
Runtime Monitoring of Deep Neural Networks Using Top-Down Context Models
Inspired by Predictive Processing and Dual Process Theory

Anirban Roy, 1 Adam Cobb, 1 Nathaniel D. Bastian, 2 Brian Jalaian, 3 Susmit Jha1

1 Neuro-Symbolic Computing and Intelligence, Computer Science Laboratory, SRI International
2 Intelligent Cyber-Systems and Analytics Research Lab, Army Cyber Institute, U.S. Military Academy

3 Joint Artificial Intelligence Center, U.S. Department of Defense
anirban.roy@sri.com, adam.cobb@sri.com, nathaniel.bastian@westpoint.edu, brian.a.jalaian.civ@mail.mil, susmit.jha@sri.com

Abstract

Deep neural networks (DNNs) have achieved near-human-
level accuracy on many datasets across different domains.
But they are known to produce incorrect predictions with
high confidence on inputs far from the training distribution.
This challenge of lack of calibration of DNNs has limited the
adoption of deep learning models in high-assurance systems
such as autonomous driving, air traffic management, cyber-
security, and medical diagnosis. The problem of detecting
when an input is outside the training distribution of a ma-
chine learning model, and hence, its prediction on this input
cannot be trusted, has received significant attention recently.
Several techniques based on statistical, geometric, topologi-
cal, or relational signatures have been developed to detect the
out-of-distribution (OOD) or novel inputs. In this paper, we
present a runtime monitor based on predictive processing and
dual process theory. We posit that the bottom-up deep neu-
ral networks can be monitored using top-down context mod-
els comprising two layers. The first layer is a feature density
model that learns the joint distribution of the original DNN’s
inputs, outputs, and the model’s explanation for its decisions.
The second layer is a graph Markov neural network that cap-
tures an even broader context. We demonstrate the efficacy of
our monitoring architecture in recognizing out-of-distribution
and out-of-context inputs on the image classification and ob-
ject detection tasks.

Introduction
Machine learning models, such as those used in au-
tonomous self-driving cars, need to be capable of indepen-
dent decision-making in possibly new environments which
can be different from their training environment. It is very
difficult to measure such a generalization capability and pre-
dict the behavior of machine learning models in novel sce-
narios. The successes of deep neural networks (DNNs) on
standard datasets in many domains such as computer vi-
sion (Gkioxari, Girshick, and Malik 2015), speech recog-
nition (Hannun et al. 2014), and text analysis (Majumder
et al. 2017), has not been representative of their performance
in the open-world, where inputs might not belong to the
training distribution on which the DNN was trained. Con-
sequently, this has inhibited their deployment in the safety-
critical systems such as self-driving vehicles (Bojarski et al.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2016), aircraft collision avoidance (Julian and Kochender-
fer 2017), battlefields (Abdelzaher et al. 2018) and medical
diagnoses (De Fauw et al. 2018). This brittleness and the re-
sulting lack of trust of DNN-based artificial intelligence (AI)
systems is exacerbated by the high confidence in predictions
of DNNs even on inputs which are out of distribution and
the predictions are usually incorrect. This high confidence
on incorrect predictions on OOD input has been widely re-
ported in literature (Guo et al. 2017a; Hendrycks and Gim-
pel 2016) and is attributed to the overfitting of the model in
the negative log likelihood space. The responsible deploy-
ment of DNN models in high-assurance applications neces-
sitates the detection of those inputs and scenarios where the
DNN cannot be trusted and, hence, must abstain from mak-
ing decisions. The question then is: can we locate these ma-
chine learning models in a monitoring architecture where
their failures can be detected and masked or tolerated?

We posit that we have identified such a candidate archi-
tecture: it is one in which we build a predictive context
model and rather than use the output of deep learning
models directly, we first validate and fuse them with the
context model to detect whether the inputs present a surprise
to the model. This may seem like an exercise in semantics
— even the usual machine learning models typically “fuse”
interpretations from different sensors that compose the input
to the model, and collate them over time — but we contend
that our proposed monitoring architecture amounts to a
shift in focus and brings new techniques with it, as we will
illustrate in this paper. We suggest that a better approach is
to evaluate inputs against a context model: the model is the
accumulation of everything we have learned and come to
trust and it makes more sense to evaluate new inputs against
this than only predict on the input in isolation. This is the
basis of the approach that we recommend, but we locate it
in a model of perception known as predictive processing
(PP) (Rao and Ballard 1999) complemented with the dual
process theories of reasoning (Evans 2010).

We make the following contributions in this paper:
• We propose a new two-layered runtime monitoring ar-

chitecture for DNNs motivated by insights from cogni-
tive science, in the form of predictive processing and dual
process theory.

• We provide a candidate implementation of this run-

time monitoring architecture using feature density mod-
eling to implement the first monitoring layer, and graph
Markov neural networks to implement the second layer.

• We demonstrate the value of this approach on the image
classification and object detection tasks and show how
different layers of the runtime monitor can be used to
detect OODs, novel classes, and out of context inputs.

Related Work
Recent approaches for outlier and out of distribution detec-
tion consider different statistical, geometric or topological
signatures in data that differentiate OODs from the train-
ing distribution. The softmax score can be viewed as rep-
resenting the prediction uncertainty of a DNN, and hence,
the changes in the softmax scores due to input perturba-
tions and temperature scaling have been used to detect
OODs (Hendrycks and Gimpel 2016; Liang, Li, and Srikant
2017; Guo et al. 2017b). Another line of work uses the con-
formance among the predictions made by a machine learn-
ing models on the nearest neighbors (Papernot and Mc-
Daniel 2018). Cosine similarity (Tack et al. 2020) to the
nearest training sample (or a subset of these kept as mem-
orized prototype examples during monitoring) has also been
used for the detection of OODs. The Mahalanobis distance
of an input from the in-distribution data (Lee et al. 2018)
has also been proposed to detect OOD inputs. Several other
metrics such as reconstruction error (An and Cho 2015),
likelihood-ratio between the in-distribution and OOD sam-
ples (Ren et al. 2019), trust scores (ratio of the distance
to the nearest class different from the predicted class and
the distance to the predicted class) (Jiang et al. 2018), den-
sity function (Liu et al. 2020b; Hendrycks, Mazeika, and
Dietterich 2019), probability distribution of the softmax
scores (Lee et al. 2017; Hendrycks et al. 2019; Tack et al.
2020; Hendrycks, Mazeika, and Dietterich 2019) have also
been used to detect OODs. These methods can be viewed
as runtime monitors. The first layer of our runtime monitor-
ing framework can leverage these approaches. We adopt fea-
ture density modeling to implement the first layer. One key
distinction from these approaches is our use of attributions
(explanations) for individual decisions made by a machine
learning model. This distinguishes our approach from exist-
ing literature which focus on learning the joint distribution
of input and output, which is independent of the model. By
incorporating the attribution for a decision, our first layer
models not just data but the model’s response to the data,
which along with the output serves as the simplest context
for the input.

A closely related field of study is the use of deep en-
sembles for uncertainty quantification (Lakshminarayanan,
Pritzel, and Blundell 2016; Blundell et al. 2015; Gal and
Ghahramani 2016; Wen, Tran, and Ba 2020; Dusenberry
et al. 2020). These methods rely on either explicitly using
different neural networks or multiple passes over a stochas-
tic network where the network weights are sampled from a
distribution. This leads to significant memory and compu-
tation overhead. In a parallel line of work, the density es-
timates of a DNN’s latent representations have been used

to quantify epistemic uncertainty (Mandelbaum and Wein-
shall 2017; Jha et al. 2018a; Oh et al. 2018; van Amers-
foort et al. 2020). These methods often require modification
to the training method, such as replacing softmax activation
with a target-conditional multivariate Gaussian distribution
for classification. This ensures that the model learns a den-
sity estimate of the final layer, and the log-likelihood of the
density model is treated as the epistemic uncertainty useful
for OOD detection. Unnormalized density on the softmax
logits have also been used for OOD detection (Liu et al.
2020b). Such methods can be improved using contrastive
training (Winkens et al. 2020) that improves the feature ex-
tractor and reduces feature collapse before estimating the
feature-space density. More recently, uncertainty quantifi-
cation and OOD detection in deterministic single forward-
pass DNNs (van Amersfoort et al. 2020; Liu et al. 2020a;
Mukhoti et al. 2021; Jha et al. 2018b; Jang, Jha, and Jha
2019; Jha et al. 2019a) have been studied where distance-
aware output layers in the form of radial basis functions or
Gaussian processes are learned in presence of additional in-
ductive biases that encourage internal feature representation
to better reflect epistemic uncertainty. The inductive biases
can be in form of Jacobian penalty (Gulrajani et al. 2017)
or spectral normalization (Miyato et al. 2018) which ensure
that the internal features are smooth (to aid improved in dis-
tribution detection) but at the same time, sensitive to avoid
feature collapse and detect OOD inputs. These methods re-
quire modification to the training of DNNs and also require
finding the suitable hyperparameters in the inductive biases.

Yet another related area is the use of contextual cues for
object detection and segmentation. Graph-based models pro-
vide a flexible way to represent context where nodes repre-
sent objects and edges represent pair-wise relations among
the objects(Choi et al. 2010; Gould et al. 2008; Zhang and
Chen 2012). Among graph-based models, conditional ran-
dom fields (CRF) are explored extensively where contextual
cues are represented by edge potentials. Common contextual
cues include co-occurrence, spatial distance, geometric and
appearance similarity(Choi et al. 2010; Gould et al. 2008;
Divvala et al. 2009; Koller and Friedman 2009; Zhang and
Chen 2012). More recently, graphical models are combined
with neural networks to exploit data-driven feature learn-
ing. Graph convolutional networks (GCN) (Dai, Dai, and
Song 2016; Kipf and Welling 2017; Hamilton, Ying, and
Leskovec 2017) provide a convolutional implementation of
the graphical models combining the power of representation
learning of neural networks with the structured representa-
tion of graphs. However, standard GCNs do not explicitly
capture the contextual relations that are crucial to detect out
of context (OOC) objects where the individual objects in a
scene are not novel, but the overall composition is unusual.
Existing studies have argued the importance of OOC object
detection as these affect the performance of object detec-
tion for both humans and machines. Choi et al. (Choi, Tor-
ralba, and Willsky 2012) define OOC objects that violate
common contextual rules (e.g., flying cars) in terms of un-
usual background, unusual size, etc. They consider a graph-
based model to capture such relations among the objects.
Some approaches consider context as the entire background

with respect to an object and detect OOC objects that are
inconsistent with the background. Dvornik et al. (Dvornik,
Mairal, and Schmid 2018) identify the usual pair of objects
as OOC instances. None of these approaches can capture
context broadly enough to incorporate object classes, rel-
ative sizes and relative location with other objects in the
scene. GCNs provide an end-to-end neural network-based
realization of graph models and are shown to be successful
in object detection. Inspired by graph Markov neural net-
works (GMNNs) (Qu, Bengio, and Tang 2019), we capture
relations between objects by simultaneously learning two
GCNs - one for learning node representations and another
for learning label dependency. By combining the graph neu-
ral network as the second layer with the feature density mod-
els in the first layer, we form an effective implementation of
a predictive coding and dual theory inspired runtime mon-
itor. While the layer 1 feature density model serves as the
intuitive and associative ”System 1”, the graph NNs form
the deliberative layer 2.

Predictive Processing and Context Modeling
We invite the reader to review the prior work (Jha, Rushby,
and Shankar 2020) which describes the assurance of systems
with machine learning models based on predictive coding.
We sketch the salient points below. We use a simple example
of an autonomous car to demonstrate how the context model
can be useful in monitoring DNNs. Consider the compo-
nent of a car’s vision system concerned with detecting traf-
fic lanes. A basic method will look for more-or-less straight
lines painted on the road, and a bottom-up approach will per-
form this process as each image frame is processed. But this
is inefficient—the traffic lanes in the current image frame
are likely to be similar to those in the previous few frames,
and we should surely use this to seed the search—and it is
fragile—missing or scuffed lane markers might cause lanes
to go undetected where they could have been extrapolated
from previous images. A better approach builds a model of
the road and its traffic lanes and uses this to seed the search
for lanes in the current image by predicting their location.
There will be some uncertainty in the model and its projec-
tion of lanes, so what is sent to the vision system will be the
best guess, or perhaps a probability distribution over sev-
eral such estimates. The vision system will use this to seed
its search for lanes in the current image and will send back
the difference or “error” between the prediction and its cur-
rent observation. The error signal is used to refine the model
in a way that aims to minimize future prediction errors and
thereby bring it closer to reality.

This is an example of “analysis by synthesis” meaning
that we formulate hypotheses (i.e., candidate world models)
and favor those whose predictions match the input data. In
practical applications, we need to consider the level of the
“predictions” concerned: do we use the world model to syn-
thesize the raw data (e.g., pixels) that we predict the sensor
will detect, or do we target some higher level of its local
processing (e.g., objects)?

The significant attribute of this top-down approach is that
it focuses on construction and exploitation of the world

model (or models: a common arrangement has a hierar-
chy of models), in contrast to the more common bottom-
up machine learning models. We will develop arguments
that the top-down approach is effective for the interpreta-
tion and assurance of perception in autonomous systems,
but it is interesting, and perhaps reassuring, to know that
it is widely believed to be the way perception works in hu-
man (and other) brains, as first proposed by Helmholtz in
the 1860s (von Helmholtz 1867). Predictive Processing (PP)
(Wiese and Metzinger 2017), also known as predictive cod-
ing (Clark 2013) and predictive error minimization (Hohwy
2013), posits that the brain builds models of its environment
and uses these to predict its sensory input, so that much
of its activity can be seen as (an approximation to) itera-
tive Bayesian update to minimize prediction error. PP has
prior “predictions” flowing from models down to sense or-
gans and Bayesian “corrections” flowing back up that cause
the posterior models to track reality.

It is interesting that the brain seems to work in this way,
but there are independent reasons for thinking that PP is a
good way to organize the perception system for autonomous
systems, as opposed to a largely bottom-up system in which
sensor measurements and inputs are interpreted and fused
to yield a world model with little feedback from the model
back to the sensors and the inputs being collected. The fatal
accident between an Uber self-driving car and a pedestrian
in Arizona on 18th March 2018 illustrates some deficiencies
of such bottom up methods (NTS 2019).

A pure bottom-up system has no recollection even of the
immediately previous sensor readings, and this precludes
calculation of velocity from position. Consequently, percep-
tion systems typically maintain a simple model that will
permit this: the object tracker of Lin’s vision processing
pipeline (Lin et al. 2018) is an example, and the Uber car
employed a system of this kind. The Uber car used three
sensor systems to build its object tracker model: cameras,
radars, and lidar. For each of these sensor systems, its own
object detector indicates the position of each detected ob-
ject and attempts to classify it as, for example, a vehicle, a
pedestrian, a bicycle, or other. The object tracker fuses these
inputs using a “prioritization schema that promotes certain
tracking methods over others, and is also dependent on the
recency of the observation” (NTS 2019, page 8). In the case
of the Arizona crash, this resulted in a “flickering” identifi-
cation of the victim as the sensor systems’ own classifiers
changed their identifications, and as the object tracker pre-
ferred first one sensor system, then another, as listed below
(NTS 2019, Table 1): 5.6 seconds before impact, victim clas-
sified as vehicle, by radar; 5.2 seconds before impact, victim
classified as other, by lidar; 4.2 seconds before impact, vic-
tim classified as vehicle, by lidar; Between 3.8 and 2.7 sec-
onds before impact, classification alternated between vehicle
and other, by lidar; 2.6 seconds before impact, victim clas-
sified as bicycle, by lidar; 1.5 seconds before impact, victim
classified as unknown, by lidar; 1.2 seconds before impact,
victim classified as bicycle, by lidar.

The deeper harm of this “flickering” identification is that
“if the perception model changes the classification of a de-
tected object, the tracking history of that object is no longer

considered when generating new trajectories” (NTS 2019,
page 8). Consequently, the object tracker never established
a trajectory for the victim and the vehicle collided with her
even though she had been detected in some form or other for
several seconds.

There are two related problems here: one is that the ob-
ject tracker maintains a rather impoverished model of the
world and the context in which decisions are being made,
the other is that its method of decision-making on the inputs
pays no attention to the context. The goal underlying per-
ception in predictive processing is to build a context model
that accurately reflects the world; it therefore encodes a lot
more information than an individual input. What we want is
a method to measure divergence between the context model
and a new input; small divergence should indicate a routine
evolution of the world, and can be incorporated as an up-
date to the model; a large divergence requires more atten-
tion: does it indicate a new development, or is it possibly a
flaw in interpretation of the raw sensor data? In any of the
two later cases, we cannot trust the prediction of the machine
learning model.

Implementations of the predictive processing approach
can employ Bayesian methods (Spratling 2017). The con-
text model represents the various objects in the environ-
ment, together with their attributes such as type, trajectory,
inferred intent etc., with probability distribution functions
(pdf s) over some or all of these. An observation updates
these priors to deliver refined posterior estimates. This kind
of Bayesian inference typically generates intractable inte-
grals, so predictive processing employs methods known as
Variational Bayes that turn the problem into iterative opti-
mization of the posterior models to minimize prediction er-
ror.

An attractive attribute of predictive processing is that it
gives us a systematic way to exploit multiple inputs and sen-
sors, and to fuse and cross-check their information. Suppose
we have a context model built from camera data, and we
add a proximity sensor. Predictive processing can use the
camera-derived model to calculate what the proximity sen-
sor is expected to “see” and this can be seen as a falsifiable
test of the model’s accuracy. If the prediction is verified, then
we have independent confirmation of some aspects of our
context model. We say “independent” because it seems plau-
sible that sensors based on different phenomena (e.g., cam-
eras, radars, ultrasound) with completely different interpre-
tation functions and trained on different datasets, will have
independent failures. In a fully integrated predictive process-
ing monitor, the context model(s) will combine information
from all sources. The context model will update conserva-
tively to reflect this uncertainty, and the monitor will conse-
quently lower its confidence in the machine learning model
till the discrepancy is resolved.

Observe that the context model can be quite parsimonious
and crude: we do not need a photographic rendition of the
scene, merely knowledge of the significant objects in our
proximity in sufficient detail to guide safe actions, so dis-
crepancies between the outlines of adjacent vehicles “seen”
by cameras and proximity sensors, for example, may be of
little account as what we need to know is their presence, po-

sition, type, and inferred intent. In fact, as we will discuss
later, we can model context at the varying levels of detail.
In our implementation discussed in the paper, we model the
context at two levels - the first level uses features of the deep
neural network, and the second models more high-level spa-
tial and temporal relations between objects in a scene.

Dual Process Models and Hierarchical
Context Modeling

Another theory about the organization of the human brain
is interesting in this regard; this is the “dual-process”
model (Frankish 2010; Evans and Stanovich 2013), popu-
larized by Kahneman as separate “fast and slow” systems
of thought (Kahneman 2011). Its utility has been recently
demonstrated for computing confidence of machine learn-
ing models through a very limited implementation (Jha et al.
2019b,a). System 1 is unconscious, fast, and specialized
for routine tasks; System 2 is conscious, slow, easily fa-
tigued, and capable of deliberation and reasoning—it is what
we mean by “thinking.” As with predictive processing, we
do not advocate the dual-process model merely because it
seems to correspond to the way the brain works, but because
it seems, independently, to be a good architecture. Here, we
can imagine a feature density model forming a highly auto-
mated “System 1,” with more deliberative models constitut-
ing a “System 2” that gets actively involved when System
1 encounters large prediction errors. System 1 maintains a
single world model and the System 2 either embellishes this,
or maintains a richer world model of its own. It is believed
that humans maintain a hierarchy of models (Frankish 2010;
Evans and Stanovich 2013; Kahneman 2011), and this seems
a good approach for autonomous systems as well. The idea
is that a predictive processing loop operates between each
adjacent pair (in the hierarchy) of models, so that the lower
level is like a sensor for the upper level, with priority and up-
date frequency determined by the size of prediction errors.

Predictive processing in humans is generally presented
as a way to minimize “surprise” or as maintaining “situa-
tion awareness.” And one way to enhance this would be to
increase the use of hypothetical reasoning by System 2 in
construction of the world model, so that things not seen but
“that might be there” are explicitly represented as “ghosts”
or as increased uncertainty on attributes of detected objects.
A related idea uses AI to make inferences so that, for ex-
ample, detection of many brake lights up ahead is used to
infer some kind of problem and this will be represented as
increased uncertainty in the world model. In this way, what
might otherwise be the surprising appearance of an unantic-
ipated situation will instead develop as gradual changes in
uncertainty or the resolution of ghosts into real objects. The
graph Markov neural networks provide an effective mech-
anism to both model these relationships and richer context,
and to deliberate through counterfactual queries and context-
informed prediction. Thus, the dual process theory motivates
the two layered predictive coding architecture of our runtime
monitor. While these theories aim at explaining human cog-
nition, we use these as a runtime monitor to compute sur-
prise of the underlying model and, hence, detect when the

model cannot be trusted due to novel or out of distribution
or out of context input.

Runtime Monitoring Architecture
The overall architecture of the proposed runtime monitoring
for deep learning models is presented in Figure 1. As illus-
trated, the architecture has two levels (motivated by the Dual
Process theory). In the first level, we use a feature density
model that learns a joint distribution of the input, predicted
class output and the explanation provided by the model. In
the second level, we use the graph Markov neural network
to learn spatial and temporal relationships between the ob-
jects for an object detection task (more generally, compo-
nents of an input). In both of these layers, our focus is on
runtime monitoring and not developing a cognition system
in its own right, hence, the surprise detected by both these
layers is used by the monitor to identify when the underlying
machine learning model cannot be trusted.

Layer 1: Feature Density Model The joint distribution of
the features and inputs can be learned and have been inves-
tigated for OOD detection with mixed results (Kirichenko,
Izmailov, and Wilson 2020; Zisselman and Tamar 2020).
We adopt a relative simpler approach of modeling the joint
distribution as a Gaussian mixture model (McLachlan and
Basford 1988) but complement features with attribution
over the features. We use integrated gradient, which was
found to produce better results empirically. For the DNN
to be monitored, we learn a Gaussian model (mean µy

and covariance Σy) for the features f(x) of each class y
of the DNN. This is achieved in a single pass by record-
ing the features f(x) for all the samples x in the train-
ing set. The Mahalanobis distance is then computed as

d =
√
(f(x)− µy)Σ

−1
y (f(x)− µy). Using the Maha-

lanobis distance is akin to the use of Gaussian discrimi-
nant analysis, where a Gaussian mixture model with a single
Gaussian component per class is used to fit the features. A
high Mahalanobis distance implies a low feature-space den-
sity and a high epistemic uncertainty.

While Mahalanobis distance estimation with tied covari-
ance are used by the existing state-of-the-art OOD detec-
tion methods (Liang, Li, and Srikant 2017), we extend
the distribution to also incorporate the attribution over the
input features, thus, enabling us to model broader con-
text that includes model-specific attribution. Model attribu-
tions are specific to a particular DNN and capture prop-
erties such as whether an input has concentrated attri-
bution over few features or more dispersed attributions.
We accomplish this by simultaneously learning a Gaus-
sian model (mean µA

y and covariance ΣA
y) for the attri-

butions over the features, computed using integrated gra-
dients IG(f(x), y) for the features of samples f(x) for
each class y of the DNN. This yields another Mahalanobis
distance, which measures the likelihood of a given input
given the predicted class and the attribution over the input,

dA =
√
(IG(f(x))− µA

y)Σ
A−1
y (IG(f(x))− µA

y).
While runtime monitoring, if either of the two Maha-

lanobis distances, dA or d, are high for a given input, we can

detect that the prediction of the deep learning model cannot
be trusted on this input. In our experiments, we use the 95
percentile value of the distances in the training data as the
threshold for flagging inputs at runtime. The features used
in the density modeling at Layer 1 are provided to the Layer
2 as the node attributes used in the graph convolutional net-
works in Layer 2.

Layer 2: Graph Markov Neural Networks (Qu, Bengio,
and Tang 2019) For layer 2, we use graph Markov neural
network that we implement using two graphical models: 1)
Representation graph (RepG) that learns the representation
for objects at each node by exchanging the representations
with its neighbors. RepG relies on these representations to
predict object labels at each node independently, ignoring
context cues such as label dependency. 2) To complement
RepG, we propose a context graph (ConG) that learns con-
text relations across the nodes by sharing the context cues
with its neighbors. We consider a graph convolutional net-
works (GCN) to instantiate both RepG and ConG. We first
introduce the GCN framework and then discuss the imple-
mentation of RepG and ConG via GCN.

Given an image, we build a graph over the objects in the
image. Let’s define a graph G = (V,E), where V is the set
of nodes and E is the set of edges. We define X = {xi} and
Y = {yi} as the feature representation and label of ith node,
respectively. Given this definition, the goal is to predict ob-
ject labels from the feature.

H l+1 = f l(W l, H l, E), p(yi|X,E) = SM(HL), (1)

where f l(·) is the convolutional function corresponding to
layer l iteratively updating the node representations to H l+1

from the current representation H l and the connections be-
tween the nodes E. W l is the parameters for layer l. Note
that H0 = X , the initial node representations. The final pre-
diction is made by applying a softmax operation (SM) on the
final representation HL predicting the class distribution. We
formulate context-informed label prediction in a conditional
random field framework where the conditional distribution
over the labels are defined as

p(Y |X,E) =
1

Z(X,E)

∏
(i,j)∈E

ϕi,i(yi, yj , X), (2)

where Z(X,E) is the partition function over the graph and
ϕi,i(yi, yj , X) is the potential function over a pair of nodes
i, j. Let us denote θ as the graph parameters. Then, learning
can be done by maximizing the following conditional log-
likelihood:

ℓY |X(θ) = log pθ(Y |X, θ). (3)

However, directly maximizing this likelihood function is in-
tractable due to the combinatorial nature of the partition
function. Thus, we consider optimizing the approximate
likelihood that is shown to be successful in learning simi-
lar graphical models.

ℓY |X(θ) =
∑
i

log pθ(yi|yj∈B(i), X, θ), (4)

Figure 1: The level L0 represents the original deep neural network, which given an input x makes a decision or prediction d
on it. For a classification model, the predicted output would be the class. In addition to the output, we can also compute the
explanation of the decision e by the model using attribution methods (Simonyan, Vedaldi, and Zisserman 2013; Selvaraju et al.
2017; Sundararajan, Taly, and Yan 2017; Lundberg and Lee 2017). The predicted class and these attributions over the features
(the layer before softmax) form the context c1 = (d, e) in layer 1 and a density model p1(x, d, e) is learned to represent the joint
distribution of this context and the input using a trusted training set. When the original DNN makes a prediction at runtime,
we use the predicted output class and the attribution as context and the learned L1 density model to compute the likelihood
p1(x|c1) = p1(x|d, e) of the input. If this likelihood is low, it implies that the runtime monitor has detected that the underlying
machine learning model has been surprised, and hence, cannot be trusted. The second layer uses graph Markov neural networks
to learn the spatial and temporal distributions of the objects, which is useful in the object detection task. If the input x is a
scene, we can decompose it into the individual objects xi and the relationships between them, rij and the graph Markov neural
networks learn the distribution p(x1, . . . , xj , . . . , rij . . .) using a trusted training set. In level L2, we can perform deliberation
at runtime by treating all but one (say, xk) objects as a context and then evaluating the likelihood of the predicted class of the
output for a new input p2(xk|c2) = p2(xk|x1, . . . , xj , . . . , rij If this likelihood is low, the level L2 of the runtime monitor
has detected a surprise and the underlying machine learning model cannot be trusted. Each layer of the runtime monitor uses
larger and more abstract concepts to learn the context, and then uses top down prediction to determine whether the input is
likely in the given context or not.

where B(i) is the set of neighboring nodes of i. Intuitively,
with this approximation, we only consider the context de-
pendencies of the neighboring nodes. However, as we con-
sider GCN to capture these dependencies, a few iterations
of GCN allows capturing log-range dependencies by itera-
tive message passing. Note that even in Eqn. 4, the label of
a node yi is conditioned on both the neighboring context
(yj∈B(i)) and the feature representation X . We avoid this
dependency, we propose an iterative optimization where in
one iteration we optimize to learn only representation and
context dependency in another. This allows each iteration to
be optimized efficiently is a GCN framework.

In the first iteration, we consider a mean-field approxima-
tion to remove context dependency and learn only the repre-

sentation with RepG. Thus, the label distribution is defined
as

pθR(Y |X,E) =
∏
i

pθR(yi|X,E), (5)

where θR is the parameters for the representation graph
RepG. Our representation graph is implemented by a GCN,
where object features are used as node features.

H l+1
R = f l

R(W
l
R, H

l
R, E), p(yi|XR, E) = SM(HL

R), (6)

where XR denote the node features and WR denotes the
GCN parameters. We consider bounding box features as the
node features. Specifically, we consider ResNet features as
XR. It is evident from Eqn. 1 and Eqn. 5 that neighboring

nodes share feature representations by message passing, but
context related to object labels are not shared.

In the second iteration, we aim to predict labels from the
context using ConG. This is also realized by a context GCN
as follows.

H l+1
C = f l

C(W
l
C , H

l
C , E), p(yi|XC , E) = SM(HL

C), (7)

where XC denote the node features and WC denotes
the GCN parameters. We consider context features as the
node features including labels, position, size of neighboring
nodes.

Thus, we learn this Layer 2 model iteratively using the
expectation-maximization (EM) framework. In the M-step,
we learn the representation graph based on the predicted
labels of the context graph and in the E-step, keeping the
representation fixed, we update the context graph based on
the ground truth labels. Specifically, in E-step, we start by a
pre-trained RepG to predict node labels. Then the labels are
updated by a fixed ConG by aggregating context from the
neighboring nodes. Finally. the RepG is updated to match
ConG’s predictions. In the M-step, we update ConG based
on the ground-truth labels. We continue these iterations un-
til convergence, that is, the difference of the predictions be-
tween RepG and ConG is constant. For runtime monitoring,
we can now make deliberative queries to this learned model
where we can fix the labels of any k objects and compute
the likelihood of the other labels being correct. In our exper-
iments, we restrict ourselves to querying the likelihood of
one object at a time and the total surprise is computed as the
sum of the log-likelihoods.

Experimental Evaluation
In order to evaluate our runtime monitoring framework, we
test the effectiveness of each of the two layers separately.
First, we evaluate how layer 1 can detect out of distribu-
tion inputs and novel classes in the object classification task.
Then, we evaluate how layer 2 can detect novel contexts on
an out of context dataset.

Layer 1 We evaluate Layer 1 on CIFAR10 (Krizhevsky,
Hinton et al. 2009) and SVHN (Netzer et al. 2011)
datasets.To demonstrate that the proposed approach general-
izes across network architectures, we consider a wide range
of DNN models such as ResNet (He et al. 2016) which con-
sists of two convolutional layers and two fully connected
layers, WideResNet (Zagoruyko and Komodakis 2016)
which consists of a series of residual convolutional blocks
followed by fully connected layers, and DenseNet (Huang
et al. 2017) where outputs of all previous layers are di-
rectly connected to the output of a current layer. With CI-
FAR10 as in-distribution, we consider SVHN (Netzer et al.
2011) and Tiny-Imagenet (Deng et al. 2009) as the OOD
datasets. For CIFAR10, we consider two DNNs: ResNet50,
and WideResNet. Table 1 shows the results. With SVHN
as in-distribution, we consider CIFAR10 (Krizhevsky, Hin-
ton et al. 2009) and Imagenet (Deng et al. 2009) as the
OOD datasets. For SVHN, we use the DenseNet classi-
fier. We consider standard metrics (Hendrycks and Gim-
pel 2016) such as the true negative rate (TNR) at 95%

true positive rate (TPR), the area under the receiver operat-
ing characteristic curve (AUROC), area under precision re-
call curve (AUPR), and the detection accuracy (DTACC) to
evaluate our performance. We compare our approach with
the three SOTA approaches: SPB (Hendrycks and Gimpel
2016), ODIN (Liang, Li, and Srikant 2017), and Maha-
lanobis (Lee et al. 2018).

Our runtime monitoring does not require any additional
generation of auxiliary data for training the feature density
model or exposure to OOD samples. Level 1 itself is com-
petitive to the state of the art OOD detection methods.

Layer 2 In order to evaluate the effectiveness of the Layer
2 in capturing relational context and use it to detect inputs
where the objects of known classes appear in a new context
for object detection task, we created a new dataset where
COCO objects (Lin et al. 2014) are put in surprising novel
contexts. Figure 2 shows one example of such an image. Our
dataset has 106060 such out of context (OOC) images gen-
erated using instances of COCO objects. We call this dataset
COCO-OOC dataset. When using Layer 2 to detect OOC
objects, we use both the relational context network ConG
and the representation network RepG. Both of these are
trained via expectation maximization, and they are expected
to have similar accuracy for the in distribution inputs. We
evaluate whether either of these are better at detecting out of
context inputs.

Figure 2: Left: Objects appear in context. Right: The ‘ele-
phant’ object is out-of-context. Layer 2 of our runtime mon-
itor is expected to detect such out of context inputs where
the relation between objects of known classes is unusual.

Following the work on detecting OODs in image classi-
fication, we consider the predicted softmax score from the
graph convolution networks as a simple baseline. The as-
sumption is that for OOC objects, the softmax score is ex-
pected to be lower than the in-context objects. Thus, the soft-
max score can also be used to identify OOC objects. This
softmax score can be from either of the two networks - rep-
resentation graph network RepG and context graph network
ConG. The AUC-ROC score for the Level 2 of our runtime
monitor along with the softmax score baseline for both of
the graph networks is presented in Table 2.

While our Layer 2 is able to detect the out of context in-
puts, it also serves as an effective object detector, achieving
high accuracy on in-distribution objects. It naturally has low
accuracy on out-of-context inputs and thus, the surprise re-
ported from Layer 2 correlates well with the accuracy of the
object detector.

Table 1: Level 1 Evaluation: Comparison of TNR, AUROC, DTACC with SPB, ODIN and Mahalanobis methods. Our runtime
monitoring does not require any additional input pre-processing, generation of auxiliary data for training the feature density
model or exposure to OOD samples. Level 1 itself is still competitive to the state of the art OOD detection methods.

In-dist OOD Dataset Method TNR AUROC DTACC
(model)

CIFAR10 SVHN SPB 44.69 97.31 86.36
(ResNet50) ODIN 63.57 93.53 86.36

Mahalanobis 72.89 91.53 85.39
Ours 83.68 93.15 88.14

Imagenet SPB 42.06 90.8 84.36
ODIN 79.48 96.25 90.07

Mahalanobis 94.26 97.41 95.16
Ours 94.58 97.14 95.81

CIFAR10 SVHN SPB 45.46 90.10 82.91
(WideResNet) ODIN 57.14 89.30 81.14

Mahalanobis 85.86 97.21 91.87
Ours 86.86 94.47 92.41

SVHN Imagenet SPB 79.79 94.78 90.21
(DenseNet) ODIN 79.8 94.8 90.2

Mahalanobis 99.85 99.88 98.87
Ours 97.62 98.25 96.74

CIFAR10 SPB 69.31 91.9 86.61
ODIN 69.3 91.9 86.6

Mahalanobis 97.03 98.92 96.11
Ours 93.54 96.68 95.36

Table 2: AUC-ROC score of detection of out of context in-
puts in the COCO-OOC dataset (higher is better)

Approach AUC score

Softmax confidence 0.043
RepG 0.589
RepG + ConG 0.980

Table 3: Accuracy on COCO-OOC dataset. For OOC in-
stances, lower accuracy is consistent with measured sur-
prise of runtime monitor, and for non-OOC instances higher
accuracy reflects well-trained model.

Approach OOC↓ non-OOC↑ Overall

RepG 0.69 0.77 0.76
RepG + ConG 0.30 0.98 0.93

Conclusion
In this paper, we presented a two-layered runtime monitor-
ing architecture for DNNs using top-down context models
inspired by predictive processing and dual process theory.
Within this architecture, the first layer consisted of a feature
density model that learns the joint distribution of the orig-
inal DNN’s inputs, predicted class outputs and the model’s

explanation for its decisions. The second layer consisted of
a graph Markov neural network to learn spatial and temporal
relationships between components of an input. In our exper-
imental evaluation, we demonstrated the high performance
(accuracy) of our monitoring architecture in detecting out
of distribution inputs in an object classification task (layer
1) and detecting novel context on out of context inputs in
an object detection task (layer 2). While runtime monitor-
ing can facilitate the integration of machine learning models
into high-assurance applications where traditional back-up
systems can take over decision-making when the machine
learning models cannot be trusted, we are also investigat-
ing methods that exploit runtime monitoring for continuous
lifelong learning.

Acknowledgements
We are thankful to Dr. John Rushby and Dr. Natarajan
Shankar for discussions on assurance principles. This work
was supported in part by the U.S. Army Combat Capabilities
Development Command (DEVCOM) Army Research Lab-
oratory under Cooperative Agreement W911NF-17-2-0196,
Support Agreement No. USMA21050 and the U.S. National
Science Foundation grant #1740079. The views expressed in
this paper are those of the authors and do not reflect the offi-
cial policy or position of the United States Army, the United
States Department of Defense, or the United States Govern-
ment.

References
2019. Vehicle Automation Report; Tempe, AZ. National
Transportation Safety Board. HWY18MH010.
Abdelzaher, T.; Ayanian, N.; Basar, T.; Diggavi, S.; Diesner,
J.; Ganesan, D.; Govindan, R.; Jha, S.; Lepoint, T.; Marlin,
B.; et al. 2018. Toward an internet of battlefield things: A
resilience perspective. Computer, 51(11): 24–36.
An, J.; and Cho, S. 2015. Variational autoencoder based
anomaly detection using reconstruction probability. Special
Lecture on IE, 2(1): 1–18.
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight uncertainty in neural network. In In-
ternational Conference on Machine Learning, 1613–1622.
PMLR.
Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316.
Choi, M. J.; Lim, J. J.; Torralba, A.; and Willsky, A. S. 2010.
Exploiting Hierarchical Context on a Large Database of Ob-
ject Categories. In IEEE Conference on Computer VIsion
and Pattern Recognition (CVPR).
Choi, M. J.; Torralba, A.; and Willsky, A. S. 2012. Con-
text models and out-of-context objects. Pattern Recognition
Letters, 33(7): 853–862.
Clark, A. 2013. Whatever Next? Predictive Brains, Situated
Agents, and the Future of Cognitive Science. Behavioral
and Brain Sciences, 36(3): 181–204.
Dai, H.; Dai, B.; and Song, L. 2016. Discriminative em-
beddings of latent variable models for structured data. In
International conference on machine learning, 2702–2711.
PMLR.
De Fauw, J.; Ledsam, J. R.; Romera-Paredes, B.; Nikolov,
S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.;
O’Donoghue, B.; Visentin, D.; et al. 2018. Clinically ap-
plicable deep learning for diagnosis and referral in retinal
disease. Nature medicine, 24(9): 1342–1350.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Divvala, S. K.; Hoiem, D.; Hays, J. H.; Efros, A. A.; and
Hebert, M. 2009. An empirical study of context in object
detection. In 2009 IEEE Conference on computer vision and
Pattern Recognition, 1271–1278. IEEE.
Dusenberry, M.; Jerfel, G.; Wen, Y.; Ma, Y.; Snoek, J.;
Heller, K.; Lakshminarayanan, B.; and Tran, D. 2020. Ef-
ficient and scalable bayesian neural nets with rank-1 factors.
In International conference on machine learning, 2782–
2792. PMLR.
Dvornik, N.; Mairal, J.; and Schmid, C. 2018. Modeling vi-
sual context is key to augmenting object detection datasets.
In Proceedings of the European Conference on Computer
Vision (ECCV), 364–380.
Evans, J. S. B. 2010. Intuition and reasoning: A dual-process
perspective. Psychological Inquiry, 21(4): 313–326.

Evans, J. S. B. T.; and Stanovich, K. E. 2013. Dual-Process
Theories of Higher Cognition: Advancing the Debate. Per-
spectives on Psychological Science, 8(3): 223–241.
Frankish, K. 2010. Dual-Process and Dual-System Theories
of Reasoning. Philosophy Compass, 5(10): 914–926.
Gal, Y.; and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, 1050–
1059. PMLR.
Gkioxari, G.; Girshick, R.; and Malik, J. 2015. Contextual
action recognition with r* cnn. In Proceedings of the IEEE
international conference on computer vision, 1080–1088.
Gould, S.; Rodgers, J.; Cohen, D.; Elidan, G.; and Koller, D.
2008. Multi-class segmentation with relative location prior.
International journal of computer vision, 80(3): 300–316.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. 2017. Improved training of wasserstein gans.
arXiv preprint arXiv:1704.00028.
Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017a.
On calibration of modern neural networks. arXiv preprint
arXiv:1706.04599.
Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017b.
On calibration of modern neural networks. arXiv preprint
arXiv:1706.04599.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, 1025–1035.
Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.;
Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates,
A.; et al. 2014. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hendrycks, D.; and Gimpel, K. 2016. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136.
Hendrycks, D.; Mazeika, M.; and Dietterich, T. 2019. Deep
anomaly detection with outlier exposure. In International
Conference on Learning Representations.
Hendrycks, D.; Mazeika, M.; Kadavath, S.; and Song, D.
2019. Using self-supervised learning can improve model
robustness and uncertainty. In Advances in Neural Informa-
tion Processing Systems, 15663–15674.
Hohwy, J. 2013. The Predictive Mind. Oxford University
Press.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 4700–4708.
Jang, U.; Jha, S.; and Jha, S. 2019. On Need for Topol-
ogy Awareness of Generative Models. arXiv preprint
arXiv:1909.03334.

Jha, S.; Jang, U.; Jha, S.; and Jalaian, B. 2018a. Detect-
ing adversarial examples using data manifolds. In MIL-
COM 2018-2018 IEEE Military Communications Confer-
ence (MILCOM), 547–552. IEEE.
Jha, S.; Jang, U.; Jha, S.; and Jalaian, B. 2018b. Detect-
ing adversarial examples using data manifolds. In MIL-
COM 2018-2018 IEEE Military Communications Confer-
ence (MILCOM), 547–552. IEEE.
Jha, S.; Raj, S.; Fernandes, S.; Jha, S. K.; Jha, S.; Jalaian, B.;
Verma, G.; and Swami, A. 2019a. Attribution-Based Con-
fidence Metric For Deep Neural Networks. In Advances in
Neural Information Processing Systems, 11826–11837.
Jha, S.; Raj, S.; Fernandes, S. L.; Jha, S. K.; Jha, S.; Verma,
G.; Jalaian, B.; and Swami, A. 2019b. Attribution-driven
Causal Analysis for Detection of Adversarial Examples.
arXiv preprint arXiv:1903.05821.
Jha, S.; Rushby, J.; and Shankar, N. 2020. Model-Centered
Assurance for Autonomous Systems. In International Con-
ference on Computer Safety, Reliability, and Security, 228–
243. Springer.
Jiang, H.; Kim, B.; Guan, M.; and Gupta, M. 2018. To trust
or not to trust a classifier. In Advances in neural information
processing systems, 5541–5552.
Julian, K. D.; and Kochenderfer, M. J. 2017. Neural network
guidance for UAVs. In AIAA Guidance, Navigation, and
Control Conference, 1743.
Kahneman, D. 2011. Thinking, Fast and Slow. Farrar, Straus
and Giroux.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Kirichenko, P.; Izmailov, P.; and Wilson, A. G. 2020. Why
normalizing flows fail to detect out-of-distribution data.
arXiv preprint arXiv:2006.08545.
Koller, D.; and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2016.
Simple and scalable predictive uncertainty estimation using
deep ensembles. arXiv preprint arXiv:1612.01474.
Lee, K.; Lee, H.; Lee, K.; and Shin, J. 2017. Train-
ing confidence-calibrated classifiers for detecting out-of-
distribution samples. arXiv preprint arXiv:1711.09325.
Lee, K.; Lee, K.; Lee, H.; and Shin, J. 2018. A simple uni-
fied framework for detecting out-of-distribution samples and
adversarial attacks. In Advances in Neural Information Pro-
cessing Systems, 7167–7177.
Liang, S.; Li, Y.; and Srikant, R. 2017. Enhancing the reli-
ability of out-of-distribution image detection in neural net-
works. arXiv preprint arXiv:1706.02690.
Lin, S.-C.; et al. 2018. The Architectural Implications of
Autonomous Driving: Constraints and Acceleration. ACM
SIGPLAN Notices, 53(2): 751–766. (Proceedings of ASP-
LOS’18, Williamsburg, VA).

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European conference
on computer vision, 740–755. Springer.
Liu, J. Z.; Lin, Z.; Padhy, S.; Tran, D.; Bedrax-Weiss, T.;
and Lakshminarayanan, B. 2020a. Simple and principled
uncertainty estimation with deterministic deep learning via
distance awareness. arXiv preprint arXiv:2006.10108.
Liu, W.; Wang, X.; Owens, J.; and Li, S. Y. 2020b. Energy-
based Out-of-distribution Detection. Advances in Neural In-
formation Processing Systems, 33.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach
to interpreting model predictions. In Advances in Neural
Information Processing Systems, 4765–4774.
Majumder, N.; Poria, S.; Gelbukh, A.; and Cambria, E.
2017. Deep learning-based document modeling for person-
ality detection from text. IEEE Intelligent Systems, 32(2):
74–79.
Mandelbaum, A.; and Weinshall, D. 2017. Distance-based
confidence score for neural network classifiers. arXiv
preprint arXiv:1709.09844.
McLachlan, G. J.; and Basford, K. E. 1988. Mixture mod-
els: Inference and applications to clustering, volume 38. M.
Dekker New York.
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y. 2018.
Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957.
Mukhoti, J.; Kirsch, A.; van Amersfoort, J.; Torr, P. H.; and
Gal, Y. 2021. Deterministic neural networks with appropri-
ate inductive biases capture epistemic and aleatoric uncer-
tainty. arXiv preprint arXiv:2102.11582.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with unsu-
pervised feature learning.
Oh, S. J.; Murphy, K.; Pan, J.; Roth, J.; Schroff, F.; and Gal-
lagher, A. 2018. Modeling uncertainty with hedged instance
embedding. arXiv preprint arXiv:1810.00319.
Papernot, N.; and McDaniel, P. 2018. Deep k-nearest neigh-
bors: Towards confident, interpretable and robust deep learn-
ing. arXiv preprint arXiv:1803.04765.
Qu, M.; Bengio, Y.; and Tang, J. 2019. Gmnn: Graph
markov neural networks. In International conference on ma-
chine learning, 5241–5250. PMLR.
Rao, R. P.; and Ballard, D. H. 1999. Predictive coding in
the visual cortex: a functional interpretation of some extra-
classical receptive-field effects. Nature neuroscience, 2(1):
79–87.
Ren, J.; Liu, P. J.; Fertig, E.; Snoek, J.; Poplin, R.; Depristo,
M.; Dillon, J.; and Lakshminarayanan, B. 2019. Likelihood
ratios for out-of-distribution detection. In Advances in Neu-
ral Information Processing Systems, 14707–14718.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual expla-
nations from deep networks via gradient-based localization.
In CVPR, 618–626.

Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.
Spratling, M. W. 2017. A Review of Predictive Coding Al-
gorithms. Brain and cognition, 112: 92–97.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
attribution for deep networks. In ICML, 3319–3328. JMLR.
org.
Tack, J.; Mo, S.; Jeong, J.; and Shin, J. 2020. Csi: Novelty
detection via contrastive learning on distributionally shifted
instances. Advances in Neural Information Processing Sys-
tems, 33.
van Amersfoort, J.; Smith, L.; Teh, Y. W.; and Gal, Y. 2020.
Simple and scalable epistemic uncertainty estimation using
a single deep deterministic neural network.
von Helmholtz, H. 1867. Handbuch der Physiologischen
Optik III, volume 9. Leipzig, Germany: Verlag von Leopold
Voss.
Wen, Y.; Tran, D.; and Ba, J. 2020. Batchensemble: an alter-
native approach to efficient ensemble and lifelong learning.
arXiv preprint arXiv:2002.06715.
Wiese, W.; and Metzinger, T. K. 2017. Vanilla PP for
Philosophers: A Primer on Predictive Processing. In Met-
zinger, T. K.; and Wiese, W., eds., Philosophy and Predictive
Processing, chapter 1. Frankfurt am Main: MIND Group.
Winkens, J.; Bunel, R.; Roy, A. G.; Stanforth, R.; Natara-
jan, V.; Ledsam, J. R.; MacWilliams, P.; Kohli, P.; Karthike-
salingam, A.; Kohl, S.; et al. 2020. Contrastive training
for improved out-of-distribution detection. arXiv preprint
arXiv:2007.05566.
Zagoruyko, S.; and Komodakis, N. 2016. Wide residual net-
works. arXiv preprint arXiv:1605.07146.
Zhang, Y.; and Chen, T. 2012. Efficient inference for fully-
connected CRFs with stationarity. In 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 582–589.
IEEE.
Zisselman, E.; and Tamar, A. 2020. Deep residual flow
for out of distribution detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13994–14003.

