
Toward Defining a Domain Complexity Measure Across Domains

Katarina Doctor1, Christine Task2, Eric Kildebeck3, Mayank Kejriwal4, Lawrence Holder5, Russell Leong2

1 Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, D.C.
2 Knexus Research Corporation, Springfield, VA 3 University of Texas at Dallas, TX

4 USC Information Sciences Institute, CA 5 Washington State University, WA
katarina.doctor@nrl.navy.mil, {christine.task, russell.leong}@knexusresearch.com,

eric.kildebeck@utdallas.edu, kejriwal@isi.edu, holder@wsu.edu

Abstract

Artificial Intelligence (AI) systems planned for de-
ployment in real-world applications frequently are re-
searched and developed in closed simulation environ-
ments where all variables are controlled and known to
the simulator or labeled benchmark datasets are used.
Transition from these simulators, testbeds, and bench-
mark datasets to more open-world domains poses sig-
nificant challenges to AI systems, including significant
increases in the complexity of the domain and the in-
clusion of real-world novelties; the open-world environ-
ment contains numerous out-of-distribution elements
that are not part in the AI systems’ training set. Here,
we propose a path to a general, domain-independent
measure of domain complexity level. We distinguish
two aspects of domain complexity: intrinsic and extrin-
sic. The intrinsic domain complexity is the complexity
that exists by itself without any action or interaction
from an AI agent performing a task on that domain.
This is an agent-independent aspect of the domain com-
plexity. The extrinsic domain complexity is agent- and
task-dependent. Intrinsic and extrinsic elements com-
bined capture the overall complexity of the domain.
We frame the components that define and impact do-
main complexity levels in a domain-independent light.
Domain-independent measures of complexity could en-
able quantitative predictions of the difficulty posed to
AI systems when transitioning from one testbed or envi-
ronment to another, when facing out-of-distribution data
in open-world tasks, and when navigating the rapidly
expanding solution and search spaces encountered in
open-world domains.

1. Introduction
When designing AI systems that can operate in open-world
settings, it is important to be aware of the complexity level
of the domain for which the AI system is built and the com-
plexity level of the domain where it will be applied or tran-
sitioned.

Self-driving cars, which have been developed and evalu-
ated on closed courses or in simpler highway-driving con-
texts, will encounter new challenges safely navigating open-
world surface streets (Claussmann et al. 2017). Machine

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning (ML) tools in medical contexts may encounter un-
expected edge cases, noisy or distorted sensor data, and po-
tentially significant differences in data distributions when
transitioning from academic benchmark data to real-world
use (Holzinger et al. 2017).

In general, agents in simulated environments navigate a
much smaller set of possible states and perform deliberative-
reasoning search tasks over a much smaller set of possible
state-action paths than what happens in the open world of
a non-simulated, real environment. As one example of an
AI agent transitioning from a closed-world domain to an
open-world domain, Wilson et al. (2014) developed a mo-
tion and task-planning system for autonomous underwater
vehicles (AUV) using a common simulation platform that
they moved from development to deployment. If one takes
the AUV agent, which has been built within a less complex
simulated environment, installs it on a robot, and lowers it
off the side of a ship into the real world, it will have signif-
icant problems correctly navigating in that real-world state
space.

In the ever-changing open-world domains, there are a
plethora of novelties that will have effects on an AI agent
that’s been trained in a closed-world setting. The overall
complexity level also changes when transitioning from a
closed world to an open world. Transitioning from a closed
world to an open world does not necessarily mean transition-
ing from a simple system to a complicated or complex sys-
tem. However, understanding the boundaries of the domains
we are facing will help with accommodating novelties in an
open world. Knowing the complexity levels of both the do-
main from which an AI agent is transitioning and the domain
to which that agent is transitioning will help predict the diffi-
culty of detecting, characterizing, and accommodating nov-
elty, and therefore will enable robustness in that agent when
performing a task in the domain of interest.

The core concept of complexity levels transcends the
boundaries of a domain. In this paper, we define a frame-
work for estimating the level of complexity of domains in a
transdisciplinary, domain-independent light.

2. Motivation and Background
The Science of Artificial Intelligence and Learning for
Open-world Novelty (SAIL-ON) Defense Advanced Re-
search Projects Agency (DARPA) program (Senator 2019)



solicitation states that SAIL-ON will research and develop
the underlying scientific principles, general engineering
techniques, and algorithms needed to create AI systems that
act appropriately and effectively in novel situations that oc-
cur in open-world domains, which is a key characteristic
needed for potential military applications of AI. The focus is
on novelty that arises from violations of implicit or explicit
assumptions in an agent’s model of the external world, in-
cluding other agents, the environment, and their interactions.
Specifically, the program will: (1) develop scientific princi-
ples to quantify and characterize novelty in open-world do-
mains, (2) create AI systems that act appropriately and ef-
fectively in open-world domains, and (3) demonstrate and
evaluate these systems in multiple domains. The SAIL-ON
program is divided into two groups: (a) those that facilitate
the evaluations by providing novelty generators in the cho-
sen domains across levels of the novelty hierarchy (see Table
1), and (b) those that develop agents that can detect, charac-
terize, and accommodate novelty. In each phase of the pro-
gram, it is expected that the domain-independent characteri-
zation of novelty will be improved and that increasingly so-
phisticated and effective techniques for recognizing, charac-
terizing, and responding to novel situations across domains
will be developed. The novelties are categorized in a hierar-
chy representing the fundamental elements that make up an
open-world domain, and by definition, every element within
an open-world domain must have characteristic attributes
and must be represented in some way. The open-world nov-
elty hierarchy levels are: object, agent, actions, relations, in-
teractions, rules, goals, and events (Table 1). SAIL-ON per-
formers have refined the novelty levels by adding difficulty
levels: easy, medium, and hard. These difficulty levels re-
fer to novelty detection and accommodation. We are treating
these hierarchy levels as part of the components to consider
when estimating the complexity levels of domains, which
we describe in Section 5 of this paper.

Complexity levels of domains are estimated in different
ways for different domains, and it is challenging to general-
ize complexity estimation across multiple diverse domains.
The structure of the SAIL-ON program highlights this need,
for which we would like to be able to compare both do-
mains and their complexity levels as well as to estimate the
complexity level of generated novelties, which will enable
of predicting the difficulty of detecting, characterizing, and
accommodating novelty.

Theoretical Frameworks for Open-World Learning
Some theoretical frameworks have been proposed for open-
world learning. Langley (2020) proposes a framework for
characterizing open-world environments with goal-directed
physical agents and how those environments can change
over time. Boult et al. (2021) propose a framework for defin-
ing theories of novelty across domains. This framework
measures novelty based on dissimilarity measures in the
world space and the observation space. These frameworks
describe novelty in open-world learning in an agent’s perfor-
mance perspective, but do not offer an assessment about the
complexity of a domain of the novelty, which is the purpose

open-world Novelty Hierarchy

Phase 1 1 Objects: New classes, attributes, or representations
of non-volitional entities.

Single
Entities

2 Agents: New classes, attributes, or representations
of volitional entities.

3 Actions: New classes, attributes, or representations
of external agent behavior.

Phase 2
4 Relations: New classes, attributes, or representa-

tions of static properties of the relationships be-
tween multiple entities.

Multiple
Entities

5 Interactions: New classes, attributes, or represen-
tations of dynamic properties of behaviors impact-
ing multiple entities.

6 Rules: New classes, attributes, or representations of
global constraints that impact all entities.

Complex
Phenomena

Phase 3 7 Goals: New classes, attributes, or representations of
external agent objectives.

8 Events: New classes, attributes, or representations
of series of state changes that are not the direct re-
sult of volitional action by an external agent or the
SAIL-ON agent.

Table 1: Open-world novelty hierarchy levels developed by
SAIL-ON Novelty Working Group. See acknowledgments
for full list of contributors.

of our paper. In this paper, we distinguish between agent-
independent and -dependent parts of the domain and define
the domain complexity components from both perspectives.

From Complexity to Difficulty Understanding the com-
plexity level of a domain helps assess and predict the dif-
ficulty of detecting, characterizing, and accommodating a
novelty in that domain. Complexity and difficulty are dif-
ferent mental operations. The complexity level of a domain
will affect the difficulty of detecting novelty, characterizing
it, and accommodating it. It also will influence the difficulty
of generating novelty. “Complexity” is the description of a
state — the space of possibilities — whereas “difficulty”
relates to the challenge posed by a specific novelty within
this space of possibilities. Estimating and understanding the
complexity level of a domain is an important prerequisite for
a robust transition between domains and to an open-world
learning.

3. Benefits of Knowing Domain Complexity
In the Wilson et al. (2014) example, the simulated environ-
ment assumed that there was a 1-to-1 mapping between per-
ception and the state space; i.e., that a change in perception
was due to a meaningful change in state. Instead, in real-
world contexts, with noise and complex factors related to
environment, there may be many different perception val-
ues that all might indicate effectively the same state for the
goal reasoner. The real-world perception state space is effec-
tively much larger than the space over which goal reasoning
actually is performed. An AI system that was developed and
tested on a simple, simulated perception space will tend to
fail when one puts it into the open sea, incessantly reporting



discrepancies between its sensors and its model of the world,
potentially getting trapped in a loop of constant replanning.
As a result, the robot can freeze, drift off course, and lose
contact with its humans. This can be a very expensive prob-
lem. Addressing this issue required the development of new
logic for dealing with the true complexity level of the per-
ception space. Perception information was processed with
bounding boxes to reduce its complexity sufficiently so that
the existing goal-reasoning and planning logic could operate
over it effectively. This measure allowed the robot to oper-
ate successfully in the open water. It is important to note
that this issue was task-independent. There was effectively
no nontrivial task that the robot could execute successfully
before its algorithm had been modified to address the in-
crease in domain complexity compared with the simulator
domain.

Outside of the context of real-world robotics with delib-
erative reasoning (Ingrand and Ghallab 2013), the domain
complexity problem arises in other application areas as well.
In game AI, the performance of Monte-Carlo Tree Search
(MCTS) will depend on the size and complexity of the game
tree; if the space of possible states and actions becomes ex-
cessively large, then the probabilistic exploration of the tree
will have a higher probability of failing to sample the op-
timal paths, and then the agent may select moves that are
suboptimal, poor, or even absurd. If the complexity of the
game is understood correctly during AI development, then
modifications can be made to improve the algorithm perfor-
mance, such as using domain knowledge to bias search in
games with large branching factors (Chaslot et al. 2008).

More dangerously, the problem arises in self-driving ve-
hicles. Claussmann et al. (2017) exhaustively surveys, cat-
egorizes, and evaluates diverse approaches to autonomous
driving, but limited to only highway environments, and with
respect to only eight simple maneuvers (such as changing
lanes or exiting). This analysis does not cover important
complexities in the highway domain, such as encountering
an obstacle in the road or another vehicle merging into your
lane without seeing you. Furthermore, it obviously will not
apply to city street environments, which have far more states
and complex transitions. Techniques that perform well in
the simple, limited, highway domain may have very differ-
ent properties and limitations than techniques that excel in
a more open, real-world environment, and failing to under-
stand the impact of domain complexity on algorithm choice
could lead to suboptimal decision-making and potentially fa-
tal consequences.

The issue of correctly addressing real-world domain com-
plexity also arises in data science contexts. In medical appli-
cations, explainable AI systems increasingly are deployed
to assist test analysis and decision-making (Holzinger et al.
2017). Systems that were designed for simple data distribu-
tions over one or two educational-benchmark datasets will
fail or become extremely sensitive to data preparation and
parameter tuning; as the feature set grows more complex,
evaluation becomes more rigorous, or the data distribution
becomes more diverse and heterogeneous. Again, systems
developed on simple, toy-research domains, when moved
to much larger, open-world domains without consideration

for the change in complexity of the problem definition, will
have failures with real-world consequences (Holzinger et al.
2017).

4. Perspectives on Complexity from Different
Disciplines

We briefly review existing approaches to understanding and
measuring complexity as it applies to relevant computational
disciplines: classical AI, data science, and systems research.
These existing perspectives are important to take into con-
sideration, but none provides the comprehensive, domain-
independent complexity level necessary to support the de-
velopment and transition of AI to open-world domains.

Classical AI Hernández-Orallo and Dowe (2010) use the
term “environment complexity” to refer to increasingly com-
plex classes of domain/tasks pairs. Their thesis is that more
intelligent agents are able to succeed in more complex en-
vironments. Their complexity level increases dependent on
the domain’s number of possible states, the number of transi-
tions (agent actions that change the state), and the difficulty
of reaching the objective (in general, winning the game). The
more possible states and the more difficult-to-select actions
to navigate optimally through them, the more complex the
problem.

Relating domain complexity to the state transition graph
is a common approach in classical AI systems. Ingrand
and Ghallab (2013), Chaslot et al. (2008), and Claussmann
et al. (2017) give examples of agents whose performance
is, in fact, dependent on the environment complexity as
used in Hernandez-Orallo. These systems are sufficiently
intelligent to solve problems of a certain complexity, but
may fail as that complexity increases. Pereyda and Holder
(2020) proposed a theory for measuring complexity by tak-
ing a resource-requirements approach, focusing on the three
spaces: task, solution, and policy. The authors are relating
complexity to the minimum description length of agents
necessary to achieve different levels of performance on the
task in a domain.

While these approaches are relevant to domain complex-
ity in our context, they focus on agent-dependent, task-
specific complexity and do not explicitly address intrinsic
domain properties that are independent of agent and may
impact solution performance independently of the task. A
domain-independent complexity level needs to take into ac-
count a wider set of components in order to fully support
development for open-world domains.

Data Science Data science focuses on fitting conceptual
models to input data, allowing users to make predictions
about new data points. Unlike classical AI, there is no agent
that can take actions to interact with its environment; in-
stead, the domain consists of a feature set and a distribu-
tion of data points across the feature space defined by that
feature set. Complexity is determined by the difficulty of fit-
ting meaningful, accurate models to these distributions so
that they support correct predictions on new data. Proper-
ties such as the size of the feature space, the sparsity of



the data, and the shape of the distribution impact the diffi-
culty of this problem. Remus and Ziegelmayer (2014) con-
sider the context of computational linguistics. They consider
four task-independent domain complexity measures, focus-
ing on the sparsity (word rarity), the feature set size (word
richness), and the distribution of the input data (entropy and
homogeneity). They find a strong correlation between do-
main complexity and the performance of a standard ML
classifier on the data. Similarly to Hernández-Orallo’s ob-
servations on classical AI, as complexity increases, perfor-
mance decreases. These general ideas are broadly applica-
ble as sources of complexity in problem solving, as we will
discuss in Section 6. However, by themselves, they do not
constitute a general definition for domain complexity levels.

Systems Research Systems research considers complex-
ity in the form of challenges that arise when organizing
multiple interacting components, whether those components
are team members, organizations, industrial production sys-
tems, software modules, or even elements of programming
languages as interpreted by a compiler. In these contexts,
patterns of dependencies between components are a key fac-
tor in the complexity of the problem. Large webs of interde-
pendencies require significantly more computational time,
or human cognitive load, to consider fully and to develop
optimal solutions. If the interdependencies can be arbitrar-
ily complex, then in general, the problem may be computa-
tionally hard (e.g., the knapsack problem). However, most
real-world problem instances are tractable.

Various tools have been developed to help visualize, mea-
sure, and address complexity in system-design contexts
(Štuikys and Damaševičius 2009) (Jung, Sinha, and Suh
2020) (Prnjat and Sack 2001) (Kim 2014).

This work relates to our problem of domain complexity,
specifically in the case of domains that contain multicom-
ponent systems. For example, when an agent must navigate
a multiagent environment with a large number of external
entities, it can cause a combinatorial explosion in the set of
possible states and transitions necessary to capture the in-
teractions of those entities, resulting in a dramatically larger
domain. This can be an important facet of domain complex-
ity; however, there are many other sources of complexity
that do not originate from interactions with multicompo-
nent systems. Additional components are necessary to cap-
ture the complexity of scenarios, such as single agents navi-
gating inclement environments, ambiguous perception data,
or challenging game objectives. System complexity metrics,
by themselves, do not constitute a domain-independent com-
plexity level.

In this paper, we frame the components that define and
impact domain complexity levels in a domain-independent
light. We organize these components into groups. We then
describe methods for representing these components in a
measurable form for estimating domain complexity levels.

5. Framework for the Components that Define
a Domain’s Complexity Level

This framework is for defining the components to consider
when estimating a domain’s complexity level. There are two
parts when determining the complexity of a domain: intrin-
sic and extrinsic. The intrinsic complexity is the complexity
that exists by itself without any action or interaction from an
AI agent performing a task on that domain; it is an agent-
independent aspect of the domain complexity. The intrinsic
components that define and impact the domain’s complexity
level are grouped further into “environment space” and “task
solution space.” The extrinsic complexity of a domain is
agent-dependent and contains the “performance space,” the
“goal space,” the “planning space,” and the “skills space.”

Considering the complexity level only from an intrin-
sic, agent-independent perspective, or only from an agent-
dependent perspective, in which we only observe the com-
plexity level of what an agent is doing and their prior knowl-
edge, would result in a skewed metric of the complexity
level. Therefore, we need to look at both the intrinsic and
extrinsic parts of the domain complexity in order to get a
balanced metric. We took into consideration the open-world
novelty hierarchy levels described earlier in the “Motiva-
tion” section as part of the components to consider when
estimating complexity level. These hierarchy levels are: ob-
jects, agents, actions, relations, interactions, rules, goals, and
events (Table 1). We differentiate between novelty theories,
ontologies, and categories: theories can describe anything
that is conceptually possible, ontologies classify elements
that are realistic, and categories represent a subset of ele-
ments that are practically important and scientifically use-
ful for open-world domains. Different tasks in different do-
mains may or may not be affected by all the hierarchy levels
in the same way, as shown in Figure 1.

Figure 1: Venn diagram for open-world novelty

We list these components in groups that define the intrin-
sic and extrinsic domain complexity levels. Each of these
components has task-dependent and task-independent parts
that we do not list separately here.

Note that these components will not be present for ev-
ery domain. Also, some tasks will not interact with some of
these components even if they exist in the domain.



5.1 Components that Define Intrinsic Domain
Complexity
The intrinsic, agent-independent complexity is structural
and can have many relevant levels of description for com-
puter simulations and for the natural world. There are task-
independent and task-dependent parts of the intrinsic do-
main complexity. The task-independent part is the input, and
it is defining the structure of the domain complexity. The
task-dependent part is based on which aspects of the avail-
able complexity in the domain are relevant to, or utilized in,
a given task. The elements contributing to intrinsic domain
complexity can be divided into the “environment space,”
which includes all elements of the task environment, and the
“task solution space,” which includes only those elements
relevant to completing a given task within that environment.

Environment Space
The environment may comprise parameters/variables, data
schema, tokens/observations, scale size, objects, states, or
agents internal to the system. The categories of the novelty
hierarchy (Table 1) represent the elements of an open-world
environment space. The environment comprises discrete en-
tities (objects and agents), and these entities can have static
relationships to each other (relations) and dynamic inter-
actions (interactions) that, in turn, can combine to create
complex phenomena based on multiple relations and inter-
actions, such as events. The complexity of the environment
increases as the number of elements in each category, and
the number of distinct attributes and representations for each
element, increase.

Single entities: The fundamental elements for an envi-
ronment are the single, discrete entities present in the space,
such as objects, agents, and actions. In action domains,
this would be the number of unique objects and agents in
a task environment, (e.g., blocks, tools, and enemy units in
Minecraft). In perception domains, this would be the num-
ber of classes (supervised learning) or the number of clus-
ters (unsupervised learning). Each of these categories can be
expanded to include more discrete classes, and instances of
each class can have an increasing number of attributes and
representations. In the AUV example, an underwater simu-
lator may have only one type of fish, with a single color and
a single, swim-forward action that must be avoided by a sub-
mersible. A more complex simulator may have hundreds of
types of marine life, each performing multiple actions and
having variable visual appearances. Note that these agents
are internal to the domain’s system and not to the AI agent,
who is performing a task on the domain; examples of agents
that are internal in the domain are other players of a game
and other drones in a swarm. Sensors that are internal in the
domain would be, for example, a radar sensor that detects
the AI agent’s presence or movement.

Multiple entities: When multiple entities are present,
new elements of the domain emerge, including static rela-
tionships and dynamic interactions. In the AUV example,
in a less complex simulator, all fish may be the same size
(relationship) and may swim in a straight line (interaction).
In a more complex simulator, marine life may include very

small and very large animals, and fish may swim in com-
plex schooling and swarming patterns. These elements are,
by definition, only present and observable when multiple en-
tities are present in the environment. Similarly to the single-
entity categories, the relationship and interaction categories
can have a growing number of discrete classes, attributes,
and representations as domain complexity increases. For in-
stance, new interactions can be added, such as animals’ fol-
lowing each other, eating each other, and fighting with each
other, etc. The attributes of existing relationships and inter-
actions also can increase in complexity, such as the speed
and intricacy of schooling behavior.

Complex phenomena: When multiple relations and in-
teractions are present, complex phenomena can emerge
within environments. Three examples of such complex phe-
nomena are events, goals, and rules. Events: When multi-
ple interactions occur in series based on entity relationships,
events can take place (e.g., a fire spreading across trees
based on their physical proximity relationships). Goals:
the goals of agents in the environment also become dis-
cernible through the sequence of interactions the agent pur-
sues within that environment. Rules: In real-world domains,
and extensively in games, rules can be applied globally to
define which relationships and interactions are permissible
in the environment. Rules and constraints in the environment
space reduce the size of the environment. These include the
rules of a game, the number of states constrained by sym-
metry, the number of possible agent interactions, and the set
of state transitions that are constrained by rules.

The following are some examples of rules: The rules of
driving restrict which lanes can be used when driving in cer-
tain directions, the rules of Monopoly constrain spending by
the amount of money the player has (0 money = 0 spend-
ing), and the rules of tic-tac-toe prevent a player from plac-
ing an X on a spot that already has an O. In AI simulations,
real-world interactions or complex phenomena (e.g., a sub-
mersible requiring fuel to generate power) may be simulated
as domain rules (e.g., an agent cannot issue move commands
if its fuel level = 0).

For each category of elements that emerges with sin-
gle entities, multiple entities, and complex phenomena, the
number of distinct classes, distinct attributes, and distinct
representations can be increased. Collectively, the scale
and diversity of these elements determine the environment
space.

Task Solution Space
The task solution space comprises the number and diversity
of paths that can be taken to complete a task, whether in a
real, open-world domain or in a simulator, where the avail-
able world states and action space are defined. This space
increases in complexity as the set of possible state transi-
tions increases and as the available paths for success become
more complex (see example state transition graphs in Fig-
ures 3 and 4). In perception domains, the task solution space
also would include the set of data-classification classes. The
complexity of the task solution space is not dependent on the
complexity of the environment, and the complexity of the
environment may increase, decrease, or not impact the task



solution space. For example, consider the domains of chess
and a self-driving car in the real world. The environment of
chess is quite limited, with a small number of unique ob-
jects and interactions, whereas the real world of the car may
have thousands of unique objects, external agents, relation-
ships, and interactions. If the task for the self-driving car is
to move forward 1 yard, then this expansive environmental
complexity has a minimal impact on the task. Furthermore,
if the available action space includes a command to ”move
forward 1 yard,” then this task becomes trivial. Winning a
game of chess against a challenging opponent, by compari-
son, would require much more computation and strategy and
would have a lower success percentage than the self-driving
car’s task.

The number of possible paths, the set of possible agent in-
teractions, and the restrictions on successful paths to achieve
a goal are the primary drivers of complexity in the task so-
lution space. We can consider a maze task in a grid environ-
ment. If the number of available paths increases from 2 to 10,
then the complexity of the task solution space will increase
if there is only one correct path, but will not become more
challenging if every available path leads to the goal. Further,
the addition of a new object class, such as a boulder, may
increase the complexity of the maze environment while de-
creasing the complexity of the task solution space by block-
ing off incorrect paths and reducing the search space.

The task solution space defines the number of possible
actions and the distribution of paths (number of paths, num-
ber of intersections) through the state transition graph, the
number and degree of dependencies and connections be-
tween agents and state transitions, and the degree of avail-
able strategies (defined as the set of all possible decision
sequences through the environment, without violating any
constraints). This set of paths can be represented as a state
transition graph as explored in Section 6.

5.2 Components that Define Extrinsic Domain
Complexity
The components of extrinsic domain complexity define the
AI agent that is performing a task on the domain of inter-
est and the skills needed to perform these tasks. The agent-
dependent, or extrinsic, complexity is a mental model of an
agent that has structural, observational, and planning com-
ponents and is a subset of full domain complexity.

Performance Space
Performance space is the agent-policy scoring function and
the performance of the agent acting on the domain. These
are the scoring of games, such as win/loss, win/loss/draw, or
the range of score numbers. This also would be the reward
function in reinforcement learning. For an AUV, the perfor-
mance space would be, for example, the time taken to get
from point A to point B.

Goal Space
This is the number of elements or the size of the possible
goals to have in the domain. Some domains have only one
goal, e.g., to win, to destroy, or to move from point A to

point B. Other domains have more possible goals, e.g., to
win with the highest amount of money, to move from point A
to B while having x amount of fuel left, and to avoid actions
m, n (e.g., car: crashing, toll roads, flooded roads; aircraft:
storm cloud or all clouds in VFR flight conditions). The goal
space includes the set of possible strategies, the number of
goal states, and the set of all possible paths through the state
transition graph that end in a goal state. Not all domains have
a goal space.

Planning Space
Plan space is the set of possible plans that can be generated.
Planners traditionally are given as input (1) a goal, (2) a set
of actions, and (3) an initial state. Many plans might accom-
plish the same goal, while a single plan might accomplish
multiple goals. The size of the set of possible plans defines
the planning space. Not all domains have a planning space.

Skills Space
These are the components that define the skills that an AI
agent would need to have to perform a task in a domain of
interest. They consist of physical and mental skills.

Physical skills (hardware): These are the physical abil-
ities of the AI agent — the hardware. If a big rock is in
the moving agent’s path, then it is insignificant if the agent
is a bulldozer robot, but it is significant if the agent is a
vacuum-cleaner robot. Other characteristics include GPU,
CPU, ROM/RAM, control problem, type, number, accuracy,
and precision of sensors or activators. The robot AUV has
sensors, such as a camera, a pressure sensor, and a sound
sensor, etc. The camera might have three (RGB) channels
and a specific resolution.

Mental skills (software): These are the software or
knowledge, cognitive skills, and intuitive skills that an AI
agent needs for performing the task in the domain of inter-
est. This would be the ability for predicting, planning, set-
ting up, or following goals. Other characteristics include the
sizes and difficulty levels of interactions, actions, percep-
tion, goal states, and events.

In summary, the described intrinsic and extrinsic compo-
nents of the domain with the listed “spaces” define the com-
plexity level of the domain. These components and the listed
“spaces” will be each represented and estimated using the
suggested methods in Section 6. The domain complexity
level is expressed with a value of each “space” described
above. Some of the “spaces” will not be applicable for some
domains. Note that these components will have additional
dimensions when we are considering a dynamic domain in
which the complexity level becomes nonstationary. As the
complexity level increases, the time scale will become more
significant.

Agent-Based Extrinsic Measures The above dimensions
define the spaces in which an agent resides in order to solve
tasks in the domain. One way to identify relationships across
these spaces is to define a class of agents from the skills
space to solve a task and to compare the minimal complexity



Figure 2: Minimum number of layers needed by DQN agent
to achieve (left) 50% performance (pole balanced for 100
seconds) and (right) 100% performance (pole balanced for
200 seconds) on tasks in which the agent is trained on one
value of gravity but is tested on another value.

of an agent from the class that is capable of achieving dif-
ferent points in the performance space. Pereyda and Holder
(2020) proposed a measure of task complexity that is defined
as the sum of complexities of minimal-complexity agents ca-
pable of achieving the possible range of performance scores
for the task. For example, Figure 2 depicts the complexity
of a deep Q-learning agent in terms of the number of layers
necessary to achieve half (0.5) and full (1.0) performance on
the Cartpole task (balancing a pole on a cart by pushing the
cart left and right), in which the agent is trained on one set-
ting of gravity and is tested on another (to mimic the open-
world novelty of a change in gravity). As the figure shows,
more complex agents are needed to achieve higher perfor-
mance, especially on tasks for which gravity increases, but
less so when gravity decreases. These agent-based extrinsic
results allow us to evaluate the complexity of tasks and pro-
vide insights into the intrinsic domain complexity.

6. Representation and Measures
The perception and action/planning parts of the domains,
because of their high difference, require different methods
for assessing the components related to them, mentioned in
the framework in Section 5. For the action and planning do-
mains, we use state transition graphs, and for perception do-
mains, the feature space provides a geometric representation
for assessing the size of the domain and the significant com-
ponents of the data distribution in the domain.

Domain Representations
In this section, we briefly review the two fundamental do-
main representations for problems in classical AI action and
planning domains and data science perception domains. We
then discuss several key factors of domain complexity that
can be understood to hold over both of these problem con-
texts and domain representations.

State Transition Graph Space A state transition graph
provides a conceptual representation of the agent’s domain,
including possible world states, possible actions or transi-
tions in each state, and the consequences of those actions on

Figure 3: A simple example of a state transition graph. Pos-
sible states are depicted as nodes in the graph, connected by
edges that represent actions transitioning between states. In
this case, the state definition consists of five Boolean fea-
tures. In the initial state, all features are set to false (white).
Actions affect the state by flipping a selected feature to true
(orange), and only certain actions are possible in each state.
One state is highlighted as the goal state for the current task.
There are relatively few possible states and up to two pos-
sible actions in each state, and multiple intersecting paths
through the graph lead to the goal state. This domain and
task have low complexity.

Figure 4: An example of a state transition graph for a more
complex domain. Note that there is only a single path to each
of the final states, meaning that if an agent makes a single in-
correct decision pursuing the current task, then it will be un-
recoverable and the agent will fail the task. The same holds
for all states in the domain, and no matter which state is
selected as the goal state, it will be challenging to achieve
that goal successfully. The set of possible paths leading to
a given state is more sparse in this domain than in the first
domain; this domain is more complex.

the state. In addition, the graph can indicate the initial state
that the agent begins in at the start of execution, the set of
states that satisfy the current task objective (goal states), and
the possible paths that lead from the initial state to the goal
state. State transitions may occur as the result of the agent’s
own actions, opponents’ or allies’ actions, or external envi-
ronmental actions. Figures 3 and 4 depict the state transition
graph for a simple example and a more complex example.



This method of representing the domain allows us to char-
acterize an AI action-and-planning task as identifying a po-
tential path through the state space to the goal, successfully
taking actions at each decision point to remain on an ef-
ficient, low-cost path that leads to the goal. This becomes
more challenging if the complexity of the state transition
graph increases; more states, more possible actions, very
heterogeneous states and transitions, and sparser or more
inaccessible goal paths all increase the difficulty of recog-
nizing and maintaining an efficient, successful path to a goal
state.

Feature Space Figure 5 depicts a small, 3-dimensional
feature space for a simple data science perception domain.
As the number of features in a data science problem gets
larger, the dimension of the feature space grows. Higher-
dimensional tasks are computationally more difficult for
common model-fitting techniques, such as clustering and re-
gression. Also, as a given set of data is spread over a larger
feature space, it generally grows more sparse and the distri-
bution can become harder to characterize accurately.

Additionally, if the data is distributed more heteroge-
neously across this space, then it can be difficult to character-
ize accurately; more diverse, outlying, or smaller subgroups
of observations may not be classified correctly. Similarly to
the inherent domain complexity due to the distribution of
paths through the state transition graph, these are inherent
difficulties with the data domain (feature space and training
data distribution) that will have some impact on any classi-
fication or prediction task in that domain.

Figure 5: A 3-dimensional feature space for a dataset con-
taining images with three features: object count, object size,
and color. Each observation in the training dataset can be
plotted as a point in this 3-dimensional space. ML algo-
rithms then can characterize the distribution of points across
this space (using clustering, regression, CNNs, or other tech-
niques) so that they are able to make predictions about how
new data points might fit in the existing distribution.

Complexity Measures
Dimensionality In both classical AI and data science ap-
plications, dimensionality impacts the difficulty of complet-
ing tasks in the domain and is a key measurement tool for

estimating domain complexity.
In classical AI, increasing the number of possible states

(including increasing the environment size, the environment
features, and the number of possible interactions with ob-
jects or external entities) increases the size of the state tran-
sition graph. Similarly, increasing the number of possible ac-
tions increases the breadth, or tree width, of the state transi-
tion graph. Both increase the dimensionality of the environ-
ment space and significantly increase the difficulty of tasks
that involve navigating the state transition graph to reach a
goal state. If a given goal state is accessible only by very
long paths (which require the agent to make a long series of
correct decisions), then this increases the dimensionality of
the task solution and performance spaces, the complexity of
the domain, and the difficulty of reaching the goal.

In data science, increasing the number of possible fea-
tures, the number of possible values for each feature (for
example, by increasing the set of possible objects or envi-
ronment conditions) increases the size of the feature space
and the domain complexity with respect to the environment.
This increases the difficulty of fitting models to character-
ize the distribution of the training data across that space.
As vocabularies increase, sensor resolution increases, or ad-
ditional variables are added, the dimensionality of the data
science problem increases, and the task difficulty increases
as well. Meanwhile, as the number of possible classes or
prediction values increases, the set of possible parameteriza-
tions for fitting the model to the feature space can increase
exponentially, increasing the complexity with regard to task
solution and performance.

Sparsity In addition to dimensionality, sparsity is an im-
portant characteristic of the complexity component spaces
described in the previous section. It relates to the rarity of
successful strategies, or how thinly distributed the informa-
tion necessary to make successful decisions can be. This is
related to how difficult it is to develop successful strategies
and to perform well.

In classical AI action-and-planning domains, both the
sparsity of paths that lead through the state space and the rar-
ity of successful paths to the goal impact the complexity with
regard to the task solution space and the performance space
(see Figure 4). When most states can be accessed through
only a very small number of paths, the state space is more
difficult to navigate and the domain is less forgiving of sub-
optimal decisions. It is easy to unintentionally enter a state
from which the goal is no longer accessible. Significantly
more memory or computation may be required to identify
the optimal path correctly throughout the entirety of execu-
tion.

In data science and perception domains, a sparsely dis-
tributed training dataset, especially when spread across a
large feature space, significantly increases complexity with
regard to the task solution space and performance. When
there are many classes or prediction values that only have
a few observations in the training data (i.e., many classes
appear rarely in the training data) and when the training data
in general is spread sparsely throughout a large dimensional
feature space, there will be many modeling solutions with



similar fit (given this minimal information), and it will be
challenging to model the data distribution meaningfully in a
way that supports accurate predictions.

Heterogeneity Finally, heterogeneity refers to the diver-
sity of important information in a given domain component.
Problems that include more diversity generally require more
information and, therefore, more complicated solutions to
address correctly.

Classical AI action/planning problems that have a very
heterogeneous state space (environment space) in which dif-
ferent states often have different possible action sets (and
the same action may produce very different transitions, de-
pending on the feature values of the current state) have an
increased complexity with regard to the task solution and
the performance space — they require more information to
navigate successfully. This often occurs in contexts in which
a diverse set of skills is required to navigate the state space;
domains with high skill-set complexity will have high het-
erogeneity.

In data science and perception domains, heterogeneity can
occur in the feature space when different features have very
different properties with respect to the data distribution (i.e.,
combining data from different sensors in cases with high
skill-set complexity). Additionally, classes or prediction val-
ues, which reflect very diverse subgroups in the data, may be
more difficult to model efficiently and accurately.

Domain complexity level in a transdisciplinary light dif-
fers in different ways. Domain complexity level can indicate
that the domain is simple, complicated, or complex in dif-
ferent ways. For this reason, we propose using a final, sin-
gle value of a complexity level rather than complexity level
values for the environment, policy, solution, and planning
spaces described in Section 5. These four spaces’ complex-
ity level can be expressed as a bar chart or a spider chart
(with its caveats). The skills space expressed in these four
spaces would show what skills are needed for an agent to
perform a task successfully in that domain.

7. Conclusion
Returning to our example of the AUV from Wilson, McMa-
hon, and Aha (2014), we can express the difficulty that was
encountered when transitioning from the simulator domain
to the real-world domain in terms of the components of our
complexity levels. The real world had higher dimensional-
ity with regard to the environment space complexity and
greater heterogeneity with respect to the perception-task so-
lution space (where noise and environmental factors meant
a diverse collection of different sensor readings might rep-
resent a single system state). These unexpected increases in
domain complexity, as compared to the simulator domain,
caused the AI to behave pathologically, constantly replan-
ning in response to the discrepancies between its perception
of the real world and its less complex internal state space.
Once the complexity of the deployment domain was under-
stood, a bounding-box technique was introduced, enabling
the robot to operate successfully in the open ocean.

8. Next Steps

This paper is an early attempt at synthesizing several mea-
sures and aspects of domain complexity that are hypothe-
sized to apply generally across domains and tasks. Many
questions remain. We believe that these questions need to
be formulated and addressed within a research agenda that
treats domain-general complexity (as opposed to domain-
specific complexity) as a first-class citizen. We are not claim-
ing that each such research question should apply empiri-
cally to every domain, but ideally, it should be applicable to a
diverse set of domains, allowing general claims to be made.
As next steps, we state three questions below that (poten-
tially) could be investigated in an experimental setting with
the goal of yielding general insights about domain complex-
ity:

1. Can we derive strong theoretical connections between do-
main complexity and difficulty? For instance, will it al-
ways be the case that tasks in a more complex domain
necessarily will be more difficult, or just more difficult in
expectation? And can difficulty be studied independently
of complexity? These are questions with which multiple
communities, especially within AI and open-world learn-
ing, are only just beginning to grapple. In addition to stat-
ing theoretical claims, it is also important to test these
claims empirically. We believe that designing appropri-
ate experimental methodologies that allow us to validate
general claims is, in itself, a promising area for future re-
search to tackle.

2. Can our measures of domain complexity be used to de-
fine and quantify complexity in so-called complex sys-
tems, such as networks and dynamical systems, as well
as other nonlinear systems (e.g., differential equations)?
Is one system more complex than another, and if so, then
along what dimensions? Moreover, does this have theoret-
ical ramifications, validated by appropriate experiments,
for analyzing such systems?

3. In the cases of infinite action and state spaces, what are the
appropriate mathematical frameworks for distinguishing
between domains of (arguably) differing complexity? In
real analysis, for instance, there are different hierarchies
of infinity that are well understood. For instance, integers
and real numbers both form infinite sets, but the latter has
provably greater cardinality than the former. Could simi-
lar claims be made for complexity?

These questions are not exhaustive, and some have several
other questions associated with them that may require sev-
eral parallel lines of theoretical and experimental research
to investigate fully. We emphasize that the one commonality
between all these questions is their lack of dependence on a
single domain or model. Rather, all of them aim toward an
agenda that is as domain-independent as possible. As noted
earlier, we believe that this is the central element that distin-
guishes other field-specific studies of complexity from our
proposal.



Acknowledgments
This research was sponsored by DARPA and the Army Re-
search Office (ARO) under multiple contracts/agreements,
including W911NF2020010, W911NF2020003, and
W911NF-20-2-0004. The views contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed or
implied, of DARPA, ARO, or the U.S. government.

The following teams and individuals contributed to the
open-world novelty hierarchy presented in Table 1: Wash-
ington State University led by Lawrence Holder, Aus-
tralian National University led by Jochen Renz, University
of Southern California led by Mayank Kejriwal, Univer-
sity of Maryland led by Abhniav Shrivastava, University of
Texas at Dallas led by Eric Kildebeck, University of Mas-
sachusetts at Amherst led by David Jensen, Tufts Univer-
sity led by Matthias Scheutz, Rutgers led by Patrick Shafto,
Georgia Tech led by Mark Riedl, PAR Government led by
Eric Robertson, SRI International led by Giedrius Burachas,
Charles River Analytics led by Bryan Loyall, Xerox PARC
led by Shiwali Mohan, Smart Information Flow Technolo-
gies led by David Musliner, Raytheon BBN Technologies
led by Bill Ferguson, Kitware led by Anthony Hoogs, Tom
Dietterich, Marshall Brinn, and Jivko Sinapov.

References
Agarwal, M.; Aggarwal, V.; Quinn, C. J.; and Umrawal,
A. K. 2021. Stochastic top-k subset bandits with linear
space and non-linear feedback.
Amir, O.; Doshi-Velez, F.; and Sarne, D. 2019. Summariz-
ing agent strategies. Autonomous Agents and Multi-Agent
Systems 33.
Boult, T.; Grabowicz, P.; Prijatelj, D.; Stern, R.; Holder, L.;
Alspector, J.; M. Jafarzadeh, M.; Ahmad, T.; Dhamija, A.;
Li, C.; Cruz, S.; Shrivastava, A.; Vondrick, C.; and Walter,
S. 2021. Towards a unifying framework for formal theories
of novelty. Proceedings of the AAAI Conference on Artificial
Intelligence 35(17):15047–15052.
Carroll, T. L., and Byers, J. M. 2017. Dimension from co-
variance matrices. Chaos: An Interdisciplinary Journal of
Nonlinear Science 27(2):023101.
Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008.
Monte-carlo tree search: A new framework for game ai. In
Proceedings of the Fourth Artificial Intelligence and Inter-
active Digital Entertainment Conference.
Claussmann, L.; Revilloud, M.; Glaser, S.; and Gruyer, D.
2017. A study on AI-based approaches for high-level deci-
sion making in highway autonomous driving. In 2017 IEEE
International Conference on Systems, Man, and Cybernetics
(SMC), 3671–3676.
Falniowski, F. 2020. Entropy-based measure of statistical
complexity of a game strategy. Entropy 22(4).
Hernández-Orallo, J., and Dowe, D. L. 2010. Measuring
universal intelligence: Towards an anytime intelligence test.
Artificial Intelligence 174(18):1508–1539.

Holzinger, A.; Biemann, C.; Pattichis, C. S.; and Kell, D. B.
2017. What do we need to build explainable ai systems for
the medical domain?
Ingrand, F., and Ghallab, M. 2013. Robotics and artificial in-
telligence: a perspective on deliberation functions. AI Com-
munications 27.
Jackson, M. C. 2020. How we understand “complexity”
makes a difference: Lessons from critical systems thinking
and the covid-19 pandemic in the uk. Systems 8(4).
Jung, S.; Sinha, K.; and Suh, E. S. 2020. Domain mapping
matrix-based metric for measuring system design complex-
ity. IEEE Transactions on Engineering Management 1–9.
Kelly, K. 2016. What is complexity theory?
Kim, J. 2014. How Complexity Domain Impacts Software
Development Process.
Langley, P. 2020. Open-world learning for radically au-
tonomous agents. Proceedings of the AAAI Conference on
Artificial Intelligence 34(09):13539–13543.
Legg, S., and Hutter, M. 2007. Universal intelligence: A
definition of machine intelligence.
Pereyda, C., and Holder, L. 2020. Measuring the complexity
of domains used to evaluate ai systems.
Prnjat, O., and Sack, L. 2001. Complexity measurements of
the inter-domain management system design. In Proceed-
ings. Ninth IEEE International Conference on Networks,
ICON 2001., 2–7.
Remus, R., and Ziegelmayer, D. 2014. Learning from
domain complexity. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation
(LREC’14), 2021–2028. Reykjavik, Iceland: European Lan-
guage Resources Association (ELRA).
Senator, T. 2019. Science of artificial intelligence and learn-
ing for open-world novelty). SAIL-ON.
Stephenson, M.; Renz, J.; and Ge, X. 2020. The compu-
tational complexity of angry birds. Artificial Intelligence
280:103232.
Štuikys, V., and Damaševičius, R. 2009. Measuring Com-
plexity of Domain Models Represented by Feature Dia-
grams. Information Technology And Control 38(3):179–187.
Wilson, M. A.; McMahon, J.; and Aha, D. W. 2014.
Bounded expectations for discrepancy detection in goal-
driven autonomy. In AAAI Workshop - Technical Report,
volume WS-14-01, 50–56.


