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Abstract
With the development of autonomous vehicles, recent re-
search focuses on semantically representing robotic propri-
oceptive and exteroceptive perceptions (i.e., perception of the
own body and of an external world). Such semantic repre-
sentation is queried by reasoning systems to achieve what we
would refer to as machine awareness. This aligns with the
general purpose of artificial intelligence to utilize common-
sense knowledge, but rather relates to the knowledge repre-
sentation and knowledge elicitation aspects. In this work, we
present our ontology for representing background knowledge
grounding cognition capabilities of autonomous transport
robots. Also, existing ontologies in the domain of robotics
and Internet of Things are integrated. We then demonstrate
the applicability and extensibility of our ontology to au-
tonomous and automated vehicles implemented in an auto-
mobile manufacturing plant. Our robotic situational aware-
ness ontology can provide a basis for organizing and control-
ling robots in a smart factory in the near future and showcases
how situational awareness facilitates the coexistence of smart
autonomous agents.

1 Introduction
Logistics processes are increasingly relying on autonomous
robots as key component of the automated flow of material
within manufacturing plants. Such autonomous robots oper-
ating in a complex environment surrounded by manned and
autonomous vehicles require commonsense knowledge and
the ability to reason over prevailing and predicted future sit-
uations (El Asmar et al. 2020). Such ability, that we refer to
as Situational Awareness (SA) is necessary in the age of the
industry 4.0 (Lasi et al. 2014) to ensure timely and orderly
operation of autonomous robots. Concurrently, as posited in
(El Asmar et al. 2020) SA is not to be conceived as a con-
trol system nor as a safety system; instead, it is a guidance
system facilitating the behavior adaptation of autonomous
robots. Hence, in the absence of guidance, the robot is sup-
posed to proceed as indicated by its state machine. Overall,
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we argue that situational awareness is an essential corner-
stone in order to facilitate the autonomous action and inter-
action of machines.

In the past, the scientific term Situational Awareness was
defined by Endsley (1995) as the perception of relevant el-
ements in the environment, the comprehension of their sig-
nificance, and the projection of their future status. In com-
puter science, such world/environment knowledge represen-
tation is commonly referred to as commonsense. Accord-
ing to Tandon (2016), commonsense includes (1) proper-
ties of objects, (2) relationships between objects, and (3) in-
teractions between objects. In robotics cognition, according
to Freedman and Adams (2009), increasing commonsense
levels is a viable approach to achieving high levels of robotic
situational awareness since robots must possess a compre-
hensive collection of skills and knowledge, spanning vision
processing, logical reasoning, analogical reasoning, and so-
cial conventions to perform complex real-time tasks. Fur-
thermore, in (El Asmar et al. 2020), we show impediments
encountered during operations of autonomous robots lack-
ing commonsense knowledge, and introduce the AWARE
knowledge-enabled framework for situational awareness to
guide behavior of autonomous transport robots in an au-
tomobile manufacturing plant. However, existing modeling
languages, such as ontologies, lack the ability to incorporate
machine’s awareness and, thus, to combine general world
knowledge (i.e., theories about the world; “understanding
and reasoning”) with immediate perception of the world
(Färber, Svetashova, and Harth 2021).

In an analogous domain, in road autonomous driving, ve-
hicles’ interactions are typically governed by established
priors such as traffic rules and drivers’ commonsense. Con-
sequently, based on those priors, considerable research ef-
forts in autonomous driving are directed towards develop-
ing reasoners and knowledge models representing a vehi-
cle’s and a driver’s observations and the dynamics of the
surrounding environment (Morignot and Nashashibi 2012;
Xiong, Dixit, and Waller 2016; Fernandez et al. 2016;
Buechel et al. 2017; Geng et al. 2017; Zhao et al. 2017; Wolf
et al. 2019; Huang et al. 2019).
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However, to the best of our knowledge, such established
rules do not exist for autonomous robots in intra-logistics.
This is due to the fact that, until recently, goods and ma-
terial movement mainly relied on manned vehicles, where
operators resort to commonsense to navigate the vehicles on
the factory premises, and are not accountable to liability and
legal measures like it is the case on the streets. In this pa-
per we introduce the AWARE knowledge schema (i.e., ontol-
ogy) facilitating a grounding of machines’ perceptions (Har-
nad 1999) and machines’ raw data streams, and, thus, an
automated reasoning based on high-level representations.
AWARE elicits the knowledge of the moment as perceived
by the machine – in our use case, a robot –, including its
telemetry, the actual state of its master control system, its
sensed surrounding, and the rules governing the relations
between the perceived assets. By structuring and interlink-
ing machines’ data streams from exteroceptive and proprio-
ceptive sensing (i.e., perception of the own body and of an
external world), these streams are deciphered into observa-
tions processed by the robot to adapt its behavior according
to operational priors.

We thereafter discuss and evaluate the applicability of
AWARE in automobile manufacturing plants. AWARE is de-
veloped in standard formats following best practices for pub-
lishing ontologies (IEEE 2015).

Overall, the main contributions of this paper are as fol-
lows:

1. We propose the AWARE ontology, available online at
https://w3id.org/AWARE/ontology, for modeling situa-
tional awareness. Our ontology combines the represen-
tation of the environment, the robot perceptions, and the
decisions the robot is allowed to make.

2. Based on an evaluation, we show the coverage and appli-
cability of the AWARE ontology to automobile manufac-
turing environment.
The rest of this paper is structured as follows: In Section 2,

we discuss related ontologies and their limitations, before
introducing the developed ontology in Section 3. Section 4
explains how the knowledge graph is applied in our scenario.
In Section 5 we describe how we evaluated the ontology. We
summarize the paper in Section 6.

2 Related Work
Modeling situational awareness for machines. Although
situational awareness is a prominent concept within human
factors community, it is rarely used in robotics. Dahn,
Fuchs, and Gross (2018) present an application-agnostic
definition of the terminology and the processes involved in
acquiring Situation Awareness. According to Dahn, Fuchs,
and Gross (2018), an agent is situation aware, given a goal
and a situation, if it can build a complete representation
before the situation evolves. Also, previous research re-
lated to robotics cognition and situational awareness, such
as (Suh, Lim et al. 2007; Lim, Suh, and Suh 2010; Lemaig-
nan et al. 2010; Diab et al. 2019; Beetz et al. 2018), adopted
knowledge models focused on task planning, which does
not require a foundational modeling of agents’ awareness.
In (Beetz et al. 2018), for instance, the knowledge is rather

organized in an action-centric way to facilitate manipula-
tion tasks. Furthermore, (Suh, Lim et al. 2007; Lim, Suh,
and Suh 2010; Lemaignan et al. 2010; Beetz et al. 2018)
lack the use of common terminologies, such as the ones pro-
vided by IEEE 1872 (IEEE 2015), W3C1 or OGC2. Apart
from the fact that the operational environment represented
in these knowledge models is not relevant to manufacturing
plants. Komma, Jain, and Mehta (2012) presented a domain-
specific ontology for modeling shop floors with autonomous
and automated vehicles. However, it only focuses on the
communication in a simulation scenario and does not model
robots’ perception.
Awareness-related ontologies. Several ontologies have
been proposed modeling awareness-related aspects, such as
sensor information, without considering awareness as main
aspect of the ontology. In the following, we outline such on-
tologies and describe how we integrated them into our on-
tology.

The Suggested Upper Merged Ontology (SUMO)3 (Niles
and Pease 2001) is a free top-level ontology owned by
IEEE that was adopted in the IEEE Standard Ontologies for
Robotics and Automation (IEEE 2015). SUMO defines gen-
eral classes across a broad range of domains with the inten-
tion to form the basic ontology for various computer infor-
mation processing systems.
The Semantic Sensor Network (SSN) ontology45 (Comp-
ton et al. 2012) was proposed by the Semantic Sensor Net-
work Incubator group SSN-XG6. SSN is built on top of
a lightweight ontology called Sensor, Observation, Sam-
ple, and Actuator SOSA (Janowicz et al. 2019). It imports
SOSA7. It was designed to describe sensor resources and
the data they collect in the form of observations. In addition,
the procedures used to perform observations, the features of
interest and observed properties that are the subject of obser-
vation, samples used in the course of observations, as well
as actuators can be specified. A more recent version of SSN
(newSSN) (Haller et al. 2019) was published lately as a joint
standard between W3C and OGC specifying the semantics
of sensors, observations, sampling, and actuation.
AWARE is based on the SUMO ontology, and adopts the
newSSN concepts to model robotics sensation.

3 AWARE: An Ontology for Situational
Awareness

The developed knowledge graph schema AWARE for a pro-
prietary autonomous transport robot in intralogistics incor-
porates high-level representations of the manufacturing en-
vironment and the perceived coexisting assets. Surrounding
assets perceived by the robot are modeled as observations.
Data streams captured through exteroceptive sensors and in-
trinsic signals are processed into semantic representations to

1https://www.w3.org/
2https://www.opengeospatial.org/
3http://www.adampease.org/OP/
4https://www.w3.org/TR/vocab-ssn/
5http://www.w3.org/ns/ssn/
6https://www.w3.org/2005/Incubator/ssn/
7http://www.w3.org/ns/sosa/
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populate the knowledge graph. Further, AWARE models the
robots hardware and software components, to associate sen-
sors and signals to the corresponding processing algorithms.

In the following, we first present the development
methodology in Sec. 3.1. We then show the adopted on-
tology design considerations in Sec. 3.2 and the knowledge
schema in Sec. 3.3.

3.1 Overall Methodology
We adopted the Ontology Development 101 strategy (Noy
and McGuinness 2001) and the ontology editing environ-
ment Protégé8 to develop the ontology presented in this pa-
per. This ontology was designed using OWL 2 DL. Follow-
ing the above methodology, the development method com-
prises seven steps:

1. Defining the domain and scope of the ontology, for in-
stance, robotic awareness in automobile manufacturing
plant.

2. Considering the re-usage of existing ontologies: the Sug-
gested Upper Merged Ontology SUMO and the Seman-
tic Sensor Network SSN ontologies are extended and
adopted in AWARE.

3. Enumerating the important terms in the ontology. For this
purpose, we carried onsite inspections to derive the ontol-
ogy concepts and relations.

4. Defining the classes and their hierarchy: The AWARE on-
tology includes 91 classes.

5. Specifying the properties of each class, also referred to as
slots.

6. Designating the facets of the slots, including slot cardi-
nality, slot-value type and domain, and slot range.

7. Populating the ontology with instances of classes.

3.2 AWARE Design Criteria
The following design criteria have been taken into account
in the development:

• Availability. AWARE ontology is made public under a
persistent URL9, available under the open CC-BY 4.0 li-
cense.

• Interoperability. The ontology is grounded in an upper
ontology (SUMO) to make its integration with other on-
tologies easy.

• Sustainability. The ontology is integrated in a frame-
work for robot awareness and policy adaptation (El As-
mar et al. 2020). The robot awareness framework is de-
ployed in a productive use case in automotive manufac-
turing plant.

3.3 Ontology Design
AWARE is inspired by analogous robotics ontologies (Suh,
Lim et al. 2007; Lim, Suh, and Suh 2010; Lemaignan et al.
2010; Diab et al. 2019; Beetz et al. 2018). Standardized

8https://protege.stanford.edu/
9https://w3id.org/AWARE/ontology

Figure 1: Meta-ontology layer: Taxonomy of the main con-
cepts of AWARE and their relation with SUMO

ontologies (Niles and Pease 2001; Janowicz et al. 2019)
have been used or extended whenever possible to ensure
extensibility and conformity, and the ontology is designed
conformly to the IEEE 1872 terminology (IEEE 2015),
W3C, and OGC standards. Furthermore, new introduced
classes align with the communication interface published by
VDA505010.

AWARE is divided similarly to (Suh, Lim et al. 2007; Lim,
Suh, and Suh 2010) into the following three layers:

1. A meta-ontology layer representing generic informa-
tion and serving to align the fundamental objects with
the modeling strategy used in SUMO. The highest
level classes of SUMO are adopted (SUMO:Entity,
SUMO:Abstract, and SUMO:Physical). As shown in fig-
ure 1, SUMO:Object falls under SUMO:Physical. Ab-
stract entities include different properties, observations,
procedures and decisions described in section 3.3, as well
as temporal entities.

2. The ontology schema layer representing domain knowl-
edge derived from the upper layer. This layer comprises
the main elements of the ontology described further in this
section: the environment model, the robot perceptions,
and the decisions the robot is allowed to make.

3. The instance layer forming the knowledge graph when
real data is added as instances of the classes defined in
the ontology schema layer, as described in section 4.
In the following, we outline the core components of our

ontology, namely the environment modeling, the robot per-
ception modeling, and the decision making modeling.

Environment modeling The shop floor where au-
tonomous transport robots operate is a dynamic envi-
ronment. Humans, autonomous robots, and manned vehi-
cles cooperate side by side to facilitate material flows.
In AWARE, all dynamic assets in the manufacturing
plant are incorporated within class SUMO:Object. Among
SUMO:Object there is AWARE:Person to represent hu-
man agents and SUMO:Artifact to represent objects that

10VDA5050 – Schnittstelle zur Kommunikation zwischen
Fahrerlosen Transportfahrzeugen (FTF) und einer Leitsteuerung,
https://www.vda.de/en
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Figure 2: Taxonomy of Region

are products of a making including agents present in the
plant that are not humans, sensors as well as the plant
itself. SUMO:Artifact (ref. figure 3) is further ramified
into the subclasses AWARE:Vehicle, AWARE:StorageUnit,
and AWARE:TransportationUnit. AWARE:Vehicle class cov-
ers Aware:MannedVehicles which are moving objects
that are operated by humans such as AWARE:Forklift,
or autonomous machines such as AWARE:AGV. Be-
neath AWARE:TransportationUnit corresponding trans-
portation units are listed, either pulled by another vehi-
cle such as a AWARE:Trailer isPulledBy AWARE:Tugger,
or lifted by another vehicle such as a Aware:Dolly is-
LiftedBy Aware:Forklift. Further, SUMO:Region (ref. fig-
ure 2) concept is reused for delimited topographic areas.
SUMO:Region is partitioned into SUMO:GeographicArea
and AWARE:InfrastructureRegion. SUMO:GeographicArea
is particularly relevant since general policies and safety
rules may differ from one geographic area to an-
other according to the state or country in question.
AWARE:InfrastructureRegion groups different operations
areas listed under AWARE:OperationalArea class and con-
straint zones where different restrictions apply listed under
the class AWARE:ConstraintZone. The descriptions of dif-
ferent constraint zones are elicited under table 2.

Perception modeling AWARE bridges the gap between
low-level data streams coming from robots’ sensors suite,
and high-level concepts used by humans. For examples raw
images data frames are processed into a semantic representa-
tion of surrounding industrial assets such as forklifts, pedes-
trians, driveway. In the following, we describe the classes
in the AWARE ontology related to perception of the au-
tonomous robot.

Sensor suite. Sensors are devices that produce signals
in one or in multiple dimensions when they are stimu-
lated with phenomena happening in the environment. The
class SOSA:Sensor incorporates wide range of sensors the
robot uses. This is asserted using the SOSA:hosts relation-
ship. AWARE:ProprioceptiveSensor is used for propriocep-
tive sensing i.e. measuring values internal to the system
such as a AWARE:BatterySensor reports its voltage, health
state or charge level, while AWARE:ExteroceptiveSensor
refers to exteroceptive sensing i.e. acquiring information
from the robot’s environment such as a AWARE:Lidar mea-
sures distances to objects surrounding the robot. The classes
SUMO:TransitwayObstacle and AWARE:ObjectOfFocus are
used to identify objects that are of particular relevance in the
LiDAR’s and camera’s field of focus respectively. In partic-
ular, SUMO:TransitwayObstacle is used for objects that can
act as obstacles to motion along a transitway.

Procedure. The class SOSA:Procedure stands for com-
putational models the robot uses to process data of corre-
sponding sensors (SOSA:Sensor). This is asserted using the
relationship SSN:implements. Many sensors’ data types can
be used in raw format, such as AWARE:BatterySensor data
since it is provided as a single float value. However, multi-
dimensional data is usually processed to extract key features
using suitable algorithms (a Procedure). For instance, vision
models such as object detection algorithms may be applied
to obtain high-level features from raw pixels data. Process-
ing results are abstracted in concepts grounded in the on-
tology. These high-level semantic concepts are relevant to
real-world observations in a manufacturing plant.

Property. Information attributes related to perception ca-
pability of an autonomous transport robot are grouped

4



Figure 3: Taxonomy of SUMO:Artifact

within the AWARE:Property class (ref. figure 4). According
to SSN, a property is defined as a quality of an entity, that
is an aspect of an entity that is intrinsic to and cannot ex-
ist without the entity. This includes visual features namely
AWARE:BoundingBox to represent the bounding box of an
object detected by object detection algorithms, or other at-
tributes such as AWARE:AGVposition that indicate the coor-
dinates of the robot, or AWARE:BatteryInformation includ-
ing all the battery information such as batteryCharge, bat-
teryHealth or batteryVoltage. AWARE:BatteryInformation
data properties among other attributes and their data proper-
ties in the ontology were adopted from the communication
interface of VDA5050 (see table 1).

Observation. The class SOSA:Observation is used to link
all the elements of the perception pipeline i.e. SOSA:Sensor,
SOSA:Procedure, SUMO:Artifact, SSN:Property, and
Time:TemporalEntity. Through reification, such n-ary rela-
tions are expressed to associate the various assets perceived
by the sensors across different timestamps. An instance of
SOSA:Observation is created for every perception, where
SOSA:Observation is linked to the SOSA:Sensor that made
the observation, via the relationship defined within SSN
SOSA:madeBySensor. We incorporate further relevant
relationships of SOSA:Observation as shown in table 3.
Further, the timestamp at which the observation was made is
recorded using the relationship AWARE:hasTimeStamp. The
Time:TemporalEntity instance is then linked to its actual
xsd:dateTime using the relationship AWARE:hasValue

Decision Making Modeling Robotic awareness can be
grasped with the robot’s understanding of its environment.
This can be witnessed with the decisions the robot makes

Figure 4: Taxonomy of Property

according to the state it is in and the dynamics of its envi-
ronment. In our ontology, the class AWARE:Decision, a sub-
class of SUMO:Abstract includes instances of the possible
decisions that can be outputted by the situational awareness
framework such as stop, increaseSafetyRange or decreas-
eSpeed.

4 Application
In the following, we outline how we applied our ontology in
the context of manufacturing. An individual ego autonomous
vehicle is an instance of AWARE:STR. Every ego has (1)
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Table 1: List of the attributes adopted from VDA5050

Property VDA description

agvPosition Defines the position on a map in
world coordinates.

actionName Name of action.
actionID Unique action identification con-

sisting of the actionName and a
postfix starting with “ ”.

actionDescription Additional information on the cur-
rent action.

errorType Type / name of error.
errorDescription Error description.
x X-position on the map in reference

to the world coordinate system.
y Y-position on the map in reference

to the world coordinate system.
theta Orientation of the AGV.
batteryVoltage Battery voltage.
batteryHealth State of health of the battery.
batteryCharge State of charge of the battery.

Table 2: List of distinct zones of operation

Property Description

RestrictedZone A zone described by a polygon that
the vehicle is not allowed to enter.

DirectedZone A directed zone sets directional
costs for path planning within the
zones.

SpeedLimitZone A zone within which the speed limit
is defined.

NoReplanningZone A zone where the vehicle is not al-
lowed to replan its path.

LimitedCapacityZone A zone where only a limited num-
ber of vehicles can be present.

InteractionZone A zone that can be accessed after an
external state is checked.

its properties such as serialNumber, (2) its sensors, and (3)
the algorithms/computational models processing the differ-
ent raw data types. Each sensor is asserted to be isHostedBy
ego and each algorithm is asserted to be implementedBy ego.
The area where the vehicle is deployed is defined by classes
such as AWARE:ManufacturingPlant or SUMO:City. The
AWARE:ConstraintZones and AWARE:OperationalAreas
are also instantiated according to the plant’s map.
While operating the classes AWARE:Action, AWARE:Error,
AWARE:AGVdirection, AGVposition, AWARE:AGVlocation,
AWARE:BatteryInformation, get updated based on informa-
tion streaming from the master controller and the proprio-
ceptive sensors. As the robot navigates, more insights are ob-
tained and perceptions are inserted in the form of instances
of SOSA:Observation. The insights are narrowed down to
the area of focus of the robot. The area of focus varies with
every sensor: for camera input for example, detected objects

Table 3: List of relationships with SOSA:Observation being
their domain (Subject) or range (object).

Subject Predicate Object

SOSA:Observation SOSA:madeBySensor SOSA:Sensor
SOSA:Sensor SOSA:madeObservation SOSA:Observation
SOSA:Observation SOSA:usedProcedure SOSA:Procedure
SOSA:Observation SOSA:observedProperty observed property
SOSA:Observation SOSA:hasFeatureOfInterest feature of interest
feature of interest SOSA:isFeatureOfInterestOf SOSA:Observation

Figure 5: Areas of focus of the robot in camera display (front
in red, right in yellow, left in mauve, and opposite in blue)

are filtered out using tuned areas of focus as shown in fig-
ure 5. The area of focus of the camera is composed of four
adjacent quadrilaterals for filtering out important insights as
well as classifying entities observed in front of the robot, on
its right, on its left or on the opposite side to it respectively
as
• AWARE:ObjectOfFocusInFront,
• AWARE:ObjectOfFocusOnTheRight,
• AWARE:ObjectOfFocusOnTheLeft,
• AWARE:ObjectOfFocusOnTheOpposite.
Each observation is characterized with the timestamp at
which it was created. Thus, multiple observations can be
characterized with the same timestamp. The AWARE rea-
soner (El Asmar et al. 2020) inspects the data available in
the knowledge base and checks it over the behavioral rules
in order to infer the best course of action following the pre-
vailing situation. An AWARE:Decision is therefore assigned
to its corresponding timestamp.

5 Evaluation
To evaluate the AWARE ontology, we performed ontol-
ogy Verification & Validation (V&V) following the SABiO
guidelines (de Almeida Falbo 2014). To this end, human
expert judgments were used as follows: Referring to a
set of competency questions (CQs) (Brank, Grobelnik, and
Mladenic 2005), a human expert analyses whether the de-
veloped concepts, relations, and axioms are able to answer
all CQs (a selection of competency questions is listed in
table 4). We collected competency questions by analyz-
ing the behavior of autonomous transport robots deployed

6



Table 4: Examples of Competency Questions (CQs). STR refers to the proprietary SMART TRANSPORT ROBOT

Competency Question Requirement satisfied?

Which sensors retrieve data about the external environment of the robot? Yes
Which sensors retrieve data about the internal information about the robot? Yes
Which algorithms can the robot implement? Yes
What is the level of battery charge? Yes
How many features of interest can one observation have? Yes
How many properties can one observation have? Yes
How many sensors can contribute to making one observation? Yes
Is ego STR loaded? Yes
What is the serial number of Ego STR? Yes
Which type of vehicle is an STR? Yes
What is the most recent decision? Yes
Which are manned vehicles? Yes
Which guidance can the robot provide? Yes
Which properties can be observed? Yes
What are the different constraint zones with different regulations in the plant? Yes
What are the different operational areas in the plant? Yes
In which plant is the ego STR located? Yes
In which operational area in the plant is the ego STR located? Yes
In which constraint zone in the plant is the ego STR located? Yes
When was observation 1 made? Yes
Which sensor made observation 1? Yes
What is the serial number of the sensor that made observation 1? Yes
Is the observed object an object of focus in front of ego STR? Yes
Is the observed object an object of focus on the right of ego STR? Yes
Is the observed object an object of focus on the left of ego STR? Yes
Is the observed object an object of focus on the opposite side to ego STR? Yes
What did ego STR observe at timestamp 1? Yes
Was an observed object also a transitway obstacle? Yes
Which decision did the STR make at timestamp 1? Yes

in productive automobile manufacturing plants. We docu-
mented the behavior of the deployed robots via onsite ob-
servations and expert feedback in three production manu-
facturing plants in Germany. The observed fleet of deployed
autonomous transport robots comprises 100 robots operat-
ing during two 8-hour-shifts per day. The study to collect
the competency situations was conducted over 10 months.
Through AWARE grounding, a transport robot is required to
answer questions such as whether there are humans, human-
operated vehicles, autonomous vehicles detected in prox-
imity, or whether another transport robot is detected at a
charging station area. Furthermore, human expert evalua-
tion, when conducted iteratively during the ontology de-
velopment process does not only allow to identify miss-
ing terms in the ontology, but also to spot irrelevant terms
as well. Thus, such evaluation was frequently performed in
parallel with the ontology development, which significantly
helped in improving the ontology. The final version of the
ontology was validated against all CQs, ensuring all ques-
tions are answered.

6 Conclusion and Future Work
In this paper we introduced AWARE, an ontology that builds
up a comprehensive knowledge representation tailored to the
perception of the ego autonomous transport vehicle operat-
ing in automobile production intralogistics. Inspired by pre-
vious research on robots’ cognition tailored to household

environment tasks, AWARE builds upon preceding knowl-
edge models in the domain of manufacturing and Internet of
Things to advance robot cognition within manufacturing en-
vironments. AWARE models the intrinsic and extrinsic per-
ceptions, framing low-level multi-dimensional data streams
captured by the robot’s sensors into high-level semantic rep-
resentations. AWARE satisfies interoperability, extensibility,
and conformity to established standards, and is consistent
with the VDA5050 communication interface published by
the German Association of the Automotive Industry.

Our future work will have three main directions: (1) ex-
tending the ontology to support projection of future states of
the environment given the prevailing state, (2) adapting the
behavioral rules specific to automotive manufacturing plants
based on established commonsense navigation constraints,
and (3) grounding autonomous transport robots intralogis-
tics operations by teaching robots to identify situations that
require a change in policy and act accordingly to abide to
the operational constraints in order.
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