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Abstract

A robust body of reinforcement learning techniques have
been developed to solve complex sequential decision mak-
ing problems. However, these methods assume that train
and evaluation tasks come from similarly or identically dis-
tributed environments. This assumption does not hold in real
life where small novel changes to the environment can make
a previously learned policy fail or introduce simpler solutions
that might never be found. To that end we explore the con-
cept of novelty, defined in this work as the sudden change to
the mechanics or properties of environment. We provide an
ontology of for novelties most relevant to sequential decision
making, which distinguishes between novelties that affect ob-
jects versus actions, unary properties versus non-unary rela-
tions, and the distribution of solutions to a task. We introduce
NOVGRID, a novelty generation framework built on Mini-
Grid, acting as a toolkit for rapidly developing and evaluat-
ing novelty-adaptation-enabled reinforcement learning tech-
niques. Along with the core NOVGRIDwe provide exemplar
novelties aligned with our ontology and instantiate them as
novelty templates that can be applied to many MiniGrid-
compliant environments. Finally, we present a set of met-
rics built into our framework for the evaluation of novelty-
adaptation-enabled machine-learning techniques, and show
characteristics of a baseline RL model using these metrics.

Introduction
There exists a robust body of machine learning techniques–
including but not limited to imitation learning and reinforce-
ment learning–that can be used to form learning models of
agent behavior in complex sequential decision making envi-
ronments. These techniques can be generally applied to find
an optimal policy that solves nearly any problem that can
be modeled as a Markov Decision Process, and the policies
can be anything from simple look-up tables to Gaussian Pro-
cesses and Deep Neural Networks (Engel, Mannor, and Meir
2005; Sutton and Barto 2018).

However, success in these learning methods shares a com-
mon assumption: the stochastic process used to model the
environment is equivalent in both training and evaluation.
While this train-test similarity assumption holds in some
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Figure 1: Illustrative example of NOVGRID. Initially the yel-
low key opens the door so the agent (red triangle) can get to
the goal (green box). The agent learns a converged policy.
At a certain time, the yellow key stops working and the blue
key opens the door. The agent’s performance drops off and
recovers (bottom). The blue and red lines are notional learn-
ing curves for agent with and without novelty adaptation,
respectively.

settings, in most real-world cases environments cannot ever
be guaranteed to function the same forever. Whether in en-
vironments related to health care—the industry which the
United States Bureau of Labor Statistics projects to have the
greatest projected labor demand over the next decade—or
freight driving which is an integral part of the modern sup-
ply chain, agents encounter and need to respond to novelty
(BLS 2021). To eventually meet these real-world challenges,
the reinforcement learning research community needs to an-
alyze how well different agents response to a wide variety of
novelties.

We provide three contributions. First, we propose an on-
tology of novelty for sequential decision making that distin-
guishes between object novelties (new or changed properties
of objects) and action novelties (changes in how the agent’s



actions work). Our ontology also relates novelties to goal-
seeking performance, categorizing novelties as to whether
they hinder or facilitate future expected reward. Second, we
introduce NOVELTY MINIGRID (NOVGRID), an extension
of MiniGrid environment (Chevalier-Boisvert, Willems, and
Pal 2018) that allows for the world properties and dynam-
ics to change according to a generalized novelty generator.
The MiniGrid environment is a grid-world that facilitates re-
inforcement learning algorithm development with low envi-
ronment integration overhead, which allows for rapid itera-
tion and testing. NOVGRID extends the MiniGrid environ-
ment by expanding the way the grid world and the agent in-
teract to allow novelties to be injected into the environment.
Specifically this is done by expanding the functionality of
the actionable objects—doors, keys, lava, etc.—already in
MiniGrid and creating a general environment wrapper that
injects novelty at a certain point in the training process. We
provide a number of example novelties aligned with differ-
ent dimensions of our novelty ontology (in addition to al-
lowing developers to create their own novelties). Third, we
propose a set of metrics important to measuring adaptation
to novelty for the evaluation of agents. With these compo-
nents NOVGRID will enable more rapid research progress
on agent novelty adaptation.

In this paper we will first provide a background on nov-
elty adaptation in sequential decision making problems and
its relationship to prior work. We will then discuss the on-
tology of novelties organized by the different characteris-
tics we understand as most important to sequential decision
making agents. After this, we detail the ways NOVGRID en-
vironment was designed and how the provided novelty im-
plementations enable research on each part of this ontology.
Finally we describe the metrics used to test novelty and some
sample performance of the system.

Novelty Background and Related Work
In this section we discuss some of the background and mo-
tivation for novelty adaptation as a research challenge.

Novelty can be described in the context of differences in
an environment over a period of time and associated capabil-
ities to detect and respond to those changes (Langley 2020).
Boult et al. (2021) looks to unify the study of novelty both
sequential decision making and traditional machine learning
domains, categorizing novelties broadly as world novelties,
agent novelties, and observation novelties. By Boult et al.
definition, world novelties are changes in the objects and
dynamics of the world external to the agent as well as the
agent’s abilities to affect change on the world. Agent nov-
elties are those where the agent’s state does not align with
the agent’s prior understanding of the world and/or can be
classified by the agent as a novelty. Observation novelties
are those where a sense-making tool external to the agent
(e.g., a sensor) is subject to changes in the environment, such
as when a camera or radar signal experiences deterioration
from use or unexpected interference.

It is important to note concepts and research areas that
should not be confused with or included in novelty. Nov-
elty and novelty adaptation is not equivalent to methods re-
lated to outliers like outlier detection or rejection—outliers

assumes a priori some correct or expected distribution,
where the points or behaviors that lie outside that distribu-
tion are aberrant behavior. By contrast, novelty is a sudden
change that changes the environment distribution unexpect-
edly (2007).

Novelty adaptation is also different from continual learn-
ing or lifelong learning. In continual and lifelong learning
there exists a sequence ”tasks”, each of which could be dif-
ferent environments, datasets, or novel classes. These tasks
can be overlapping, task boundaries don’t have to be well-
defined, and can include a mixture of supervised and unsu-
pervised data, but in most cases these tasks are disjoint and
task boundaries are known and discrete (Parisi et al. 2019;
Silver, Yang, and Li 2013; Smith et al. 2021). Most dis-
tinctly, in continual learning the model is trained on only
one task at a time but validated on that task and all prior
tasks. Novelty adaptation, on the other hand, only requires
the agent to perform well at the task at hand, so before the
introduction of the novelty the agent is evaluated only on the
pre-novelty world and then only on post-novelty world after
novelty is introduced.

Novelty adaptation is a superset of domain shift and do-
main adaptation. Domain adaptation in sequential decision
making problems specifically addresses problems where
training and deployment have the same feature space but
different distributions over that feature space (Zhang et al.
2019; Sun, Shi, and Wu 2015). Additionally, this research
domain usually assumes that the agent must adapt to this ex-
tremely quickly–few shot domain adaptation–or simply be
robust to these changes–as in zero-shot domain adaptations.
By this definition, domain shift and domain adaptation are
one aspect of novelty and novelty adaptation, but novelty
goes beyond this by also including variation of the funda-
mental dynamics of an environment and the agent interac-
tions as well.

The closest analog to novelty adaptation is transfer learn-
ing. Given a set of source or training tasks and a target task,
transfer learning aims to learn an optimal policy for the tar-
get domain leveraging what it learned from the source do-
mains as well as what it has access to in the target domain
(Zhu, Lin, and Zhou 2021). While there are some works that
focus on variants like zero-shot transfer learning–most no-
tably research focused on transferring from a simulation to
the real world–for the most part transfer learning is stud-
ies the mechanics of model reuse and fine tuning (Higgins
et al. 2017). That is to say: given an already trained model
trained on a certain task, how would one reuse this model
in a new task where this new task can range from being a
subtask of the original task to being completely unrelated.
In novelty adaptation on the other hand is the pre-novelty
and post-novelty tasks are always related by a (usually real-
istic) transformation. While transfer learning optimizes the
reuse of a learned model with no constraints on the rela-
tionship between source and target tasks and by any means
necessary, novelty adaptation optimizes for adaptation per-
formance and efficiency online given the knowledge that a
realistic transformation between source and target exists.

We are not the first to investigate the characterization
and evaluation of novelty adaptation in sequential decision



making problems. Pimentel et. al. (2014) conducted a com-
prehensive survey of novelty detection that characterized
novelty types. There has also been a small amount of re-
search that studies how agents might more effectively adapt.
Approaches range from adaptive mixed continuous-discrete
planning to knowledge graphs have been used in combina-
tion with actor-critic reinforcement learning techniques to
improve both detection and adaptation (Klenk et al. 2020;
Peng, Balloch, and Riedl 2021). Recently there have even
been strong efforts to formulate a unified theory of novelty
detection and novelty characterization, and to conceive a
metric with which the degree of all novelties can be mea-
sured (Boult et al. 2021; Langley 2020; Alspector 2021).
There also has been people who have worked on problems
extremely relevant to the space of novelty and novelty adap-
tation without being aware of the novelty adaptation space,
such as work on adaptation “hidden” domain shifts (Chen et
al. 2021).

Most similarly to this work there has been recent work
on environments for novelty detection, characterization,
and adaptation in sequential decision making problems.
The GNOME Monopoly environment examines multi-agent
gameplay in a long term multi-faceted strategic context,
while Science Birds has a fewer number of timesteps and
in each episode by examining both observational and world
novelties (Kejriwal and Thomas 2021; Gamage et al. 2021).
In both cases, an implementation is provided for outside
users. These works set a firm foundation for studying nov-
elty, but what NOVGRID uniquely provides are highly ex-
tendable implementations what can be applied to any Min-
iGrid environment with an OpenAI Gym interface, and it
provides a standard set of novelties provided with the im-
plementations making it easy for researchers to benchmark
progress through time.

An Ontology of Novelty for Sequential
Decision Making

We model sequential decision making problems as having
two fundamentally different types of entities: agents and the
environment, which we model as as interacting in a stochas-
tic game—a multi-agent generalization of Markov Decision
Process (MDP). The injection of novelty constitutes a trans-
formation from the original game or MDP M to a new game
or MDP M ′. Given this model of environments, we consider
all aspects of the problem except a agent’s decision making
model to be property of the environment. This includes agent
morphology, sensors, and action preconditions and effects.
As a result, the ontology we lay out here can be considered a
specification of Boult et. al.’s world novelties in the context
of sequential decision making problems.

With this model of the environment we assume that each
agent’s observation space and action space remains consis-
tent before and after novelty is injected. That is, the num-
ber of actions and the size and shape of observations are
consistent throughout each experiment. That said, the man-
ifestation of these fixed sets may change; actions that ini-
tially have some specific effect or no effect pre-novelty can
take on different effects post-novelty. Likewise, there may

be observations and states that never occur pre-novelty that
start to occur post-novelty. This is consistent with a robotics
perspective on MDPs where actions and observations are
governed by an underlying physics of the real world, even
though we experiment within grid worlds and games (Kejri-
wal and Thomas 2021; Gamage et al. 2021).

We assume that the agent’s mission T is consistent be-
fore and after the novelty, meaning that we do not consider
changes to the extrinsic agent rewards. While changes to the
goal and reward structure of an agent are indeed important
in the real world, this is closely related to continual lifelong
learning and multitask learning. The integration of novelty
adaptation with these fields is left to future work.

We characterize novelties along three dimensions. The
first dimension is object vs action novelties. Objects are
any component of the environment that is not controllable.
This includes keys, doors, balls, etc. Object novelties in-
volve changes to, or the introduction or removal of, ob-
jects or classes of objects. Actions are the ways in which
the world is affected by controllable entities. Action nov-
elties involve changes in the dynamics of actions through
which the state of the world is affected. Action novelties
can involve changes in the preconditions of actions—the ap-
plicability criteria of actions—or action effects—the way in
which the world is changed when an action is executed.

Second, novelties can be expressed as changes to unary
predicates or non-unary (or n-ary where n > 1) relations.
Unary object novelties can be thought of as added, removed,
or changes to intrinsic properties of objects like mass, vol-
ume, or shape. Non-unary object novelties are changes in
the relationship between objects, which is to say proper-
ties of objects that are necessarily defined in the context of
other entities. Unary and non-unary action novelties involve
(a) the addition, removal, or change of properties of objects
required for action applicability, or (b) changes to the prop-
erties of objects or changes to the relationship between ob-
jects.

Third, we observe that novelties can be categorized ac-
cording to how they change the distribution of solutions to a
task:

• Barrier novelty—the optima in the solution distribution
are longer after novelty than before novelty. For example:
a door the agent must pass through to achieve a goal ini-
tially required one key pre-novelty but requires the agent
to possess two keys simultaneously post-novelty.

• Shortcut novelty—the optima in the solution distribution
are on average shorter after novelty than before novelty.
For example, a door that required a key pre-novelty then
does not require any keys post-novelty.

• Delta novelty—the optima in the solution distribution are
the same before and after novelty injection. For example,
a door that required one key pre-novelty then requires a
different key post-novelty.

Novelty MiniGrid
NOVGRID is built around an OpenAI Gym Wrapper and
designed to be compatible with all MiniGrid environments.



Barrier Delta Shortcut

Objects
Unary DoorLockToggle GoalLocationChange DoorLockToggle

unlocked→locked locked→unlocked

Non-Unary DoorNumKeys DoorKeyChange ImperviousToLavaNumKeys=1→NumKeys=2

Actions
Unary ActionRepetition ColorRestriction ActionRadius

PickCommands=1→PickCommands=2 YellowOnly→BlueOnly PickDistance=1→PickDistance=2

Non-Unary TransitionDeterminism Burdening ForwardMoveSpeed
Deterministic→Stochastic ForwardStep=1→ForwardStep=2

Table 1: Novelty Ontology Exemplars

This means that NOVGRID additionally works as a jumping-
off point to evaluate any of the many 3rd-party environments
based on MiniGrid. This novelty adaptation package has
three fundamental components: a novelty injection mecha-
nism built into the core wrapper class, new and modified
objects and entities to work with the novelty ontology as we
described, and the novelty generator as well as the sample
novelties we have to exemplify our ontology.

The core novelty injection system is designed to be simple
so that it is applicable to as many MiniGrid environments
as possible. The wrapper wraps the environment, and no
arguments are required besides the environment, but users
can also specify the novelty injection episode,
the episode in which novelty is injected. Given a model in
train mode, MiniGrid resets its grid at the beginning of every
episode with the reset function being called against the
environment, which in turn calls the function gen grid.
Our novelty injection wrapper monitors the training cy-
cle, and when the novelty injection episode
is reached the wrapper class switches to using al-
ternatives for the reset and gen grid func-
tions. Specifically, after the novelty injection episode,
the system now uses post novelty reset and
post novelty gen grid. This allows the wrapper to

quickly and easily load in and overwrite the old environment
with the new one.

As each novelty is different the
post novelty gen grid method in the base Nov-

eltyWrapper class is only an abstract method that acts as
a template. Each implementation of a novelty for testing
adaptation requires an implementation of a class that
inherits from this NoveltyWrapper and implements the
post novelty gen grid method. To exemplify both

this process and the novelty ontology that we describe in
Section we have built 11 exemplar novelties that together
cover all of the different categories of our ontology. This
way all researchers using NOVGRID can test their agent’s
adaptation sensitivity to different parts of the novelty
ontology. The novelties delivered with NOVGRID and how
the respective objects would usually work in MiniGrid are:

• GoalLocationChange: This novelty changes the location
of the goal object. In MiniGrid the Goal object is usually
at fixed location.

• DoorLockToggle: This novelty makes a door that is as-
sumed to always be locked instead always unlocked and
vice versa. In MiniGrid this is usually a static property.

If a door that was unlocked before novelty injection is
locked and requires a certain key after novelty injection,
the policy learned before novelty injection will likely to
fail. On the other hand, if novelty injection makes a pre-
viously locked door unlocked, an agent that does not ex-
plore after novelty injection may always still seek out a
key for a door that does not need it.

• DoorKeyChange: This novelty changes which key that
opens a locked door. In MiniGrid doors are always un-
locked by keys of the same color as the door. This means
that if key and door colors do not match after novelty,
agents will have to find another key to open the door.
This may cause a previously learned policy to fail until
the agent learns to start using the other key. This novelty
is illustrated in Figure 1.

• DoorNumKeys: This novelty changes the number of keys
needed to unlock a door. The default number of keys is
one; this novelty tends to make policies fail because of
the extra step of getting a second key.

• ImperviousToLava: Lava becomes non-harmful,
whereas in Minigrid lava always immediately ends the
episode with no reward. This may result in new routes to
the goal that potentially bypass doors.

• ActionRepetition: This novelty changes the number of
sequential timesteps an action will have to be repeated for
it to occur. In MiniGrid it is usually assumed that for an
action to occur it only needs to be issued once. So if an
agent needed to command the pick-up action twice before
novelty but only once afterwards, to reach its most effi-
cient policy it would need to learn to not command pickup
twice.

• ForwardMovementSpeed This novelty modifies the
number of steps an agent takes each time the forward
command is issued. In MiniGrid agents only move one
gridsquare per time step. As a result, if the agent gets
faster after novelty, the original policy may have a harder
time controlling the agent, and will need to learn how to
embrace this change that could make it reach the goal in
fewer steps.

• ActionRadius: This novelty is an example of a change to
the relational preconditions of an action by changing the
radius around the agent where an action works. In Mini-
Grid this is usually assumed to be only a distance of one
or zero, depending on the object. If an agent can pick up
objects after novelty without being right next to them, it



will have to realize this if it is to reach the optimum solu-
tion.

• ColorRestriction: This novelty restricts the objects one
can interact with by color. In MiniGrid it is usually as-
sumed that all objects can be interacted with. If an agent is
trained with no blue interactions before novelty and then
isn’t allowed to interact with yellow objects after novelty,
the agent will have to learn to pay attention to the color of
objects.

• Burdening: This novelty changes the effect of actions
based on whether the agent has any items in the inven-
tory. In MiniGrid it is usually assumed that the inventory
has no effect on actions. An agent experiencing this nov-
elty, for example, might move twice as fast as usual when
their inventory is empty, but half as fast as usual when in
possession of the item, which it will have to compensate
for strategically.

• TransitionDeterminism: This novelty changes the like-
lihood with which that actions selected by the agent oc-
cur. In MiniGrid it is usually assumed that all actions
are deterministic. If an agent is trained with deterministic
transitions before novelty and then experiences stochastic
transitions after novelty, it will need to learn to take safe
routes to the goal or its policy will fail more often

In Table 1 we map each of the exemplar novelties to di-
mensions in our novelty ontology. To implement these nov-
elties we also had to design custom versions of different
standard MiniGrid objects, and these custom objects are also
all included with NOVGRID.

Evaluation and Baseline
In novelty adaptation the core considerations by which we
measure whether an agent adapted successfully involve not
only performance on the task, but also the way the agent
reacts to the novelty and the speed with which it recovers.
To that end, we built the following metrics into NOVGRID:

• Resilience: the difference in performance between a ran-
dom agent and a pre-novelty agent when evaluated on
the post-novelty domain without any adaptation. This rep-
resents the drop-off in performance when novelty is in-
jected, relative to the performance of a random agent. A
resilient agent may not encounter significant decrease in
performance as in the case where the novelty is a goal
location change and the agent has been trained on ran-
domized grids. Barrier novelties may result in perfor-
mance dropping to theoretical minimums. Shortcut novel-
ties may result in no performance drop-off, but a random
agent may experience greater reward.

• Asymptotic adaptive performance: final converged perfor-
mance post novelty above random. This is what would
simply be considered the converged performance of the
agent in an environment with no novelty.

• Adaptive efficiency: the number of environment interac-
tions required for post-novelty convergence.
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Figure 2: Several of the evaluation metrics illustrated against
a notional performance curve for an agent.

• One-shot adaptive performance: the performance of the
agent post-novelty after only one episode of interaction
with the environment.

To demonstrate the way in which NOVGRID can be
applied to the activity of sequential decision makers, we
trained a reinforcement learning agent and the presence of
novelty and measured its performance based on the metrics
listed above. Specifically, we used the DoorKeyToggle
novelty in an environment with 2 keys and 1 door on a 6x6
grid. It is set up so that before novelty injection the door is
opened with one key and after it is opened with the other.
The agent was trained as a proximal policy optimization
deep reinforcement learning agent with a convolutional neu-
ral net feature extractor and two fully connected output net-
works, one to estimate the value and one to serve as the pol-
icy functions of the agent.

The agent was allowed to train for 500k time steps over
just shy of 2000 episodes, at which point novelty was in-
jected. As we can see in Figure 3 there is a precipitous
drop in performance demarcating the novelty injection at
this point. The agent is then able to train further for 500k
time steps, yielding a more complete picture of the novelty
adaptation of this agent. This baseline agent has no nov-
elty adaptability other than to continue learning using the
extrinsic rewards that is provide by the environment. As a re-
sult, this represents a lower-bound against which to compare
future novelty-adaptive agents. As illustrated in Figure 3,
progress manifests itself as faster restoration of asymptotic
maximum.

The results shown in Figure 3 plot shows the progres-
sion of the agent learning from scratch in the original en-
vironment, experiencing the novelty, and then adapting to
the novelty of the changed key. The random agent to which
this agent is compared only every receives zero reward for
this environment and task. Examining the drop in perfor-
mance where the novelty was injected at the 500k timestep
(indicated by the vertical red dotted line) we can see low re-
silience of the baseline agent, with a resilience value of only
0.0531. Not visible on this map is the one-shot performance,
or performance after one update over one full episode, which
is actually reasonable at 0.22 . This tells us that the base-
line reinforcement learning agent, while not efficient at get-
ting to optimal post-novelty performance, has some promise
as a starting point. Looking at the yellow line we can see
the adaptive efficiency which only converges around 300k



Figure 3: PPO baseline in NOVGRID using the
DoorKeyChange novelty. The plot shows the pro-
gression of the agent learning, experiencing the novelty,
and then adapting to the novelty. The blue line indicates the
learning process before novelty. The novelty was injected
at the 500k timestep, as indicated by the vertical red dotted
line. The yellow line shows adaptation to the novelty, which
only converges around 300k timesteps after the novelty
injection. This is expected as this baseline has no means of
adaptation besides simply continuing to learn.

timesteps after the novelty injection, and the adaptive per-
formance converges to a lower 0.8 reward. This from this
we can tell that the agent is not effective at adapting, but ex-
pected as this baseline has no means of adaptation besides
simply continuing to learn.

Given that PPO is an algorithm that is near-state of the art
in many reinforcement learning tasks, this experiment serves
as an important demonstration of how much more needs
to be researched in novelty adaptation. Future solutions to
novelty adaptation can seek better resilience, adaptive effi-
ciency, asymptotic adaptive performance, or even one-shot
adaptive performance as there is much room for improve-
ment in all of these areas.

Future Work
Novelty in sequential decision making is a rich space that
promises to enhance robustness of agents in virtual worlds
in anticipation of operation in the real world. There are a
number of ways that the ontology and the way it manifests
itself in NOVGRID can be enhanced in future iterations as
research in this space matures. When it comes to novelties,
the two major axes of novelty undressed by this work have
to do with the (a) local or global application of novelties and
(b) populations of agents, including the behaviors of exter-
nal agents. When we differentiate local and global novelties,
we mean to say that novelty can affect individual entities or
instances as well as any entities or instances of a certain type
or class; agents will react differently if a novelty changes the
way all doors operate as opposed to the way one door oper-
ates. However, we have not yet factored that dimension into

NOVGRID.
Observation of other agents performing the same or re-

lated task can have implications on novelty adaptation.
When agents are acting in the presence of other agents it
has a powerful effect on the long-term performance of the
agent as well as the learning ability of the agent. For exam-
ple, if agents are competing for the same resources to reach
the same goal this affects the strategy agents will take to
reach that goal, and agents can use other agents effectively
as a source of exploration when external agents do some-
thing that it originally thought was not possible. Indeed, this
may be a significant way in which novelty-adaptive agents
detect and adapt to shortcut novelties.

Another way that other agents factor into novelty is in
adversarial settings where the novelty may be a change in
the behavior or strategy of the adversary, up to and including
adversaries becoming cooperative or vice versa.

Beyond and expanded novelty ontology, additional mea-
surement and quantification of novelty is an important fu-
ture direction for NOVGRID. Measuring the difference be-
tween these distributions of novelties is key among these
measures as allows comparison between different novelties.
There are many ways to quantify differences in distribution,
common among them Shannon Jensen divergences like KL
divergence, and metrics like the earth-movers distance. Ad-
ditionally, very recent work has examined using fixed agent
baselines to characterize differences in distribution, as well
as metrics of mutual information and edit distance. Integrat-
ing metrics like these would be extremely valuable addi-
tions to NOVGRID as it would enable researchers to not only
compare these novelties, but also to set expectations of nov-
elty adaptation based on the distribution differences. Along
this same thread integrating metrics of novelty detection and
characterization into NOVGRID may be of great interest to
want to study these subproblems in the context of sequential
decision making problems.
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