
a single die. The agent’s knowledge includes both the spe-
cific results of die rolls as well as knowledge about how die
rolls are generated. Figure 3 shows a simple hierarchy for
die rolls. At the bottom layer are the individual Die Rolls.
At the layer above is a Die Distribution that generates indi-
vidual die rolls. In the baseline game, this is a uniform dis-
tribution over the numbers 1-6; in our example above, it is a
non-uniform distribution over the same numbers; in other
examples, it might include other numbers as well. The die
distribution is generated by the Die Type at the layer above.
For example, the starting Die Type might generate distribu-
tions over small positive integers, with uniform distributions
being preferred. At the top of this hierarchy is a Die Type
Generator, which can generate other kinds of dice, such as

dice with faces that tell the player to move their piece to a
specific location on the board.

While interacting with the environment, Coltrane main-
tains beliefs about each of the nodes in the hierarchy using
Bayesian inference. However, the total set of possible hy-
potheses for nodes might be infinite; for example, there are
an infinite number of sets of integers that could be the faces
of a die. Therefore, rather than attempting to maintain a full
probability distribution over all hypotheses, Coltrane uses a
lazy representation of hypothesis space. It does this by ex-
plicitly maintaining a small number of hypotheses for each
node and leaving open the possibility that the true value of
the node is none of the current hypotheses. Coltrane uses
statistical tests to identify when the current hypotheses are
insufficient to explain the data. Statistical tests are used be-
cause there are no explicit alternatives to compare to using
Bayes rule. When no current hypothesis explains the data,
novelty is detected.

For example, if a die roll of 8 is observed, any hypothesis
that says the maximum possible roll is 6 is invalidated. If a
die roll results in “Go to Boardwalk”, the baseline Die Type
hypothesis is invalidated. For the loaded die, the process is
slower; over time, statistics are accumulated about die rolls,
and when it becomes exceedingly unlikely that the rolls are
generated by a uniform distribution, the baseline Die Distri-
bution hypothesis is invalidated.

Probabilistic program synthesis for characteriza-
tion of novelty
Once novelty is detected, it must be characterized by syn-
thesizing new hypotheses that better explain the data. In
general, there may be ambiguity as to the correct new hy-
pothesis, particularly with partial observability. For exam-
ple, when we observe that the price of a property is double
what it was before, we might not observe the rents associ-
ated with the property, so there are many different possible
hypotheses about those rents. One hypothesis is that all rents
associated with that property are doubled; a second is that
the purchase price, but not the rents of all properties in the
monopoly are doubled; and a third is that only that particular
price is doubled. Therefore, Coltrane maintains multiple hy-
potheses about the novelty simultaneously. Over time, evi-
dence will be accumulated that will strengthen or weaken
each of these hypotheses, or perhaps invalidate them all, re-
sulting in further hypotheses needing to be synthesized.

Figure 2: Hypergraph fragment for hypotheses about die rolls

Because the number of possible hypotheses can be infi-
nite, the synthesis process must be carefully controlled. We
formalize the synthesis process using a hypergraph. Figure
2 shows an example of a small fragment of a hypergraph for
hypotheses about die rolls. Nodes in the hypergraph repre-
sent hypotheses. Hypernodes represent hypotheses that can
coexist. Edges represent the synthesis of a new set of coex-
isting hypotheses from a previous hypothesis; edges are an-
notated by evidence that invalidated the previous hypothesis
and led to the synthesis of the new hypothesis.

Our approach to probabilistic program synthesis contrasts
with most previous work (e.g. (Lake et al. 2015; Saad et al.
2019). Normally, synthesis proceeds by searching over a do-
main specific language (DSL) of programs to find the best
program that combines prior probability with likelihood of
data. We also use a DSL of programs in the language of hy-
potheses for a node, but search is incremental, taking only
small steps as required by observations, proceeding using an
Occam’s Razor principle to only prefer small changes. Our
approach is based on the idea that when novelty is intro-
duced in an existing domain (which is the focus of our re-
search), it will usually be implemented by relatively small
changes to the domain, rather than needing to learn entirely
new concepts from scratch.

Architecture for Planning with Uncertainty from
Novelty
Once novelty has been characterized, the Coltrane system
must decide what actions to take to achieve its goals. The
requirement to adapt to novelty online, as it occurs, means
that extended periods of machine learning or re-encoding of
knowledge are infeasible. For example, when the price of a
Monopoly property is changed, the system must then make
its next move within a reasonable amount of time, continu-
ing to play the game in the face of potentially partially char-
acterized novelty. In addition, the reasoning element should
be generally applicable to a variety of reasoning domains,
handling uncertainty, adversarial or multi-agent domains,
and partial knowledge. To be relevant, it must scale to do-
mains with significant reasoning complexity and approach-
ing real-world applications.
 Coltrane combines Monte Carlo tree search (MCTS) with
structured knowledge heuristics and knowledge compilation
to reason in response to novelty (Chaslot et al. 2008).
MCTS, with enhancements, has been successful in address-
ing multiple game domains (Silver et al. 2016) as well as
general gameplaying (Genesereth & Björnsson 2013). Fig-
ure 4 depicts the approach. MCTS is an online policy learn-
ing search function that represents nodes as states and links
as actions. MCTS iterates over four stages of reasoning: (1)
Selection, select the next leaf node L to explore according to
current rankings; (2) Expansion, add a child node C to the
tree according to legal or preferred actions; (3) Simulation,

playout the new child node according to a simple policy
(e.g., random moves) to estimate the reward R of that new
action; and (4) Backpropagation, use R to update the values
from C to the root of the tree. We apply the UCT explore/ex-
ploit reasoning to enact these steps (Gelly & Wang 2006).
 MCTS uses the newly characterized novelty knowledge
representations: leveraging new and changed actions; work-
ing around obstacles and using the previously understood
aspects of the domain; or combinations of the two to best
meet the goals. For example, MCTS may take advantage of
improved mortgage rates to gain more cash to build houses
faster than opponents.
 To enable scaling of reasoning to domains such as novel
Monopoly, we enhance the basic algorithm with: (1) nov-
elty-aware simple and complex strategy heuristics that are
factored into each node’s favorability along with the reward
signal following (Baier & Winands 2014); and (2)
knowledge compilation that computes ramifications of nov-
elty in ways that are useful to the planning.

 Coltrane’s strategy heuristics are used to bias the search,
and they can be single-step or multi-step. For example, one
heuristic prefers to maintain a single-step cash reserve to
avoid bankruptcy at all times, and another prefers to make
multi-step successive purchases and trades to obtain valua-
ble monopolies. The heuristics are built using the same do-
main model primitives that are characterized by novelty, al-
lowing them to automatically adapt and be invalidated when
the parts of the world they rely on are modified due to nov-
elty. For example, when novel prices and rents are intro-
duced, the heuristic to obtain high value monopolies adjusts
to the newly advantageous monopolies.

Knowledge compilation in the Coltrane architecture is de-
signed to create optimized representations of the

Figure 4: MCTS with heuristics for addressing novelty

ramifications of inferred novelty for use by reasoning. It is
inspired by the intuitions humans have when a new novel
information is understood, e.g. when a person discovers that
the rents on all of the railroads in Monopoly are 10x their
previous value, they intuitively know that these properties
are strategically valuable. Coltrane’s knowledge compila-
tion uses dynamic programming and other compilation tech-
niques to provide declarative versions of these ramifica-
tions. These are computed when novelty is incrementally
characterized, and made available directly to MCTS, which
can use them for early cut-offs of projections, partial evalu-
ation functions, or as elements of heuristics, providing im-
proved reasoning and scalability that is novelty aware.

Demonstration by Applying to Game Domain
with Unanticipated Novelty Injection

We have demonstrated our architecture using the games
of Monopoly and Polycraft (a Minecraft video game vari-
ant). We worked with independent evaluators. One devel-
oped a Monopoly simulator called GNOME that includes
the ability to introduce novelty into the game. GNOME also
provides standard Monopoly-playing agents to provide op-
ponents for Coltrane. One developed a pogo stick construc-
tion task within the Polycraft environment. To create the
pogo stick, the agent must find trees in the environment,
break them to get logs, craft the logs into sticks and planks,
create a tree tap to get rubber from the tree sap, and finally
combine the ingredients at a crafting table to create the pogo
stick. Each action incurs a cost, and the task is to construct
the pogo stick while minimizing cost.

Coltrane played tournaments consisting of 20-50 games
with three standard opponents in Monopoly and alone in Po-
lycraft. At some point during a tournament, novelty may be
introduced. As much as possible, this novelty was designed
to be important enough that failure to handle the novelty
would cause a severe deterioration of performance, or alter-
natively cause a failure to exploit a significant new oppor-
tunity. In some tournaments, no novelty is introduced to
check for false positives.

To ensure a challenging and interesting environment for
studying novelty, we limited Coltrane to only be able to ob-
serve events that happen during the game. For example, we
did not allow Coltrane to simply survey the board for new
properties; it could only discover a new property if a player
landed on it.

Description of Domains with Level 1-3 Novelty
GNOME implements Monopoly with near-standard rules
and includes the ability to inject novelty at different levels.
Polycraft uses the underlying Minecraft engine with a sym-
bolic application programmer’s interface (API) to observe
and take actions in the world. We studied Coltrane’s ability

to handle levels 1-3 of Senator’s novelty hierarchy (Senator
2019). Level 1 is class novelty, which corresponds to the
appearance of new entities with unknown attributes in the
environment. For example, there may be a new property on
the board, or a new card in the Chance deck. Level 2 is at-
tribute novelty, which corresponds to changes in the attrib-
utes of entities, such as changes in prices and rents, the
amount paid for street repairs, or a change to the color of a
property, which determines the sets of properties that con-
stitute monopolies. Changes in probability distributions,
such as over die rolls or cards, also fall under level 2 novelty.
Level 3 is representational novelty. Representational nov-
elty is harder to define precisely. In GNOME, it includes
changes to the topology and structure of the game board,
such as properties taking up multiple spaces on the board.

Instantiation of COLTRANE for Example Games
For detection, we used Scruff to build hierarchies of the sort
shown in Figure 3. In Monopoly, we built hierarchies for
many aspects of the game, including:

 Dice For this test instantiation, we model dice as sets of
variable size, where each individual die is modeled in a
manner similar to Figure 3. In our experiments, we have
focused on lower levels of hierarchy, modeling a wide
range of distributions over integers, but we have not yet
modeled other kinds of faces. Changes to the number of
dice or content of faces are rapid to detect, while changes
to distributions take time and require statistical tests.

 Cards We modeled changes to the content of existing
cards (e.g. amount paid or Go To target) in the Chance and
Community Chest decks, addition or removal of cards, and
changes to the distributions over cards. Changes to the
contents of known existing cards are obvious to detect, ad-
ditions take time but are detected as soon as the additional
card is turned up, while removals and changes to distribu-
tions require more time and tests.

 Prices and rents We modeled changes to a wide variety
of prices and rents in the game. Although these do not pre-
sent a challenge to detection, they do present an interesting
opportunity for characterization (see below).

 Colors In Monopoly, colors of properties are significant,
as they define the sets of properties that can support houses
and hotels. We modeled the possibility that the colors of
properties could change, which can be detected easily but
provides interesting opportunities for characterization.

 Board structure We modeled the board as a graph of lo-
cations, which allows for a wide range of changes to the
structure of the board. Since we do not allow Coltrane to
see the full board, novelty is only detected when it lands
at a different location from expected based on the die roll.

In Polycraft, we built hierarchies for individual actions, in-
cluding breaking blocks, moving between locations,

crafting each recipe, and applying tools. Each action’s
preconditions and effects were modelled as lists of symbolic
changes in the environment. The model elements of each ac-
tion are the nouns in the precondition of each action, and
these are arranged hierarchically according to the class hier-
archies in Polycraft (e.g., a log is a type of block).

Characterization

For each of the above aspects of the game for which we
modeled novelty, we used our incremental probabilistic pro-
gram synthesis based on the Occam’s Razor principle to
characterize the novelty. For some aspects of the games,
such as dice or cards, the characterization is relatively sim-
ple, but others open a rich set of possibilities.

When a new monetary amount, such as a price or rent is
observed, novelty is immediately detected, but a question
arises as to how general or specific that the change is. There
are two dimensions of generality. One dimension is in the
entity to which the new amount applies. For example, if the
purchase price for Boardwalk is doubled, does that mean
that the purchase price for Park Place, which has the same
color, is doubled? What about other properties on that side
of the board? What about all properties on the board? The
second dimension is in the type of monetary amount. For
example, if the base rent of a property is doubled, does that
apply to all other rents of the property? What about mort-
gage price and price for building houses?

Our synthesis process considers all these possibilities.
When a new monetary amount for a price on a property is
observed, it generates the cross-product of entity clusters
containing that property and price category clusters contain-
ing that price. For each of these possibilities, a new hypoth-
esis is synthesized saying that for all properties in the entity
cluster and all prices in the price category, the price is ad-
justed, relative to baseline, in a manner consistent with the
observed monetary amount. Over time, new monetary
amounts will be observed that confirm or invalidate these
hypotheses. This mechanism enables Coltrane to quickly
characterize significant changes to the game rules that have
a major impact on game play, for example, that all rents with
hotels on all properties on the board have doubled. With this
rule change, a winning strategy is to race to build as many
hotels as possible. Coltrane’s characterization explores the
infinite hypothesis space incrementally similar to scientific
exploration, applying Occam’s Razor.

A similar process applies to property colors. When we en-
counter a new color for a property, Coltrane synthesizes
multiple new hypothesizes, including the hypothesis that
only that property has changed color, the hypothesis that all
properties in the set have changed color, and the hypothesis
that that set has traded colors with another set.

For board structure, as we discussed, novelty is detected
when a player lands on a different location from that which
was expected based on die rolls. When this happens,

characterization is quite challenging because there are so
many possible explanations. Coltrane’s synthesis process
searches through a space of board mutilations, such as addi-
tion of locations, removal of locations, and swapping of lo-
cations. Because of the large number of possibilities, Col-
trane sometimes maintains thousands of concurrent hypoth-
eses about the board structure before narrowing them down.
Coltrane’s representation allows for arbitrarily large boards,
so the set of possible hypotheses is infinite, requiring our
lazy hypergraph search using the Occam’s Razor principle.

For Polycraft actions, Novelty is detected when actions
do not have their predicted effects, and the characterization
of that novelty is estimated by transformations that change
existing actions into new actions. These include an effect
change transformation (e.g., the cost of an action is halved)
that applies at various levels of the hierarchy and a speciali-
zation transformation (e.g., a new breaking action is created
for a when you hold an axe).

Planning

For planning in Monopoly, we implemented the MCTS-
UCT algorithm to conduct adversarial tree search (Browne
et al. 2012) using a domain model of the non-novel GNOME
Monopoly simulation. This search evaluates the nodes in the
tree according to the player making the decision, and the fa-
vorability values are propagated accordingly. For random
actions such as dice rolls or card draws, the node favorabil-
ity value is backpropagated by the expected value, i.e., the
weighted probabilities of the outcomes for each player. For
planning in Polycraft, we implemented a hierarchical task
network (HTN) representation of the domain and used the
MCTS-UCT algorithm to search the plan space.

The Monopoly instantiation includes heuristics that are
common in high-level play, creating trade offers for prop-
erty groups that showed the highest return-on-investment
(ROI), calculated as the ratio between rents and prices. We
also created heuristics to help the agent maintain a cash re-
serve to avoid overspending and therefore going bankrupt
too often, which we discovered early in our testing as a re-
sult of the value focused heuristics and node evaluations.
The Polycraft instantiation uses HTN recipes to constrain
the plan space and uses the cost of actions as the main heu-
ristic. Because all of the representations in the system are
modifiable by novelty characterization, each of these heu-
ristics automatically adapt to novelty when it is discovered
and characterized.

The Monopoly instantiation includes compiled
knowledge in the form of a cash-flow heuristic, which com-
putes the probability weighted expectation of cash income
minus cash payout from the current board per player. This
is computed for all starting board positions and combina-
toric variations so that the relevant values are accessed via a
look up table. This compiled knowledge was applied after a
simulation cut-off of 100 game actions (which is about 10-

20 turns of Monopoly). This compiled knowledge showed a
significant increase in win rate during initial testing, par-
tially because it avoids the signal attenuation of long Mo-
nopoly games with a random simulation policy while
providing a strong indication of overall favorability in the
base game. The expected cash-flow is recompiled when the
board state changes (e.g., a property is purchased) and when
novelty is characterized.

Evaluation Results

 We present two sets of experiments for each domain. The
first set of experiments test Coltrane’s ability to detect, char-
acterize, and respond to specific forms of novelty known
precisely by our team. Experiments were conducted on an
Intel i7 Dell laptop 32GB of ram; a 100 game trial took be-
tween 1 and 2 hours. Table 1 shows the individual novelties
chosen for this test. These novelties were chosen to cover
the space of novelties that Coltrane is able to detect and rea-
son about, some may have a limited impact on play strate-
gies (such as N1) and some may have a great impact on play
strategies (such as N10). Table 2 shows the internal monop-
oly test detection and characterization F1 scores for these
novelties, running in 10 trials of 10 games each. Coltrane
can accurately detect and characterize most of these novel-
ties in the span of a few games, and card and dice novelties
take longer due to partial information and infrequent events.
Table 3 shows the novelty reaction performance for these
novelties in tournaments of 100 games. Coltrane can recover
from novelty introduction to increase its win rate for a ma-
jority of these novelties, with results significant at p=0.01 in
N9, N10, and in total, calculated by Fisher’s exact test.
 The second set of experiments includes studies performed
by the independent evaluator, where they introduced unan-
ticipated novelties into the game and tested the performance
of Coltrane against those novelties. These novelties were
unknown to our team; even now, only a small subset of these
novelties have been revealed to us, to allow for future ex-
perimentation. These experiments represent a true test of
Coltrane’s ability to handle unanticipated novelty.

Table 1: Internal Monopoly testing novelties

Novelty Category Description
N0 Prices Increase street and general repairs card costs
N1 Spatial Swap Boardwalk and Park Place positions
N2 Dice Change probability distributions on dice
N3 Prices Increase tax penalty
N4 Prices Increase Virginia Ave. rent 10x
N5 Prices Increase price of railroads 4.5x
N6 Dice Change die to 1d6
N7 Color Change colors for Park Place, Boardwalk,

Baltic Ave.
N8 Prices Increase rents for Indiana Ave.
N9 Prices All Red properties to 0.25x price, 10x rent
N10 Spatial Increase Boardwalk to 10 spaces

Table 2: Internal Monopoly test detection and characterization

Novelty

Novelty De-
tection F1
score

Novelty type
Characterization
F1 score

Games until
Characterized

N0 0.000 0.000 N/A
N1 1.000 1.000 2
N2 0.667 0.889 25
N3 0.889 1.000 4
N4 1.000 1.000 2
N5 1.000 1.000 4
N6 0.667 0.667 100
N7 1.000 1.000 3
N8 1.000 1.000 2
N9 0.947 0.9474 2
N10 1.000 1.000 4

Table 3: Internal Monopoly novelty reaction performance results

Novelty

Detection
off wins /

100 games

Detection
on wins /

100 games

Win
percent
change p value

N0 45 38 -15.6% 0.399
N1 45 40 -11.1% 0.740
N2 52 50 -3.8% 0.888
N3 40 41 2.5% 1
N4 45 48 6.7% 0.777
N5 50 54 8.0% 0.671
N6 52 59 13.5% 0.393
N7 39 45 15.4% 0.474
N8 34 45 32.4% 0.148
N9 43 64 48.8% 0.005
N10 39 61 56.4% 0.003

Total 484 / 1100 545 / 1100 12.6% 0.010

 Table 4 shows the results of the Monopoly independent
evaluation, and Table 7 shows the result for Polycraft. About
120 trials with 20 games per trial were run in each domain.
Most of the trials contained a single novelty that was intro-
duced partway through the trial, and some small number of
trials contained no novelty. The M1 metric shows the num-
ber of novel examples needed for detection, i.e., the number
of games before Coltrane detected novelty.
 In Monopoly, on average the Coltrane system detected
the novelty after 6.79 games out of the 20 game trial. This
number dropped to .32 games for the trials in which Coltrane
detected novelty at all. When novelty was detected, it was
often within a single game. The M2 metric shows the nov-
elty detection performance, i.e., is the percentage of games
in which novelty was present and Coltrane reported a nov-
elty detection. The accuracy of the novelty detection was
66.11%, indicating that most of the unanticipated novelties
were detected by Coltrane’s inference. The M3 metric
shows the novelty reaction performance, which is the per-
centage of wins post-novelty introduction in a 4 player agent
game. Coltrane’s win rate went from 50.01% pre-novelty to
51.81% post-novelty when playing against rule-based
agents that were specifically developed to handle the nov-
elty. This win rate dropped and recovered quickly as novelty
was characterized. and is three times the win rate of the other

players in the game, indicating strong recovery and play
post-novelty.

Table 4: Independent Monopoly evaluation results

Mean Std. Error

M1: # of Novel Examples Needed 6.79 0.49
M2: Novelty Detection Performance 0.6611 0.0104
M3: Novelty Reaction Performance 0.5181 0.036

 Table 5 shows the internal Polycraft testing novelties, and
Table 6 shows the detection and performance results on
these novelties. These Polycraft novelties were relatively
straightforward to detect, as they each include noticeable
changes to the items and blocks in the world or the outcomes
of actions. Coltrane addressed the Item novelties, some of
the Blocks novelties, and the Recipe novelty at pre-novelty
performance levels. It was unable to accommodate the Ob-
stacle novelty (the movement API requested teleportation),
the distractor novelty, and some Blocks novelties. The dis-
tractor and blocks novelties seemed to cause the Coltrane
planner to time out with a large number of objects to be hy-
pothesized about and planned over.

Table 5: Internal Polycraft testing novelties

Novelty Category Description
NP0 Item Wooden Axes are introduced that decrease the

cost for chopping trees. Axes are in inventory
NP1 Item Axes are on the ground
NP2 Item Axe recipe is given
NP3 Obstacle Wooden fences are introduced that surround

trees
NP4 Blocks Some of the Oak Trees are changed to Jungle

Trees, which decrease the cost of collecting
rubber

NP5 Blocks The number of logs produced when chopping
down a tree increases by a variable amount

NP6 Distractor The outer wall blocks surrounding the arena
are changed from bedrock to a different type
of block

NP7 Recipes Recipes are incorrectly altered, such that they
would be rotated in a 3x3 crafting table

Table 6: Internal Polycraft test detection and performance

Novelty
Novelty Detection
F1 score

Novelty Performance Score on
Last 10 games (173K mean on
base game)

NP0 1.000 178K
NP1 1.000 171K
NP2 1.000 163K
NP3 1.000 0
NP4 1.000 62K
NP5 1.000 173K
NP6 1.000 0
NP7 1.000 169K

In Polycraft, on average the Coltrane system detected the
novelty after 2.75 games, and, in practice, Coltrane either
detected novelty in the first game introduced or not at all.

The M2 novelty detection performance captured 64% of
novelties introduced. The M3 novelty reaction perfor-
mance showed 34% of novelty games completed with a
pogo stick.

Table 7: Independent Polycraft evaluation results

Mean

M1: # of Novel Examples Needed 2.75
M2: Novelty Detection Performance 0.64
M3: Novelty Reaction Performance 0.34

Conclusions

This paper describes a new architecture and implementa-
tion of the Coltrane system that combines and extends prob-
abilistic programming inference and planning under uncer-
tainty to (1) recognize novelty when it occurs, (2) incremen-
tally characterize the novelty as observations of the novelty
accrue, and (3) continually adapt its task-based reasoning to
the evolving understanding of the novelty in order to max-
imize task performance. We evaluated Coltrane on two do-
mains with a set of unanticipated novelties and in a set of
internal tests to show generality of performance. We found
that Coltrane demonstrates this performance in the stochas-
tic game of Monopoly and the deterministic game of Po-
lycraft with novelties introduced.

Coltrane represents a new approach to creating resilient
AI systems that can extend beyond their initial learning and
knowledge encoding. Future work may: enhance Coltrane’s
Probabilistic Program Inference and Probabilistic Program
Synthesis to detect and characterize new and wider ranges
of novelty; enhance Coltrane’s novelty aware planning to
react to these novelties; apply Coltrane to new domains that
have different inference, representation, and reasoning re-
quirements; and extend these approaches to improve the per-
formance of other AI systems under novelty.

Ethics Statement

We expect the work described in this paper to have sig-
nificant benefit to society, and in particular to mitigate some
of the ethical concerns with AI. Current AI systems’ brittle-
ness in the face of novelty is a serious ethical problem, be-
cause they are liable to persist with their behaviors even
when it becomes unsafe. For example, a self-driving car that
cannot recognize a novel situation where all the vehicles in
front of it are exiting a lane may lead it to continue to drive
in that lane, leading to a crash, as happened in a Tesla crash
in China. One of the principles of our approach is to reason
about representational uncertainty, so when faced with mul-
tiple hypotheses after detecting novelty, Coltrane could be-
have conservatively. This approach has the potential of
making AI systems safer.

References

Baier, H., & Winands, M. H. (2014). Monte-carlo tree search and
minimax hybrids with heuristic evaluation functions. 45–63.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowl-
ing, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis,
S., & Colton, S. (2012). A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelligence and
AI in Games, 4(1), 1–43.

Chaslot, G., Bakkes, S., Szita, I., & Spronck, P. (2008). Monte-
Carlo Tree Search: A New Framework for Game AI. AIIDE.

Clark, A. (2013). Whatever next? Predictive brains, situated
agents, and the future of cognitive science. Behavioral and Brain
Sciences, 36(3), 181–204.

Cox, M. T. (2005). Metacognition in computation: A selected re-
search review. Artificial Intelligence, 169(2), 104–141.

Friedman, S. E., Musliner, D. J., & Rye, J. M. (2014). Improving
automated cybersecurity by generalizing faults and quantifying
patch performance. International Journal on Advances in Secu-
rity, 7(3–4).

Friston, K. (2008). Hierarchical models in the brain. PLoS Com-
putational Biology, 4(11), e1000211.

Gelly, S., & Wang, Y. (2006). Exploration exploitation in go:
UCT for Monte-Carlo go.

Genesereth, M., & Björnsson, Y. (2013). The international gen-
eral game playing competition. AI Magazine, 34(2), 107–107.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Rein-
forcement learning: A survey. Journal of Artificial Intelligence
Research, 4, 237–285.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Hu-
man-level concept learning through probabilistic program induc-
tion. Science, 350(6266), 1332–1338. https://doi.org/10.1126/sci-
ence.aab3050

Langley, P. (2020). Open-World Learning for Radically Autono-
mous Agents. 13539–13543.

Marling, C., Sqalli, M., Rissland, E., Muñoz-Avila, H., & Aha, D.
(2002). Case-based reasoning integrations. AI Magazine, 23(1),
69–69.

Pfeffer, A., & Lynn, S. K. (2018, August). Scruff: A deep proba-
bilistic cognitive architecture for predictive processing. Confer-
ence on Biologically Inspired Cognitive Architectures, Prague,
Czech Republic.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the vis-
ual cortex: a functional interpretation of some extra-classical re-
ceptive-field effects. Nature Neuroscience, 2(1), 79.

Saad, F. A., Cusumano-Towner, M. F., Schaechtle, U., Rinard,
M. C., & Mansinghka, V. K. (2019). Bayesian synthesis of proba-
bilistic programs for automatic data modeling. Proceedings of the
ACM Conference on Principles of Programming Languages
(POPL), 3, 37.

Schulte, E. M., Weimer, W., & Forrest, S. (2015). Repairing
COTS router firmware without access to source code or test
suites: A case study in evolutionary software repair. 847–854.

Senator, T. E. (2011). Transfer learning progress and potential. AI
Magazine, 32(1), 84–84.

Senator, T. E. (2019). Science of AI and Learning for Open-world
Novelty (SAIL-ON). DARPA Proposers’ Day Meeting, Arlington,
VA. https://www.darpa.mil/attachments/SAIL-ON Proposers Day
Distro A no notes.pdf

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Pan-
neershelvam, V., & Lanctot, M. (2016). Mastering the game of
Go with deep neural networks and tree search. Nature, 529(7587),
484–489.

Veloso, M. M. (1992). Learning by analogical reasoning in gen-
eral problem solving. CARNEGIE-MELLON UNIV PITTS-
BURGH PA DEPT OF COMPUTER SCIENCE.

