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Abstract

In the present digital age, much information is organized as
knowledge graphs, where numerous techniques have been de-
veloped to retrieve relevant subgraphs. As the information
represented in such retrieved subgraphs is not readily suit-
able for human laymen users to understand, it is useful to
develop approaches to represent such information in natu-
ral language. In this work, we propose a neural modeling
framework that jointly learns to (1) generate topically coher-
ent and informative text by computing the representation of
the input knowledge graph for each sentential context, and to
(2) generate text in a sentence-by-sentence order to improve
tractability for long sequence generation. Our proposed ap-
proach improves the accuracy of text generation using objec-
tive metrics such as BLEU and METEOR in comparison to
established baselines such as graph transformer networks on
the AGENDA dataset. Human evaluations also show that our
proposed model compares favorably with established base-
lines on the dimensions of informativeness and coherence.

Introduction

Knowledge graphs are a specific form of graphs in which
entities are represented as nodes while the relationships be-
tween them are represented as labeled edges (see Figure
1 for an example). Knowledge graphs are a useful way to
organize comprehensive information consisting of a large
quantity of entities and relations between them. Knowledge
graphs have been a successful means of managing seman-
tic information (Wang et al. 2018). Research in developing
methods to construct knowledge graphs have been vibrant
(e.g. (Mehta, Singhal, and Karlapalem 2019).) Much efforts
are also made to query large knowledge graphs for retriev-
ing relevant information (Bao et al. 2016), where often the
retrieved results are subgraphs of the knowledge graph (Kas-
neci, Elbassuoni, and Weikum 2009). In such scenarios, ap-
proaches to represent such subgraphs in natural language to
make the retrieved results human readable is highly desir-
able in developing user-friendly interactive technology. Fig-
ure 1 illustrates an example of such a task, where the inputs
are a knowledge graph and a proposed title, and the corre-
sponding generated output text.
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Natural language generation approaches to convert
knowledge graphs to human-readable textual descriptions
is spurring a lot of research interest. Recent efforts include
(Marcheggiani and Perez-Beltrachini 2018), where the ma-
jority of the work is intended for generating single sentences
from the input graph. A lucid generated piece of text should
be coherent and informative while being grammatically ac-
curate. Technical challenges cascade when one attempts to
generate long sequences (e.g. multiple sentences) of text,
as information coverage, fluency, and coherence all become
more challenging to model properly. Koncel-Kedziorski et
al. (2019) is the first to generate multiple-sentence text from
knowledge graphs accompanied with a dataset release. They
used a graph transformer network to process the information
in graphs to human readable text.

In our work, we are motivated by computational linguis-
tic approaches of modeling coherence when considering
multi-sentences (Barzilay and Lapata 2008). In particular,
we exploit topic continuity for modeling textual coherence
as inspired by (Pu 2006). Our proposed neural architecture
generates coherent multi-sentences from knowledge graphs
(Koncel-Kedziorski et al. 2019) by (1) explicitly modeling
content order and decoding sentence-by-sentence (as op-
posed to a single sequence of multiple- sentences, which is
the default in neural generation frameworks) to better model
the order of the content and make the generated text more
tractable, reducing the probability of brittle yet common
neural language generation behavior such as repeating text,
contradictory information and bland, non-specific descrip-
tions (1), and by (2) explicitly learning an optimum trade off
between topical continuity for coherence and novel content
selection for informativeness during generation process.

Related Work

Knowledge graph construction has played an important role
in organizing and managing semantic information, where
much recent research focuses on end-to-end deep learn-
ing techniques (Mehta, Singhal, and Karlapalem 2019).
Data modeling approaches using such structured informa-
tion sources to support more intelligent systems and enable
user-friendly interactions has also been a recent research
trend. For example, some researchers have used knowledge
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Title: Event Detection with Conditional Random Field

Figure 1: An example of natural language description generated from a knowledge graph guided by the text of the title.

graphs to improve question answering techniques (Zhang
et al. 2018), while others have worked on methods to retrieve
answers in a presentable format (Abujabal et al. 2017).

A variety of techniques have been adopted for text gen-
eration for a variety of inputs such as text, graphs and
data records. Earlier attempts for text generation adopted a
combination of handcrafted rules and manually engineered
templates to generate the output text (Reiter et al. 2005).
Later, researchers started focusing on automatically gener-
ating templates to replace the manual ones (Angeli, Liang,
and Klein 2010). Such techniques were applied on discrete
text representations, which are less efficient for characteriz-
ing text semantics. Quests for more efficient methods such
as those using dense sentence representations resulted in the
development of neural text-to-text generation models have
been applied to machine translation (Bahdanau, Cho, and
Bengio 2014) and summarization (Kurisinkel, Zhang, and
Varma 2019).

Text generation methods from data records have been in-
vestigated for different datasets such as wikipedia infobox
(Lebret, Grangier, and Auli 2016) and (Kurisinkel and Chen
2019). There were studies in the past which investigated and
evaluated text coherence (Barzilay and Lapata 2008) and at-
tempted to improve coherence during text generation. There
are also studies which incorporated context based text repre-
sentations for efficient text generation (Clark, Ji, and Smith
2018). Our work proposes a neural approach by characteriz-
ing the input knowledge graph representation specific to the
sentential context for coherent text generation.

Text generated to describe information characterized in
graphs with labeled edges (e.g., knowledge graphs or ab-
stract meaning representation (AMR)) include (Koncel-
Kedziorski et al. 2019; Song et al. 2018; Velickovié et al.
2017). (Konstas et al. 2017) pioneered the first work on neu-
ral text generation from AMR graphs by pre-training with
noisy parsed information. Other attempts are made to encode
graphs using graph convolution network and attention en-

coders (Marcheggiani and Perez-Beltrachini 2018). A por-
tion of the work use gated information flow between nodes
to learn the node representation within the graphical context
(Beck, Haffari, and Cohn 2018; Song et al. 2018). Most of
such work is on generating a single sentence from an input
AMR, which are rooted graphs with a fine-grained set of la-
bels defined for a single sentence. Thus, only one sentence
can be generated from an AMR graph.

Recently, Koncel-Kedziorski et al. (2019) started work
on multi-sentence generation from knowledge graph inputs
guided by the title text, where they introduced graph trans-
formers for encoding the input. They used a bipartite rep-
resentation to linearize the graph and generated the multi-
sentence output as a single sequence. By contrast, our ap-
proach views a graph as a set of edges and learns the context
representation of edges within the graph using self attention.
We generate the output sentence-by-sentence to improve co-
herence. Our approach explicitly computes the representa-
tion of the input graph at each sentential context by selecting
content for coherence and informativeness through the gated
mechanism.

Task Definition

Given a knowledge graph, each edge e E' can be represented
with a triplet (ne;, [y, ne;), where ne; and ne; are named
entities in adjacent nodes and [j, is the label of the edge
that connects them. The set of edges is able to construct the
graph. The proposed task generates a sequence of sentences
to represent the information contained in the input knowl-
edge graph guided by a proposed title text (see Figure 1).
We generate the output in a sentence by sentence order. At
each time step of sentence generation, we generate the in
sentence in two steps as listed below,

* Computed the representation of input graph correspond-
ing to current time- step by properly by weighting content
selected from original graph representation and previous
graph representation.
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Figure 3: An example of a generated sequence of sentence
templates

* Realize the sentence for the current time step from the
computed time-step specific representation of the input
graph, guided by the proposed title.

Approach

Our method first generates sentence templates and then fills
the entity slots in the generated templates by ranking the in-
put entities. The generated sequence of sentence templates
for the given knowledge graph in Figure 1 is shown in Fig-
ure 3. Figure 2 shows the neural architecture of our proposed
framework. The architecture comprises neural components
for learning edge representation, gates for selecting content
for coherence and informativeness, control gate mechanism
for learning an optimum trade-off between coherence and
informativeness, a decoder for individual sentence templates
and an entity ranking scheme for ranking entities to fill slots
in the templates. The following subsections elaborates on
each of these components.

Edge Representation

Each edge in the graph is represented as a concatenation
of adjacent node representations and the edge relation la-
bel representation. Specifically, representation e, of edge
(ne;, Uy, ne;) with ne; and ne; as entities at the nodes and
edge label [, is computed as the following:

ne; = [Ent(Key(nel)), Etype (typ@Of(”ez))]
nei = [Ent(Key(nej)), Etype(typeof(nej))]
eq = [neg; Er(I); ne;]

Key represents the entity key of entity in the context of
current input graph (eg: task_1 is the key for the entity
FEventDetection in Figure 1), Ent is a look up table for
entity keys, typeof represents the entity type of argument
entity, Fyyp. is the entity type look up table and E, is the
edge relation label look up table.

In a graph, edges cannot be treated as discrete elements,
but should be defined in the context of the graph. For this
purpose, our method computes the context vector for each
edge which represents the context of the edge within the in-
put graph. Steps involved in the self attention mechanism
used for computing the context vector of edge e; is done as
follows.

T
aj = exp(e; Waeg)
Oj = Za%kek
oy

where W, is a parameter matrix.



Content Selection for Coherence and
Informativeness

The output is generated in a sentence-by-sentence order. The
content ordering RNN stores the current context of the out-
put sentence generation. The content of the sentence to be
generated at each stage is implemented by selection gates.
There are two selection gates which select content for co-
herence via topical continuity and informativeness via novel
content selection. The control gate weights determine the
relative ratios between coherence and informativeness dur-
ing each sentence template generation phase.

At the time step ¢ of the content ordering RNN with cur-
rent hidden state H;_1, the content selection for generating
template for sentence to be constructed is done using con-
tent and coherence gates. The computation process of H;_1
is explained in a subsequent section. At time-step ¢, for each
edge e;, the content gate gcont selects content from the orig-
inal edge representations as follows:

geconty ; = sigmoid(Wgelej; Cj; Hi—1])

econty j = geonty ; © e;
where W, is a parameter matrix. The computation of ¢;
and C} is explained in the previous section (Edge Repre-
sentation). The coherence gate gcoh selects the content for
topical continuity from edge representations computed for
previous time-step as follows,
sigmoid(Wgs[et_Lj; Cj; Ht—l])
ecoh; j = gcohy ; © er—1 ;

gcoh;

where W is a parameter matrix and e;_ ; is an edge
content representation computed at the previous time-step
(Equation 1 with recursive computation). The coherence
gate is inactive during the generation of the first sentence
as there is no previous content. The control gate computes
the weightage between the content for coherence and infor-
mativeness and computes the edge content representation for
the time-step ¢ as follows.

ctrly ; = sigmoid(Wgc[Hy—1 + b))
er,j = ctrly j x econty j + (1 — ctrly ;) * ecohy ;

ey

During each stage of feature and edge selection, content or-
dering RNN state H;_; provides feedback for gates regard-
ing already covered information and topical context. This
feedback enables the gates to compute content for the next
sentence to be generated. In Figure 2, trapezoids represent
the content and coherence gates while the left portion of the
Figure illustrates the self attention mechanism of the neural
network for computing C;.

Content Ordering & Decoding Output Sentence
Templates

Content order RNN, a GRU recurrent neural network, is ini-
tialized with a zero vector state before the first forward prop-
agation of the network begins. Input at each time step ¢ of the
content ordering RNN iS €,,cqn,, the mean of all edge rep-
resentations (e;,j, V7). Therefore the hidden state H; of the
hidden state RNN is computed as follows:

H;, = GRU(emeant ) Htfl)v 2)

Sentence template decoder RNN is a GRU and initialized
with H,, the current state of content ordering RNN to gener-
ate the sentence template corresponding to current time-step
t. The template decoder RNN attends over the updated set
of edges e;,Vj to generate the sequence of tokens in the
sentence template to be decoded. Also, the entire template
generation is conditioned on the expected title of the text to
be generated. The computations involved in the process is
given below.

By j = exp(htT,chttk)
ey =D By kB
Vi = exp(Yiitte” Weer k)

Cyl title = E Y€tk

ht/ = tanh(Wh [ht/ y Ce' s Ct',tmcD

where h, is the hidden state of the decoder at time-step t.
Yiiue 1s the representation of title text constructed using a
pre-trained BERT model (Devlin et al. 2019). The probabil-
ity distribution over the output vocabulary for generating the
token w,/ at time step t of the template generating decoder
is computed as below:

P(wt’ |w<t/, {ei, --7en}>Xtitle> =

/ 3)
softmax(Woh, +b,)

The rightmost portion of Figure 2 marked in dark blue and
dark red represents the set of computations detailed in the
current section. Figure 3 depicts the example of a generated
sequence of sentence templates.

Entity Ranking

Once the sentence template is created, we rank entities for
filling the entity slots created in the generated sentence tem-
plates. For an accurate ranking sentential and word contexts
need to be considered. The hidden state of the content or-
dering RNN represents the content of the sentence under
construction while that of the template decoder represents
the current token to be generated. For ranking entities to fill
the the template generated at time-step ¢ of content order-
ing RNN, we take into account the hidden states of content
ordering RNN and the template decoder hidden states. We
compute the score for entity ne; to fill the entity slot gener-
ated at time-step t of template decoder as follows.

score(e;) = V* tanh(W,[Hy, by, ne;])
, “4)
score(e;) = softmax(score(e;)) Vi
where V* and W, are parameter matrices and ne; is a dense
representation of the entity ne; computed out of its textual
description (eg: event detection at the node N2 in Figure 1)
using a pre-trained BERT model (Devlin et al. 2019). The
particular slot in the sentence template generated is filled
with the entity with maximum score.



Loss Function

The loss function incorporates components to maximize
template sentence and template token generation accuracy
and entity scoring for filling the generated sentence tem-
plate.

T t T
C= —Z ZIOg P — Z Z log (Score(e; ;))

i=1 j=1 i=1 Ventity_slot_j
)

The first component of the loss function C minimizes the er-
ror during sentence template generation, as F; ; is the prob-
ability of the expected token during decoding. 7" is content
ordering time steps (i.e. number of sentences); ¢’ is time
steps of the decoder (i.e. number of word tokens). The sec-
ond component minimizes the error of entity ranking, where
the expected entity e; ; is computed in Equation (4). Loss
is summed up for all the time steps of the content ordering
RNN and the decoder RNN.

Experiments
Data

We use the data released by Koncel-Kedziorski et al. (2019)
and followed the default data split for training and evalua-
tion. They took 40K paper titles and abstracts from the Se-
mantic Scholar Corpus (Ammar et al. 2018). From each of
the abstract collected, a knowledge graph is constructed us-
ing ScilE (Luan et al. 2018), a system with established ef-
ficiency for information extraction in the scientific domain.
SciLE was used to extract major named entities from the ab-
stract, whereas these named entities belong to all categories
in the scientific paper such as Methods and Material, Evalua-
tion Metrics, or Experimental Results. SciLE was also used
to identify the relationship between different entities men-
tioned in the abstract. The templates for template generation
is constructed by replacing named entities in each output
sentence in training data by an $entity_slot.

Model Comparison Settings

We compare different settings of our approach with other
previously proposed approaches.

e GraphWriter: The approach proposed by Koncel-
Kedziorski et al. (2019) which uses graph transformer to
encode the input graph.

* GAT: This approach uses graph attention network to en-
code the input knowledge graph by attending over neigh-
bouring edgess Velickovic et al. (2017).

* EntityWriter: This is a base model used by Koncel-
Kedziorski et al. (2019) in which only entities and title
text is used as input.

* Graph2Order : This is a variant of our approach in which
content selection gate is present, but coherence and con-
trol gates are not present.

* Graph2CoherentText : This setting represents our ap-
proach proposed in the current paper with content selec-
tion, coherence and control gates.

Method | BLEU [ METEOR |
GraphWriter | 14.3+/-1.01 | 18.8 +/- 0.28
GAT | 12.24/-0.44 | 17.2 +/- 0.63
EntityWriter 10.38 16.53
Graph2Order | 14.20+/-0.7 | 18.20+/-0.3
Graph2CoherentText | 15.40+/-0.9 | 19.30+/-0.19

Table 1: Evaluation I: Content Generation

Experimental Setup

Entity representation has a dimension of 300. Entity type
and edge label representations both have a dimension of
33. Dimensions of network parameter matrices are tuned
accordingly. BERT embeddings with a size of 768> pass
through a linear transformation for adapting to the network
computations. To train the network we used SGD with the
momentum set to 0.9 and a learning rate of 0.01.

Evaluation Study
Evaluation I: Content Generation

We evaluated the quality of content generation using the
BLEU (Papineni et al. 2002) and METEOR (Denkowski
and Lavie 2014) metrics. The results are shown in Ta-
ble 1. Graph2CoherentText consistently outperforms
other approaches for both metrics while Graph20rder
shows results comparable to GraphW riter, suggesting that
graph encoding scheme used in these methods incorpo-
rating edge representations and edge context vectors, are
equally efficient in capturing semantics of input graph.
Both Graph2CoherentText and GraphWriter gener-
ate content in a sentence-by-sentence manner. However,
Graph2CoherentText yields better results for both BLEU
and METEOR, indicating that mere content order RNN
alone is insufficient to model the topical context of a sen-
tence. In Graph2CoherentText, topical continuity is en-
sured by allowing information from the previous edge rep-
resentations to penetrate through the coherence gate, result-
ing in informative content creation for a new sentence where
novelty and topical continuity are weighed by the control
gate.

Evaluation II: Human Evaluation

We randomly choose 30 knowledge graphs in the test set
and the corresponding text generated by each of the com-
peting approaches. The pairs of graphs and output text are
randomly presented to the evaluators. The generated text
is evaluated on the dimensions of coherence, informative-
ness and grammaticality. The human evaluators are 4 post-
graduate students in linguistics. For coherence, evaluators
are instructed to look for topical continuity between neig-
boring sentences. For Informativeness, evaluators are asked
to decide how much of information contained in the input
graph is covered in the generated text. For grammaticality,
the evaluators are asked to judge the linguistic quality of
generated sentences irrespective of information contained.

*https://github.com/google-research/bert



Method | Coherence | Informativeness | Grammaticality |

GraphWriter 20% 27% 20%

Graph2Order 25% 26% 19%

Graph2CoherentText 45% 40% 27%

ambiguous 10% 7% 34%

Inter Evaluator Agreement (Kappa) 0.75 0.73 0.72

Table 2: Evaluation II: Human Evaluation Results

Title

Learning Reliability of Parsers for Domain Adaptation of Depen-

Input Graph

parsing

dency Parsing
dependency parser

EVALUATE-FOR

conll 2007 shared
task

EVALUATE-FOR

relation
extraction

HYPONYM-OF ‘CONJUNCTION

paraphrase
acquisition

natural language

; TS HYPONYM-OF
processing applications

Reference Text

the accuracy of parsing has exceeded 90 % recently , but this is not
high enough to use parsing results practically in natural language
processing applications such as paraphrase acquisition and relation
extraction . we present a method for detecting reliable parses out
of the outputs of a single dependency parser . this technique is also
applied to domain adaptation of dependency parsing . our goal was
to improve the performance of a state-of-the-art dependency parser
on the data set of the domain adaptation track of the CoNII 2007
shared task , a formidable challenge .

Output Text (proposed model)

Parsing is effective in improving natural language processing appli-
cations such as paraphrase acquisition and relation extraction. We
propose a novel method for parsing which is used for natural lan-
guage processing. Performance of the dependency parser is evalu-
ated on conll 2007 task...

Table 3: An example of an automatically generated piece of text using the proposed approach.

Table 2 shows the distribution of the best performing
model determined by the evaluators for each evalua-
tion criteria (coherence, informativeness, grammaticality).
Graph2CoherentText is overwhelmingly chosen by hu-
man evaluators for coherence and informativeness, suggest-
ing the effectiveness of incorporating explicit means for co-
herence modeling through topical continuity and content se-
lection at each sentential context. No approach yielded a
significant dominance in the evaluation for grammaticality,
which could be becasue given the dataset, all models are
equipped to do language modelling reasonably well irre-
spective of whether the content is informative or not. Inter-
evaluator agreement is quantified using Cohen’s kappa co-
efficient, and is at least 0.72 for each dimension of co-

herence, informativeness and grammaticality (Wongpakaran
et al. 2013), as shown in Table 2.

Discussion

Table 3 shows an example where the automatically gener-
ated output text from using the proposed model from a rela-
tively smaller knowledge graph. The information in the input
graph are well-represented in the output text, and the out-
put text is much more concise than the reference text. There
is a coherent transition of topics between sentences with a
full coverage of information represented in the knowledge
graph. Note that for adjectives like novel, which appear a
lot in methods research in scientific writing, the proposed



Title

A computational model for unsupervised word discovery

Input Graph

temporal acoustic
sequence pattern
learning discovery

CONJUNCTION USED-FOR
USED_FOR

@ USED-FOR

CONJUNCTION

unsupervised
algorithm

USED-FOR USED-FOR USED-FOR

speech
recognition

acoustic

similarity

‘computational
model

Reference Text

we present an unsupervised algorithm for the discovery of words
and word-like fragments from the speech signal , without using an
upfront defined lexicon or acoustic phone models ............ first , the
unsupervised algorithm may lead to an approach for speech recog-
nition that is fundamentally liberated from the modelling constraints
in conventional automatic speech recognition . second , the proposed
unsupervised algorithm can be interpreted as a computational model
of language acquisition that takes actual speech as input and is able
to find words as "em ergent ’ properties from raw input .we present

a novel approach

Table 4: An example where the input graph does not contain sufficient information for generating the reference text. Portions

that cannot be inferred from the input graph are in blue.

model is able to learn when to use it appropriately.

However, on the other hand, for less common adjectives
like formidable, which require more technical background
knowledge, the automatic model is less likely to learn how
to generate it appropriately in the given context. To fur-
ther illustrate this issue, Table 4 shows an example where
there is more content in the reference that cannot be di-
rectly reconstructed from the input. For example, consider
the sentence highlighted in blue in Table 4: first , the un-
supervised algorithm may lead to an approach for speech
recognition that is fundamentally liberated from the mod-
elling constraints in conventional automatic speech recogni-
tion. This sentence cannot be constructed directly from the
input knowledge graph, as it does not encompass any do-
main knowledge about conventional approaches in speech
recognition. Such could be a possible reason why the BLEU
performance is relatively low for all systems.

Conclusion

In this work, we proposed a neural modeling framework for
generating coherent text given a knowledge graph, where we
model content ordering through topic continuity while main-
taining comprehensive information coverage represented via
exploiting graph representations specific to each senten-
tial context. In addition, we also adopted a sentence-by-
sentence decoding scheme, which improves tractability of
long sequence generation. We empirically verified our pro-
posed framework on the AGENDA dataset. Our proposed
approach enhanced both sequence generation order and in-

formation coverage using objective metrics such as BLEU
and METEOR in comparison to established baselines us-
ing graph transformer networks. Human evaluations also
showed our approach is especially effective on generating
informative and coherent text descriptions from the given
knowledge graph.
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