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Abstract

Detecting and responding to novel and unforeseen situations
is a key capability of human intelligence and remains a major
challenge in modern artificial intelligence (AI). Open-world
learning (OWL), an active and new research area, focuses on
this challenge. However, there is a lack of systematic mea-
sures for evaluating OWL approaches. We address the ques-
tion of how to evaluate the performance of AI methods for
OWL by considering two tasks: Novelty detection and nov-
elty reaction. We (1) argue that existing measures (e.g., accu-
racy, precision, and recall) are inappropriate for these tasks,
(2) propose new performance measures for novelty detection
and novelty reaction, and (3) evaluate them for a sample do-
main where novelty (i.e., an abrupt change in problem distri-
bution) is introduced.

1 Introduction
Functioning in open-world environments (i.e., with novel
and unforeseen situations) is a hallmark of human cognition.
The field of AI has recently focused on creating intelligent
systems that can detect and respond to sudden, long-term
changes in their environment (Langley 2020; Boult et al.
2021). Such changes are very common in everyday situ-
ations. For example, every new item a person buys for a
house is a sudden and a long term change to a household
robot. DARPA has initiated a research program that focuses
on open-world novelty (Senator 2019), which indicates the
importance of this topic. Moving along in the same direc-
tion, domains such as Angry Birds (AIBirds 2021), Poly-
craft (Horner 2020), Monopoly (Baker 2020), and CartPole
(Boult et al. 2021) have been used to create environments in
which an agent can encounter novel situations. Simultane-
ously, AI systems are being developed to detect when a shift
to a distribution occurs and respond appropriately (Klenk
et al. 2020; Jafarzadeh et al. 2020; Schmitt 2020; Peng, Bal-
loch, and Riedl 2021).

Empirical evaluations are critical for assessing and com-
paring the performance of learning algorithms. For exam-
ple, in machine learning, many performance measures have
been proposed to evaluate a model based on the learning
task. Threshold, rank, and probability measures are three
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main groups of measures used for classification tasks (Caru-
ana and Niculescu-Mizil 2006). Similarly, many evaluation
measures are used for regression tasks (e.g., Mean Absolute
Error, Root Mean Squared Error, R-Squared, and Adjusted
R-Squared). Although many measures are already available,
they exhibit limitations under certain circumstances (Yi et al.
2013). Therefore, an evaluator should consider factors such
as the nature of the data, evaluation protocol, and the learn-
ing task when selecting a performance measure.

Appropriate measures for evaluating OWL systems have
not been studied previously but are of critical importance
(Langley 2020). Evaluation measures should characterize
the performance of OWL agents for two tasks. The first,
novelty detection, cannot be evaluated as a typical classifica-
tion task because the measure must quantify both the agent’s
ability to correctly detect the novel problem distribution and
the timeliness of that detection. The second, novelty adap-
tation, concerns the ability of the agent to react to the situ-
ations of the perceived novel distribution. Simply recording
the agent’s task performance is misleading as adaptation de-
pends on the change in problem distribution as well as the
agent’s performance task. Therefore, we propose domain-
independent evaluation measures to quantify agent perfor-
mance for OWL environments.

2 Background
This section briefly describes the meaning of novelty, pro-
poses a protocol to measure agent performance, and dis-
cusses related research to OWL.

2.1 Novelty Definition
Novel problem distributions include situations that violate
implicit or explicit assumptions about the agents, the en-
vironment, or their interactions (SAIL-ON 2019). Follow-
ing this, Langley (2020) highlighted the need for a theory
of novelty on OWL and described example transformations
to the problem distribution that can each be considered as
novel. Moreover, Boult et al. (2021) introduced a unifying
framework that formalizes what it means for a problem to be
considered as drawn from a novel distribution. According to
these formalizations, we introduced novel problem distribu-
tions in an example domain, namely the video game Angry
Birds. Figure 1 shows example novel probem distributions
in Angry Birds.



(a) Normal Angry Birds game environment with different types
of blocks (wood, ice, stone), pigs, and birds

(b) An example novel transformation with a floating pig which
is not available in the normal game environment

(c) An example novel transformation where the representation
of the game environment is changed

(d) Original movements of the
game

(e) Movements after a novel
physical property in stone with
the same shot made in 1d

Figure 1: Example novel problem distributions in Angry Birds. According to Langley’s taxonomy (Langley 2020) 1b is an
example structural transformation: a new category of an object is introduced. 1c is an example spatio-temporal transformation:
it has altered the vision of an agent, and 1e is an example structural transformation: it has altered an existing attribute.

2.2 Evaluation Protocol
It is beneficial to have an agreed-upon protocol to empiri-
cally assess an agent’s performance that can be applied to
different domains. Based on the idea of having agents re-
sponding to sudden, long term changes in the environment
(Langley 2020; Jafarzadeh et al. 2020), we want to com-
pare how agents react when a novel problem distribution
is introduced, whether and how long it takes them to de-
tect this change, and how they can adjust their performance
to successfully react to such distribution changes. We as-
sume that we have state-of-the-art agents, which we call
baseline agents, for operating in a given domain (i.e., on
the non-novel problem distribution). After a problem dis-
tribution changes, we assume that novel distribution persists
in the environment. While baseline agents may not be able
to detect and properly react to novel distributions, we ex-
pect novelty agents to detect, and once detected, to adjust
to novel distributions. Taking these considerations into ac-
count, we propose a general protocol for evaluating agent
performance with novel problem distributions in a given do-
main. We call Dpre the pre-novelty distribution and Dn

post
the post-novelty distribution with a specific (novel) distribu-
tion change n. Following points explains the protocol:

1. Agents are first exposed to a sequence of pre-novelty
(i.e., non-novel) instances drawn from Dpre. The num-
ber of pre-novelty instances is not known to the agent.
Agents can attempt to solve each problem instance once
in the given order. 1

1This design decision ensures that agents do not have the choice
of selecting the order and the agent is always presented with pre-
novelty instances before the post-novelty instances.

2. At some point, the problem distribution switches from
Dpre to Dn

post. We refer to this switch as the distribu-
tion change. All subsequent problem instances are drawn
from Dn

post. The number of post-novelty instances is un-
known to the agent. Agents can attempt to solve problem
instances only once in the given order.

3. For every instance (pre- or post-novelty) i an agent at-
tempts to solve, we record its task performance (e.g.,
score) TSPi and pi, the probability that the agent be-
lieves a distribution change has occurred. Task perfor-
mance reflects how well the agent solves a problem in-
stance; it is a task- and domain-dependent measure.

We refer to the above sequence of pre- and post-novelty in-
stances as a single trial. Tn

j is the jth trial for a given prob-
lem distribution change n. We refer a set of trials with the
same post-novelty distribution as a trial-set. An experiment
is a set of trial-sets. When an agent completes a trial, it is
reset to its initial state before it begins the next trial (i.e.,
agents are permitted to learn throughout a trial, but learned
models are not transferred between trials2). The agent also
reports a detection threshold where each pi exceeding the
threshold indicates a predicted distribution change (i.e., the
agent predicts that a distribution change has occurred).

During the training stage, agents are given problems
drawn from the pre-novelty distribution, but not from Dn

post.
For this paper, we further assume that, in addition to be-
ing distinct, Dpre and Dn

post are disjoint (i.e., that the agents
were not trained on any problem instances from Dpost). Fig-
ure 2 illustrates this protocol.

2This is to ensure that the same agent is tested on all trials
within a trial-set.



Figure 2: Training stage followed by the evaluation stage. An experiment contains trial-sets that are drawn from different novel
distributions. A trial contains variable lengths of problem instances drawn first from a pre-novelty distribution and then from
a post-novelty distribution. We assume the agent is an online learner, and we record its performance throughout a trial. The
agent’s model is reset at the end of each trial to eliminate model transfer.

2.3 Related Research
OWL is related to many other research paradigms (Lang-
ley 2020). For instance, the novelty detection task in OWL
is similar to tasks such as anomaly detection, outlier de-
tection, and out-of-distribution detection (Pimentel et al.
2014; Hodge and Austin 2004; Markou and Singh 2003).
However, the standard performance measures such as ac-
curacy, precision, and recall used for these tasks become
less useful for OWL mainly due to the ordered sequence
of instances present in the OWL protocol. Change detection
problems (Pears, Sripirakas, and Koh 2014; Sebastião and
Gama 2009) that contain a data stream are related to OWL,
and some of the measures we propose are inspired by this
research field. However, unlike OWL, these tasks do not in-
volve a trial setup (detection metrics are discussed in detail
in Section 3.1).

Learning in streams (Lu et al. 2018) and transfer of
learned expertise (Senator 2011) are related to the novelty
reaction task in OWL. However, learning in streams typi-
cally addresses classification tasks and transfer of learned
expertise is used when a change of distribution is informed
(Langley 2020). As OWL is not limited to classification
tasks and as the change in distribution is not informed, mea-
sures in these areas become less useful in the OWL protocol.
Moreover, other paradigms such as few-shot learning (Wang
et al. 2020), zero-shot learning (Wang et al. 2019), and in-
cremental learning (Khreich et al. 2012; Yan, Xie, and He
2021a) do not consist of a change detection task.

3 Evaluation Measures
We discuss an agent’s empirical evaluation using two types
of measures: 1) Detection measures, which quantify the
agent’s ability to detect a problem distribution change, and
2) Reaction measures, which quantify the agent’s ability to
adjust to such a change.

3.1 Detection Measures
Agents that operate in an OWL environment should not
predict a distribution change before the point it changes.
After the change occurs, the agent should quickly iden-
tify that a problem distribution has changed. Figure 3 illus-
trates six possible variations of an agent’s detection perfor-

Figure 3: Estimated probability of the distribution change as
reported by six agents over a single trial.

mance within a single trial. Assuming the detection thresh-
old is 0.5, the perfect agent estimates low probabilities in the
pre-novelty instances and peaks as soon as the distribution
change occurs. Agents 3 and 4 represent two extreme scenar-
ios where Agent 3 believes the pre-novelty distribution to be
novel while Agent 4 believes the post-novelty distribution to
be non-novel throughout the trial. Agent 5 detects the post-
novelty distribution before it is introduced. None of these
agents correctly detect this distribution change. Agents 1 and
2 are desirable, where Agent 1 detects the novel distribution
faster. Thus, our performance measures should ideally cap-
ture the correct identification of the distribution change and
the timeliness of that detection.

Existing Measures Novelty detection - the identification
of dataset instances that do not match well to a known dis-
tribution - is a widely studied problem for learning systems
(Markou and Singh 2003; Marsland 2001). Several mea-
sures have been used to assess the quality of detection such
as accuracy, balanced accuracy (BA), precision, recall, F-
measure, and area under the ROC (Straube and Krell 2014;
Hernández-Orallo, Flach, and Ferri 2012) Table 1 summa-
rizes how each of the existing measures can be formulated
to the OWL protocol. Unfortunately, these measures are less
useful for the novelty detection task in OWL environments
due to the nature of the protocol. The OWL protocol con-



Measure Formulation of the measure
for OWL protocol

Accuracy Accuracy = 1
|T |

∑|T |
t=1 Accuracyt

For each trial, t:
Accuracyt = TPt+TNt

TPt+TNt+FPt+FNt

Balanced BA = 1
|T |

∑|T |
t=1 BAt

Accuracy For each trial, t:
(BA) BAt = 0.5 × (TPRt + TNRt)

where:
TPRt = TPt

TPt+FNt

TNRt = TNt

TNt+FPt

Precision Precision = 1
|T |

∑|T |
t=1 Precisiont

For each trial, t:
Precisiont = TPt

TPt+FPt

Recall Recall = 1
|T |

∑|T |
t=1 Recallt

For each trial, t:
Recallt = TPt

TPt+FNt

F1 F1 = 1
|T |

∑|T |
t=1 F1t

For each trial, t:
F1t = 2×precisiont×recallt

precisiont+recallt

Table 1: Formulation of the existing measures that
can be used in the novelty detection task for OWL.
TPt,TNt,FPt,FNt are true-positive, true-negative, false-
positive, and false-negative in trial t where positives are con-
sidered as post-novelty instances (instances from the post-
novelty distribution) and negatives are pre-novelty instances
(instances from the pre-novelty distribution). T is the trial-
set.

tains ordered data (i.e., a sequence of post-novelty problem
instances that follow a sequence of pre-novelty instances),
whereas there is no such order in (batch) classification tasks.
Moreover, measures derived from a confusion matrix are
affected by the number and proportion of pre- and post-
novelty instances in trials, which can yield misleading per-
formance comparisons. If an agent reports detection starting
from pre-novelty instances in a trial with few pre-novelty in-
stances, measures that are sensitive to class imbalance may
indicate a high performance without penalizing its false de-
tection. Measures that are insensitive to class imbalance,
such as BA, also fail in certain cases. For example, a good
measure should indicate 0 for Agents 3 and 4 in Figure 3
as none of them correctly detect the changed distribution.
However, BA misleadingly indicates 0.5.

Measures such as accuracy and BA depend on the num-
ber of false positive (FP) predictions. However, according
to the protocol, an agent that detects early does not know
how many more pre-novelty instances appear before the

distribution change. Therefore, an ideal detection measure
should not distinguish where an agent’s first detection oc-
curs if it is a FP prediction, all FP detections are equally
problematic for OWL tasks. Otherwise, all measures de-
rived from a confusion matrix suffer from not quantifying
how quickly an agent detects the distribution change. This
makes the OWL task seem similar to change point detection
(Aminikhanghahi and Cook 2017). The measure should ide-
ally capture how many post-novelty problems instances an
agent requires to detect the distribution change. Cumulative
sum control (CUSUM) chart (Page 1954), a statistical qual-
ity control chart, and the activity monitoring operating char-
acteristic (AMOC) curve (Fawcett and Provost 1999), which
is often used to measure the performance of event surveil-
lance systems, are preferable alternatives. However, we can-
not directly use the CUSUM chart as it considers mean
shifts whereas our evaluation considers the detection thresh-
old that the agent provides. AMOC generally evaluates the
trade-off between timeliness of detection and the false alarm
rate (Jiang, Cooper, and Neill 2009). However, in our case
of novelty detection performance, this technique becomes
less useful because AMOC considers the false alarm rate
whereas we are only interested in the presence of FP but
not the FP rate. Change detection problems (Pears, Sripi-
rakas, and Koh 2014; Sebastião and Gama 2009) that gener-
ally consists of gradual multiple changes throughout a data
stream also suggests to evaluate models using false alarm
rate, detection accuracy, and detection delay. As mentioned
earlier, we are concerned with the presence of a FP and not
the rate. Moreover, when the agent indicates a detection in
a data steam with multiple change points, it is not clear if
the agent’s detection is correct unless the detection is made
on the change point. On the other hand, change detection
problems do not comprise of trials as in the OWL protocol.
Inspired by all of these measures, we propose the following
measures to suit our protocol.

Ideal OWL detection measures should be independent of
the number of pre- and post-novelty instances, trial order,
and the number of FP instances. Measures should capture
the correctness and timeliness of detection.

Proposed Measures We propose two measures that avoid
the limitations of standard measures. Ours measure an
agent’s novelty detection ability in terms of its correctness
and timeliness, respectively.

Percentage of correctly detected trials (CDT): A cor-
rectly detected trial is one where an agent predicts that the
distribution has changed among only the post-novelty in-
stances (i.e., there is at least one true positive (TP) but no
false positives (FP)).

CDT = 1
|T |

∑|T |
t=1

{
1, if FPt = 0 and TPt ̸= 0
0, otherwise (1)

where FPt and TPt are the number of false and true positive
detections made in the tth trial, and T is a trial-set.

Average number of instances to detect novelty (IDN):
This quantifies the timeliness of detection using the number
of problem instances required to correctly detect the novel



Figure 4: Distinction between bonus, hazard, and neutral
novelty categories.

distribution.

IDN = 1
Ncdt

∑|T |
t=1

{
nt, if FPt=0 and TPt ̸=0
0, otherwise (2)

where,

Ncdt =
∑|T |

t=1

{
1, if FPt=0 and TPt ̸=0
0, otherwise (3)

and nt is the number of FN instances until the first TP in-
stance in trial t.

These measures can be collectively used to assess an
agent’s ability to correctly detect the novel distribution and
to quantify how quickly an agent detects it. These measures
assume an agent provides a consistent detection (i.e., its esti-
mated probability exceeds the detection threshold only once
and then remains above threshold for the rest of the trial).
This assumption is made according to the OWL task, as we
assume OWL agents are told that a distribution change oc-
curs only once within a trial. However, if this assumption
is violated, we can use the percentage of correctly and con-
sistently detected trials and the number of instances to de-
tect the distribution change consistently. Consistent detec-
tion means all reported probabilities exceed the detection
threshold after the distribution change until a trial ends.

These two measures are independent of trial length, the
number of trials, trial order, the number of pre- and post-
novelty instances and the number of FP instances. They in-
dependently quantify how effective and efficient an agent is
in detecting a distribution change. They can be used to com-
pare the detection performance of multiple agents and across
different distribution changes. However, they do not distin-
guish between trials with FP detections and trials with no
positive detections. If this distinction is important, we can
consider the percentage of wrongly detected trials (WDT)
(i.e., trials with FP detections) as an additional measure.

WDT = 1
|T |

∑|T |
t=1

{
1, if FPt ̸= 0
0, otherwise (4)

3.2 Reaction Measures
Reaction measures are used to quantify an agent’s ability to
adjust to the novel instance distribution. For explanation pur-
poses, we define three novelty categories by considering the

maximum possible performance of an agent on post-novelty
instances (see Figure 4). We refer to a post-novelty distribu-
tion to be a bonus, hazard, or neutral novelty distribution if
the best agents can achieve higher, lower, or roughly equal
performance, respectively, than a baseline agent can achieve
on pre-novelty instances. An ideal reaction measure should
quantify how well an agent adjusts to a distribution irrespec-
tive of the novelty category distribution.

Existing Measures Jafarzadeh et al. (2020) introduced a
measure for open-world classification tasks. However, this
cannot be used in domains such as Angry Birds, where the
performance task is not classification. Moreover, Jafarzadeh
et al. highlight the use of normalized mutual information,
which is not applicable to tasks where performance is mea-
sured in an unbounded numeric scale.

Incremental learning (Yan, Xie, and He 2021b; Ade and
Deshmukh 2013), where the learning process takes place
when new examples emerge, employs three criteria that
should be considered when evaluating models in different
domains: stability, improvement, and recoverability (Syed,
Liu, and Sung 1999). There are no explicit formulations
available as evaluation measures can be defined to suit a
domain satisfying the three criteria. Moreover, there is no
trial setup in incremental learning problems. Other fields
of research such as learning under concept drift (Lu et al.
2018), few-shot learning (Wang et al. 2020), zero-shot learn-
ing (Wang et al. 2019), and transfer learning (Pan and Yang
2010) can be viewed as reaction tasks. However, these fields
use task-specific performance evaluation measures (e.g.,
classification accuracy in few shot-shot learning classifica-
tion tasks, game score in an Atari game with few-shot learn-
ing).

We expect OWL reaction measures to be independent of
the domain, novelty distribution category, trial order, and
number of pre- and post-novelty instances in a trial. The
measures should enable us to compare and quantify each
agent’s performance.

Proposed Measures We first show a baseline measure that
suits the OWL protocol and then propose two measures
that can be used collectively to assess novelty reaction be-
haviours of agents.

Novelty reaction performance (NRP): To our best
knowledge, there are no standard methods we can directly
adapt to suit the OWL protocol. One obvious novelty reac-
tion performance measure is to capture if the novelty agent
(NT) performs on post-novelty instances at least as well
as the baseline agent (BL) performance on pre-novelty in-
stances. This measure is considered as the baseline measure.
The measure is as given below:

NRP = 1
|T |

∑|T |
t=1 NRPt (5)

For each trial, t:

NRPt =
Ppost,NT,t

Ppre,BL,t+Ppost,NT,t
(6)

where,

Ppost,NT,t = 1
npost,t

∑nt

i=npre,t
TSPi,NT ,t (7)



Ppre,BL,t =
1

npre,t

∑npre,t

i=0 TSPi,BL,t (8)

TSPi,j,t: Agent j’s task performance for instance i in tth

trial
j : {NT, BL}
nt : Total number of instances trial t
npre,t: Number of pre-novelty instances in trial t
npost,t: Number of post-novelty instances in trial t

NRP>0.5 indicates that the novelty agent outperforms BL
on pre-novelty instances. Therefore, this measure only en-
ables us to determine whether an agent yields the expected
performance for each novelty category. However, it does not
allow us to identify whether an agent performs at least as
well as BL on post-novelty instances. Moreover, we can-
not distinguish agent performance based solely on this mea-
sure. For example, even though an agent applied to hazard
novelty distributions may learn, it always yields a value of
NRP<0.5. Similarly, an NRP>0.5 may be found for bonus
novelty distributions even for agents that do not adapt to the
novel distribution.

To overcome the drawbacks of the NRP measure, we pro-
pose the following two measures that are independent of the
novelty distribution category.

Asymptotic novelty reaction performance (ANRP):
ANRP attempts to quantify the performance of an agent in-
dependent of the novelty distribution category. This mea-
sures the performance of the novelty agent versus the BL
on the same set of post-novelty instances.

ANRP = 1
|T |

∑|T |
t=1 ANRPt (9)

For each trial, t:

ANRPt =
Ppost asymptotic,NT,t

Ppost asymptotic,BL,t+Ppost asymptotic,NT,t
(10)

where,

Ppost asymptotic,j,t =
1

m1,t

∑nt

i=nt−m1,t
TSPi,j,t (11)

m1,t: Length of the final subsequence of the post-novelty
instances in trial t

and TSPi,j,t, j and nt are defined as in NRP.

The value of m1,t can be adjusted based on the domain
and the experimental setting using a suitable percentage of
npost,t (e.g., 10% of npost,t). Thus, Ppost asymptotic,j,t cap-
tures the jth agent’s average performance at the end of
trial t based on the predefined asymptotic length (length
of the final subsequence of the post-novelty instances). If
Ppost asymptotic,NT,t = 0, we consider ANRPt to be zero
as there is no performance. ANRP > 0.5 indicates that the
novelty agent outperforms BL.

One limitation of the measure is that it does not assess
whether an agent improves over time. For this purpose, we
propose the following measure.

Figure 5: Overview of the novelty reaction measures.

Double-ended novelty reaction performance (DNRP):
DNRP measures whether the agent improves its perfor-
mance over a post-novelty sequence.

DNRP = 1
|T |

∑|T |
t=1 DNRPt (12)

For each trial, t:

DNRPt =
Ppost asymptotic,NT,t

Ppost initial,NT,t+Ppost asymptotic,NT,t
(13)

where,

Ppost initial,j,t =
1

m2,t

∑npre,t+m2,t

i=npre,t
TSPi,j,t (14)

m2,t : Length of initial subsequence of the post-novelty
instances in trail t

and Ppost asymptotic,NT,t, TSPi,j,t, j, and npre,t are
defined as in ANRP.

Similar to the ANRP, m1,t and m2,t should be
adjusted based on the experimental setting and if
Ppost asymptotic,NT,t = 0, we consider DNRPt to be zero
as there is no performance.

If DNRP > 0.5, it implies that the agent has improved over
the post-novelty sequence. If DNRP ≃ 0.5, it implies that the
agent did not adjust or it reacted to the novel distribution as
soon as the problem distribution changed.

In summary, NRP depends on the three novelty distribu-
tion categories. To eliminate that, ANRP instead compares
BL and NT on the same post novelty distribution. Finally,
DNRP measures an agent’s improvement in the post-novelty
distribution. Collectively, ANRP and DNRP measures cap-
ture an agent’s reaction ability (see Figure 5).

4 Demonstration in a Sample Domain
Our empirical study’s protocol and evaluation measures are
general and intended to work for every OWL task. We use
the research clone of the popular physics-based puzzle game
Angry Birds (Ferreira and Toledo 2014) as an example do-
main for introducing novel distributions. Angry Birds is a
popular domain for developing and evaluating AI agents that
operate in a simulated physical world, with a long-running
AI competition held at IJCAI conferences (Renz et al. 2015).
Angry Birds mimics real-world environments with physics
concepts such as gravity, friction, and mass. This makes it



Case Agent ND Accuracy BA Precision Recall F1 CDT WDT IDN
1 A ND1 0.16 0.52 NaN 0.10 NaN 0.00 0.10 -
2 A ND16 0.19 0.53 NaN 0.12 NaN 0.00 0.12 -
3 B ND8 0.14 0.52 NaN 0.04 NaN 0.54 0.00 52.89
4 A ND18 0.35 0.64 NaN 0.29 NaN 0.44 0.04 31.59
5 B ND7 0.35 0.64 NaN 0.29 NaN 0.74 0.02 39.19
6 B ND13 0.70 0.84 NaN 0.67 NaN 0.96 0.02 28.42
7 A ND15 0.93 0.93 0.99 0.93 0.96 0.84 0.16 8.83
8 B ND1 0.27 0.61 NaN 0.21 NaN 0.60 0.00 44.27
9 B ND14 0.96 0.98 1.00 0.96 0.98 1.00 0.00 4.30
10 B ND15 0.93 0.96 1.00 0.92 0.96 1.00 0.00 8.32

Table 2: Comparison of our proposed Novelty Detection measures with standard performance measures. ND refers to the novel
distribution. While existing measures show drawbacks, measures we propose allow more intuitive performance comparisons
for OWL tasks.

an ideal platform to add realistic novel problem distributions
(Gamage et al. 2021). We have added such distributions that
align with the formal theories on novelty mentioned in Sec-
tion 2.1.

In Angry Birds, a problem instance is a game level. BL
performance is measured on pre-novelty instances, where
the performance task is to solve the game with maximum
score. More than 60 agents have participated in the AIBirds
competition in prior years (AIBirds 2021). Several compe-
tition winners are available in open source and can be used
as baseline agents. In 2021, there was a new novelty track
to the AIBirds competition to encourage the development of
AI systems that can react to novel distributions as efficiently
and as effectively as humans (AIBirds-NoveltyTrack 2021).
We conducted our experiment with two agents designed to
detect and respond well to such distributions, which we call
Agents A and B. Our experiment contains 18 trial-sets (i.e.,
18 novel distributions), where each trial-set contains 50 tri-
als. Each trial contains 10-20 pre-novelty instances and 100
post-novelty instances. We use sample cases from the exper-
iment to discuss our measures.

4.1 Novelty Detection
We compare the results of our experiment with common
measures to justify the use of our proposed measures (see
Table 2).

Impact of the number of pre-/post-novelty instances:
Cases 1 and 2 represent measures collected from Agent
A’s performance with two novel problem distributions. The
agent did not detect the novel distribution in any trial (CDT =
0%). However, the standard measures produce varying val-
ues due to the difference in the number of pre- and post-
novelty instances per trial. Case 3 represents measures from
Agent B collected when applied to novel distribution ND8.
All standard measures produce lower values in comparison
to Cases 1 and 2, falsely indicating a lower performance
by the agent. However, the agent detected 54% of the tri-
als correctly (CDT = 54%) and, interestingly, it recorded no
wrongly detected trials (WDT = 0%). Furthermore, IDN in-
dicates that the agent required 52.89 instances on average to
detect this distribution change. For Cases 4 and 5, all of the

standard measures produce the same values. However, CDT
for Case 5 was 74% and was 44% for Case 4. While the stan-
dard measures instead indicate a similar performance due to
the difference in number of pre- and post-novelty instances,
CDT enables identifying whether agents detect the distribu-
tion change correctly.

Impact of miss detection and point of FP detection: For
Case 6, Agent B detected 96% of the trials correctly but pre-
cision and F1 cannot be defined, as the agent did not de-
tect the distribution change for some trials. This is an exam-
ple where some standard measures cannot be defined, while
CDT, WDT, and IDN convey important information con-
cerning detection performance. In Case 7, all the standard
measures report high values even though the agent falsely
detected a distribution change (before the point of change)
in 16% of the trials. That is, standard measures can falsely
indicate a high performance because they are sensitive to
when a FP detection occurs.

Performance comparison with proposed measures:
Cases 1 and 8 exemplify that Agent B outperforms Agent
A (for the CDT measure) for novel distribution ND1. In-
terestingly, Agent B did not detect a distribution change in
the pre-novelty instances (WDT = 0%). Cases 9 and 10 de-
pict examples for which the agent has equal CDT, and IDN
contrasts their performance by measuring their timeliness of
detection. As Agent B has lower IDN for novel distribution
ND14 (Case 9) than ND15 (Case 10) with the same CDT, we
can conclude that Agent B performs better for ND14. An-
other interesting scenario involves comparing two agents’
performance with low CDT and low IDN versus high CDT
and high IDN, respectively. Agents with high CDT are, in
general, preferable as they have a greater potential to im-
prove in the future by improving IDN.

In summary, our proposed measures successfully distin-
guished the agents’ detection performance, independent of
the number of pre- and post-novelty instances, trial order,
and number of FP instances. This is not the case for stan-
dard measures, as demonstrated in the cases we described.



Case-Agent ND NRP ANRP DNRP
1 - A ND2 : bonus 0.52 0.49 0.50
2 - B ND2 : bonus 0.54 0.51 0.50
3 - B ND14 : bonus 0.48 0.65 0.49
4 - B ND1 : neutral 0.50 0.50 0.50
5 - B ND18 : neutral 0.41 0.57 0.49
6 - A ND15 : hazard 0.00 0.00 0.00
7 - B ND15 : hazard 0.12 0.74 0.50
8 - A ND4 : bonus 0.49 0.50 0.53

Table 3: Summary of novelty reaction measures. ND refers
to the novel distribution. NRP can be used to compare agents
only within a single novel distribution and depends on the
novelty distribution category (bonus/hazard nature). ANRP
extends this comparison by removing the positive or nega-
tive effect of novel distributions, and DNRP measures agent
improvement on post-novelty problem sequences.

4.2 Novelty Reaction
In Angry Birds, task performance can be measured using
the score at the end of each instance. We used the mean
performance of three AIBirds competition agents, namely
Data Lab, Naı̈ve, and Eagle’s Wing as the baseline agents
(as there is no clear best agent in Angry Birds). Table 3 dis-
plays the novelty reaction performance measure results for
representative cases from our experiment. The length of the
final subsequence and the initial subsequence of the post-
novelty instances is taken as 10 (m1=m2=10, which is 10%
of post-novelty instances).

Cases 1 and 2 contrast the measures for Agents A and B
for novel distribution ND2. As NRP indicates, Agent B out-
performs A on post-novelty instances. As these two cases are
from a bonus novel distribution category, it is expected that
NRP > 0.5. However, ANRP highlights that Agent A has not
adapted to the novel distribution (ANRP<0.5). Similarly, in
Case 2, Agent B performs only slightly better than the BL
for post-novelty instances (ANRP=0.51). Even though Case
3 is also from the bonus category, NRP indicates that Agent
B has not attained BL’s task performance on pre-novelty
instances. However, ANRP=0.65 shows that it has adapted
better to the novel distribution when compared to BL.

Cases 4 and 5 display the measures of agents operating
in the neutral novel distribution category. For Case 4, Agent
B’s NRP ≈ 0.5, implying that Agent B novelty performance
has reached baseline agent’s pre-novelty performance. That
is expected that novelty agents can only reach 0.5 as ND1
belongs to the neutral novelty category. However, ANRP =
0.5 indicates that Agent B is not better than the BL agent
in ND1 and DNRP further indicates no improvement over
time. For Case 5, although Agent B did not attain the per-
formance of the BL in pre-novelty, ANRP = 0.57 > 0.5
confirms that B outperforms BL for post-novelty instances.
Moreover, DNRP ≈ 0.5 indicates that the agent adapted to
the novel distribution as soon as distribution changed.

Cases 6 and 7 display measures of agents operating in the
hazard novel distribution category. Thus, NRP < 0.5 irre-
spective of how the agent performs. In Case 6, ANRP and
DNRP are both zero, implying that agent A has not per-

formed in the post-novelty instances. For Case 7, as ANRP
= 0.74 > 0.5, we can conclude that Agent B has adapted to
the novel distribution but DNRP ≈ 0.5 shows that there is
no improvement during the post-novelty sequence.

Case 8 shows a case where an agent shows an im-
provement over the post-novelty problems (The mean-value
0.53>0.50 was statistically significant at 5% level of signif-
icance) even though ANRP is marginal.

These cases provide evidence that NRP only helps to
compare agents within a single novel distribution, and is
dependent on the nature of the novelty distribution cate-
gory. i.e., for example, all novelty distributions in the haz-
ard category would be less than 0.5 irrespective of the agent
performance. ANRP helps to compare them by eliminating
the positive or negative effect of a novel distribution on the
achievable score, and DNRP expresses an agent’s improve-
ment. The two measures are needed to obtain a complete
assessment of an agent’s ability to react to a novel distribu-
tion. These measures can also be used to compare how an
agent responds to different novel distributions.

5 Conclusion
Identifying the best evaluation measures for a given task is a
long-standing challenge in AI research. Inspired by perfor-
mance measures in other research fields, we presented per-
formance evaluation measures to assess the capabilities of
agents for detecting and reacting to novel problem distribu-
tions in open-world learning environments. Detection mea-
sures evaluate the correctness and timeliness of detection
whilst the reaction measures determine whether an agent has
successfully adapted to the novel distribution. The proposed
measures are domain-independent, and using a sample do-
main we have demonstrated that they do not suffer from the
same flaws as standard measures; they accurately and intu-
itively distinguish good versus poor agent performance and
demonstrate how agents improve. Our measures can be used
collectively to understand the agent performance in detec-
tion and reaction independent of the domain and indepen-
dent of the novel distribution.

As part of our future work, we plan to extend these mea-
sures to assess the novelty characterization ability of agents
(i.e., to evaluate whether an agent correctly detects what is
novel in a problem distribution and whether an agent un-
derstands the impact caused by the novel distribution). With
these measures, we believe we set a foundation to address
a major concern for evaluating AI systems in a growing re-
search area.
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