Measurement of Novelty Difficulty in Monopoly

KMA Solaiman, Bharat Bhargava

Purdue University, West Lafayette, IN, USA
ksolaima@purdue.edu, bbshail @purdue.edu

Abstract

Novelties in learning algorithms are inherently different than
anomalies and outliers. Novelty characterization and detec-
tion need to focus and differentiate between these terms. In
recent times, DARPA Science of Artificial Intelligence and
Learning for Open-world Novelty (SAIL-ON) project has
shown advancement in novelty frameworks that discuss nov-
elty characterization, detection and response for learning al-
gorithms in perceptual and action domains. In this work, we
implement one of the Novelty Measurement framework in a
multi-agent multi-goal based agent domain. First, we break-
down the framework with the goal of implementation and
testing for the Monopoly domain. Secondly, we propose a
graph representation of the monopoly environment to be used
as an effective representation of the agents mental model. Fi-
nally, we extend the learning framework of a reinforcement
learning based agent to augment the state representation with
the graph mental model. Experiments show the empirical cal-
culation of the novelty difficulty according to the framework.

Motivation

(Alspector 2021) considered adaptation to novelty as a skill
to learn to change by augmenting already existing skills for
reacting to unfamiliar situations. They proposed the amount
of edit to an effective representation in agent’s mental mod-
els as a measure of difficulty for adaptation to novelty, de-
fined as representation edit distance (RED). For the selection
of an effective representation, they proposed different vari-
ants of representations i.e., neural nets, functions, or knowl-
edge graphs. Our goal was to test this framework for adapta-
tion and prediction of novelty in a multi-agent based domain
- Monopoly. We breakdown the task into the following mod-
ules.

* Establish a representation for agent’s mental model.

* Determine when the representation adequately describes
the agent’s mental model both in pre-novelty and in post-
novelty to be considered as an effective representation.

* Include an optimization procedure for the agent to search
for graph changes that could adapt to the generated nov-
elties. Consequently, there should a method to detect the
violation of expectation.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 Calculate the amount of edit that was needed for the ef-
fective representation to adapt to the novelty.

Monopoly is an adversarial multi-agent domain where
agents have to make multiple decisions during the game.
Even for a simple rule-based agent in Monopoly, the en-
vironment, rule, and action space is very large. Defining
an effective representation for Monopoly, which could be
edited for re-learning skills during introduction of a novelty
is a difficult task. We used a combination of two variants of
Monopoly agent to test this framework - 1) GNOME (Ke-
jriwal and Thomas 2021), a rule-based fixed policy agent
simulator, and 2) a deep reinforcement learning based agent
(Haliem et al. 2021). Our initial intuition was - a concept
graph would be a good effective representation for agent’s
mental model in the monopoly environment. The main con-
tributions of this work are summarized as follows:

1. We breakdown an information theoretic framework for
novelty measurement into multiple modules to empiri-
cally calculate the difficulty of novelty in an application
domain, specifically Monopoly.

2. We proposed a methodology to build a graph representa-
tion of the Monopoly environment - concept graph. The
graph is built on the smallest atomic units that can com-
bine or derive to create new atomic units to deal with the
novelties introduced in the application domain. We de-
note these smallest atomic units as concepts.

3. We compare the distance between the proposed graph
representations before and after the novelty introduction
for rule-based and reinforcement learning based agents
in Monopoly, without any additional learning.

4. Finally, we propose a methodology to include the con-
cept graph as a state representation for a reinforcement
learning based monopoly agent, with the goal to learn
the optimal representation of the Monopoly environment
on which the edit distance can be computed as a metric
of novelty difficulty.

Methodology

Concept Graph for Monopoly. We posit that the pre-
novelty and post-novelty concept graphs are correlated. Fol-
lowing the idea of augmenting the existing skills in RED
framework, the post-novelty graph has to be built on the de-
rived concepts in pre-novelty graph. Concepts should be de-

Figure 1: A snapshot of the Concept Graph for Monopoly.

composed into smaller atomic units that can create new con-
cepts for the post-novelty world. Following this criterion, the
representation would be defined as a pseudo-optimal rep-
resentation. To begin with, we consider the concept graph
to be a view of the environment from the agent’s perspec-
tive. For monopoly, the world space and observation space
can be considered to be the same in this environment (Boult
et al. 2021). In (Kejriwal and Thomas 2021), the monopoly
environment is described as a key-value schema. We build
our concept graph from the tree-view of the schema. We
have improved on the concepts derived from the schema for
decomposing to smaller atomic units. In the simulator, the
board is initialized with primary objects in the environment,
i.e., location, agents, players, dice, bank, cards. Each of the
primary object has attributes. For example, location has at-
tributes such as, owner, is mortgaged, owned by, number of
houses/hotels. In the concept graph, the primary objects be-
come the nodes, while the attributes are relations, and the
attribute values become the leaf nodes. Most attributes in
the environment have discrete values. Cash, rent and prop-
erty prices are continuous values and needed to be binned.
Figure 1 shows part of the concept graph that we built for the
game. Values of the nodes change as the game progresses.

Since monopoly is a multi-agent decision optimization
problem, we choose to pick one agent as the perceptual agent
and the other agents are recorded as part of the environment
configuration for the perceptual agent. Since we are using
graph as initial representation, according to the definition in
(Alspector 2021), we chose graph edit distance (GED) as the
RED approximation method. For the simulator in (Kejriwal
and Thomas 2021), novelties are introduced during a tourna-
ment, not during the game. So, for computation of novelty
difficulty, we compare between pre-novelty and post-novelty
tournament outcomes where each tournament consists of N
number of games.

Comparison of Representations without Learning. Ini-
tially we wanted to compare the trend change in the repre-
sentation edit distance for Monopoly agent’s mental model
with the introduction of different novelties, irrespective of
the representation being effective. Following the novelty in-
troduction policy in (Kejriwal and Thomas 2021), we have
two different concept graphs to compare for the representa-
tion edit distance in a rule-based fixed policy agent frame-
work. There are two different design choices that we had to
make before we compared the pre-novelty vs post-novelty
representations.

* During a tournament, there are multiple turns for each
player until one of the players monopolize. This creates
multiple graph representations of the environment. So we
needed to choose which representation we will compare.

* Since it is a multi-agent environment, we needed to de-
cide which agents’ representation change will be de-
tected. We fix the random seed that controls the ran-
domness during the simulation for pre-novelty and post-
novelty games, and choose the same agent in both cases
to compare.

Problem Description. Let us consider G, and Gpost to
be the pre-novelty and post-novelty graph representations,
respectively. There are m number of turns in a pre-novelty
game and n number of turns in a post-novelty game. So pre-

novelty mental models are G}, G3,., ... G, and post-
novelty models are Gzlmst, Gfmt, .. Gpost- Ateach turn dur-

ing a single game as the concept graph changes accord-
ing to the current values of the concepts. There are two
types of change that takes place - static and dynamic. Cur-
rent player cash or dice sequence are some of the dynamic
properties that changes through each game turn. Property
rent/ price, or location color are static concepts in the graph.
We compare the GED between pre-novelty graph and post-
novelty graph representation at each turn £, i.e., G’;,.e Vs
G o> where k < min(m,n). If we have two novelties,
novelty, and noveltys, and by the difficulty metric spec-
ified in the respective domain, if novelty; is harder to
adapt than noveltys, then the expected outcome is (G’;Ts \&
G ot)novetty, < (Ghoo vs GE, Y noveiry, We present the
results of this experiment in Figure 2.

===Dice Novelty ===Inanimate Attribute Novelty Granularity Novelty
600
i 500
i & 400
[e}
3 300
@ 200
O]
' 100
0

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
TURN#

Figure 2: GED Scores between concept graphs from turns in
a pre-novelty and a post-novelty Monopoly game.

Since Monopoly is a decision problem, rather than a clas-
sification problem and at each turn the agent decides on
the best possible action, encoding the action in the concept
graph should more clearly reflect the differences between
pre-novelty and post-novelty environments. So we propose
another variant of the concept graph where each time-step
would be nodes and each edge would be an action that the
agent takes. The final variant of the concept graph will en-
code both the environment and the actions of the agent. The
agent would become the root with two edges - environment,
and actions. Each branch would consist of the environment
and action graph described previously.

Learning the Optimal Representation. The framework
in (Alspector 2021) needs the representation to adequately
describe the agent’s mental model. We posit that it would
be approximate to the concept graph for Monopoly, with
the agent learning the best decision during game-play, and
as a result learning the representation. In (Haliem et al.
2021), the agent is introduced as a Deep Q-network (DQN)
based RL agent that learns winning strategies for Monopoly
against different fixed policy agents. They design the game
as a markov decision process (MDP) defined by the tuple
< S, A, T, R > where S is the set of all possible states and
A is the set of all possible actions. The transition function 7
is the probability that an action a € A in state s € S will
lead to a transition to state s’ € S. The reward function R
defines the immediate reward that an agent would receive af-
ter executing action a resulting in a transition from state s to
s’. For state space representation, (Haliem et al. 2021) used
a 240-dimensional vector where 16 dimensions are for the
player representation and 224 dimensions are for the prop-
erty representation.

Concept Graph as State Space for DQN based Monopoly
Agent. For encoding graphs as state representation, first, we
encode the node of each graph into a vector, encoding the
structural properties around each node. To compute graph-
level embedding, we aggregate the node-level embedding
using the average or the attention strategy. The final graph
embedding is passed as state value in the experience tensors
of the DQN agent, as shown in Figure 3.

Among the existing state-of-the-art approaches for graph
neighbor aggregation, we adopt Graph Convolutional Net-
works (GCN) (Kipf and Welling 2016), because it learns
an aggregation function that is representation-invariant and
can be applied to unseen nodes. GCN calculates the graph
convolution from the representation of a node, u,,. In Fig-
ure 3, different colors represent different node types, and
initially we represent the nodes with the concatenation of
the one-hot-encoding of attribute values and node types. Be-
fore running the game with DQN agent, we simulate the
game with rule-based-agents and collect the game log to cre-
ate a dictionary of all possible attribute values. Finally, the
nodes are initially represented with a 1059-dimensional vec-
tor. After multiple layers of GCNs, the node embeddings are
ready to be fed into the Attention module (Att). After pass-
ing through the final GCN layer, the node embeddings are
mapped to the dimensions of the filter size of the final layer.
In our experiments, we use a final filter size of 32. So from
1059-dimensional vector, we get a 32-dimensional node em-
bedding. We used the same global context-aware attention
mechanism as described in (Bai et al. 2019) to gather the
graph embedding.

Metrics of Effectiveness. After we have included the
agent’s mental model as part of the state-action-reward
learning of the DQN agent, we needed to decide when a
representation becomes effective post-novelty. The thresh-
old for adequate post-novelty models should be chosen ac-
cording to the learning model. The objective functions in a
learning model reflect the performance metric which is used
to determine the better model. For example, in Monopoly,

the percentage of wins against other agents decide which is
the better learning agent. For monopoly, we can either use
the percentage of wins against other agents, or the number
of games for pre-novelty convergence to determine a post-
novelty model to be effective.

Experiments

Comparison of Representations without Learning. We
introduce three different novelties in the post-novelty game
according to the public simulator ' introduced in (Kejriwal
and Thomas 2021) -

1. Dice novelty - change in number of dices and dice state,

2. Inanimate attribute novelty - change in rent and property
values,

3. Granularity novelty - change in location position, start
sequence, and end sequence.

In Figure 2, each novelty follows a similar trend as the
representations change with each turn. But there is a differ-
ence between the GED scores. Each novelty follow the same
pre-novelty representation. According to that, inanimate-
attribute novelty is the easiest among the three, where gran-
ularity novelty is the hardest to adapt.

Concept Graph as State Space for DQN based Monopoly
Agent. We have ran initial experiments using the RL-
based agent in (Haliem et al. 2021) where the state space
is replaced with the proposed model in Figure 3. We played
the RL-based agent against other rule-based agents. In Fig-
ure 4, we used attention network to aggregate node embed-
ding to graph embedding with 3000 episodes for the tour-
nament, whereas in Figure 5, we used the average of the
node embedding values to calculate the graph embedding
with 6000 episodes for the tournament. In both aggregation
methods used in Figure 4 and 5, we can see irregular results
for average Q-values and average reward. Initially, the per-
formance was better than the standard DRL agent in (Haliem
et al. 2021). Although, initially the model was learning as
seen with the win rates, the performance worsens after a few
thousands of episodes. We will present model improvements
in future works.

Conclusion and Future Work

We have proposed a theoretical foundation and an empirical
method for showing the efficacy of the information-theoretic
framework proposed in (Alspector 2021). For achieving that
goal in Monopoly domain, we have proposed a methodology
to build and use concept graph as a state representation for a
DQN agent. The architecture for learning the concept graph
as the optimal representation of the monopoly environment
has not achieved convergence yet. Application of the frame-
work introduced in (Alspector 2021) to measure novelty
to a practical application domain is not a straight forward
method. It requires following and applying the step-wise
techniques introduced in this work to the specific domain.

"https://github.com/mayankkejriwal/ GNOME-p3

RS —

Att

GCNs

G;

Node-Level
Embeddings

Graph-Level
Embeddings

Figure 3: Concept Graph Embedding as State Representation for DQN-based Monopoly Agent.

Avg Q Values

RL Wins per 1000 games

Avg Reward Values

280

N
&
=1

Avg Q-Values

Avg Wins per 1000 games
N
b
8

N
N
o

Avg Reward-values

s

1500 2000 2500 3000 1000 1250 1500

Episodes

0 500 1000

1500 2000 2500 3000

Episodes

1750 2000 2250 2500 2750 3000 o 500 1000
Episodes

Figure 4: Results for Concept Graph as State Space in Monopoly DQN Agent with Attention Network.

Avg Q Values

RL Wins per 1000 games

Avg Reward Values

Avg Q-Values
W
¥
3

Avg Wins per 1000 games

220

200

180

Avg Reward-Values

3000 4000 5000 6000 1000 2000

Episodes

0 1000 2000

3000 4000 5000 6000

Episodes

3000 4000 5000 6000 0 1000 2000

Episodes

Figure 5: Results for Concept Graph as State Space in Monopoly DQN Agent with average aggregation.

In future, we would need to include an optimization pro-
cedure for the agent to search for graph changes for adapt-
ing to the generated novelties. This would include finding a
search method to detect the violation of expectation. Finally,

we will evaluate the string edit distance on the learned vec-
tor representations or the graph edit distance on the concept
graph to calculate the difficulty of the generated novelties.

References

Alspector, J. 2021. Representation Edit Distance as a Mea-
sure of Novelty. arXiv:2111.02770.

Bai, Y.; Ding, H.; Bian, S.; Chen, T.; Sun, Y.; and Wang,
W. 2019. Simgnn: A neural network approach to fast graph
similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining,
384-392.

Boult, T.; Grabowicz, P.; Prijatelj, D.; Stern, R.; Holder, L.;
Alspector, J.; Jafarzadeh, M.; Ahmad, T.; Dhamija, A.; Li,
C.; etal. 2021. Towards a Unifying Framework for Formal
Theories of Novelty. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 15047-15052.
Haliem, M.; Bonjour, T.; Alsalem, A.; Thomas, S.; Li, H.;
Aggarwal, V.; Bhargava, B.; and Kejriwal, M. 2021. Deci-
sion Making in Monopoly using a Hybrid Deep Reinforce-
ment Learning Approach. arXiv:2103.00683.

Kejriwal, M.; and Thomas, S.2021. A multi-agent simulator
for generating novelty in monopoly. Simulation Modelling
Practice and Theory, 112: 102364.

Kipf, T. N.; and Welling, M. 2016. Semi-Supervised Clas-
sification with Graph Convolutional Networks. CoRR, abs /
1609.02907.

Acknowledgments

This research is supported, in part, by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under the contract num-
ber WI11NF2020003. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA, AFRL, or
the U.S. Government. We thank our team members on this
project for all the discussions to develop this paper. Some
of the ideas in this paper are based on our learning from the
SAIL-ON meetings.

