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Abstract

Question answering (QA) techniques have predominantly fo-
cused on improving semantic parsing and information re-
trieval steps. Recent work has seen significant advances us-
ing deep neural networks to tackle these problems. However,
not much emphasis has been put on incorporating contextual
information into the QA process. More so in inference-based
QA methods where, in addition to information retrieval (IR),
there is the need for a non-deterministic composition of dif-
ferent operations on data from diverse sources.
In this paper, we formalise the idea of context and describe
how it can be injected into a question answering process
which, in addition to the retrieval of facts, requires the use
of deductive, statistical and mathematical operations. We re-
fer to this as an inference-based QA process. We show how
this can improve the answers returned by constraining the
key operations in the QA pipeline to contextual information.
Context includes a user’s environment and preferences such
as how they might want to trade off accuracy over speed in
the inference process. The latter informs the choice of in-
ference methods that are used to answer the question. We
explore these ideas using an inference-based QA framework
that draws on structured data from diverse knowledge graphs,
including commonsense knowledge found in sources such as
Wikidata, decomposes questions recursively and combines
retrieved facts using arithmetic and statistical operations, in-
cluding making predictions. Experiments on questions based
on Wikidata and the World Bank Open Data set validates the
effectiveness of the proposed approach.
Our primary contribution is our approach to incorporating
context information in the QA process, especially when infer-
ring answers that cannot be found by traditional IR methods.

Introduction
Question answering using web data is a challenging problem
given the huge amount of knowledge that is stored across
multiple sources. Several of the techniques in this domain,
such as (Fader, Zettlemoyer, and Etzioni 2014; Savenkov
and Agichtein 2016), are evaluated only on questions whose
answers are not influenced by a user’s context. By context,
we mean information about a user or the environment within
which a user makes a query such as the device type and the
current date/time.
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This paper tackles the problem of incorporating context
into inference-based question answering using web data,
such as commonsense knowledge bases. A simple question
such as “What is the population of London?” should result
in different answers depending on which ‘London’ a user is
referring to (it could be London in England, Ontario, etc.),
as well as the date the question is posed (see figure 1). Ad-
ditionally, when dealing with questions that go beyond the
retrieval of pre-stored answers, such that it requires the com-
bination of data from different sources and a dynamic com-
position of inference operations, there is the need to factor
in details specific to the user: their preferences (e.g. prefer
accuracy of answer over speed of response), as well as and
their situational context (such as location and time). We de-
fine these details as the context within which the question is
answered.

Furthermore, in order to answer a user’s question, an au-
tomated question system often requires information that is
not explicitly requested in the question. While it is reason-
able to expect users to be explicit in their queries, logs from
search engines show that users ask queries with a minimal
set of information, and only refine it with more keywords
when the answers returned fall outside their context.

In this paper, we describe how context can be injected
into a question-answering process that leverages both au-
tomated reasoning techniques and statistical methods. This
tackles the space of problems where simply looking up data
from a knowledge graph or performing multi-hop graph
traversal is not enough to answer a query. In particular,
we use the FRANK (Functional Reasoning for Acquir-
ing Novel Knowledge) (Bundy, Nuamah, and Lucas 2018)
inference-based QA framework. Because FRANK does not
just retrieve already stored knowledge, but draws inferences
by combining knowledge from diverse sources, its context
mechanism must represent more than the usual user prefer-
ences and current environment. For instance, as FRANK can
make predictions, it needs to know the current date. Since it
has a choice of inference mechanisms that trade-off speed
against accuracy in different ways, it needs to know how
quickly the answer is required and how accurate it needs to
be. Our hypotheses are that (1) incorporating context in the
reasoning process improves the quality of answers through
personalization, and (2) hybrid reasoning methods ensure
that assumptions made by the system based on user con-



text are transparent to the user. Our contribution does not
include the process of gathering context information since
we assume that context information, obtained from sources
such as user preferences and query history, is already avail-
able at the time of answering a user’s question.

Q: What is the population of London?

Figure 1: For three users with different context (in this case,
time and location), the same question posed will focus on
different aspects of the knowledge graphs and, hence, result
in different answers. These contexts are not explicit in the
question, and so the QA system needs to have a way of in-
corporating them in its inference process.

Background
We provide background to two concepts that are vital to our
approach: the idea of ‘context’, and the inference-based QA
within which we develop our ideas.

What is Context?
The concept of ‘context’ in question answering is used in
different ways. For instance in (Datla et al. 2017) which
tackles open-domain QA based on context-driven retrieval,
context refers to the domain or category (from a pre-defined
set or categories like (Dumais, Cutrell, and Chen 2001)) into
which the question falls. Hence the processing of an open-
domain question involves both parsing of the question and
parsing of the context. The authors also add context to the
answer by padding the sentence in the corpus containing the
answer with the text before it and the text after it. Similar
work includes (Jimmy et al. 2003) where the text surround-
ing the answer serves as a natural source of context. In (Park
and Kim 2000), the context information refers to two types,
i.e., the structural and temporal context. The structural con-
text gives a preview extended from the current position to
all other positions where the user asks a question such as
”Where can I go from here?” to facilitate forward naviga-
tion. While the temporal context is related to the historically
visited locations when the user asks ”How did I get there” to
help backward navigation.

Other systems try to figure out the context within which
to answer a question by eliciting preferences from the user.
For instance, in preference-based search with adaptive rec-
ommendations (Viappiani, Pu, and Faltings 2008), the au-
thors developed a method that adapts suggestions to a user
according to observations in the user’s behaviour. This is
done through example-critiquing with adaptive model-based
suggestion, a kind of QA system presented as a conversa-
tional recommender system. That is, the system provides ad-
ditional answers (recommendations) beyond what the search
query would ordinarily return given its knowledge base. This
is aimed at stimulating the user’s preference expression in
order to obtain an underlying model of the user’s actual pref-
erences. Suggestions are also adapted to the user’s reaction
to previously shown examples. This idea comes from tradi-
tional recommendation systems, e.g., (Wu et al. 2020) where
context information includes the history of a user’s check-in,
temporal and spatial information.

Overview of the FRANK QA System
FRANK applies inference to structured knowledge sources
on the Internet to derive estimates of novel knowledge and
reliably assigns an uncertainty to it. It applies deductive,
arithmetic and statistical reasoning to the results of infor-
mation retrieval. FRANK’s main focus is on estimating the
values of numeric attributes, but it can also infer qualita-
tive answers, e.g., the question “Which country will have the
largest population in Africa in 2025?”, it returns the name of
the African country with the maximum estimated popula-
tion.

FRANK recursively constructs an acyclic inference graph
by decomposing a user query into sub-queries using decom-
position rules (see Figure 2). At the leaves of this graph,
sub-queries are answered by matching them against one
of the many knowledge sources it consults, e.g. Wikidata
(Vrandečić and Krötzsch 2014), Geonames(Wick and Vatant
2012), ConceptNet (Speer, Chin, and Havasi 2016), Google
Knowledge Graph (Singhal 2012) and the World Bank Open
Data (World Bank 2012) on country development indicators.
For instance, to answer the question above, geospatial de-
composition is used to create sub-queries about the popula-
tion of each country in Africa. Then temporal decomposition
is used to create sub-queries for census data for each of those
countries. Regression is applied to this census data to create
a function, that is then extrapolated to the year 2025. The
country with the highest predicted population is then identi-
fied and returned as the answer.

FRANK adopts a Gaussian view of uncertainty (Nuamah
and Bundy 2018). The mean of a Gaussian distribution is re-
turned as the answer and the coefficient of variation (CoV:
the standard deviation normalised by this mean) provides an
error bar around it. A CoV for each knowledge sources is dy-
namically estimated based on its agreement with the other
sources. These CoVs are inherited up the inference tree to
be returned with the answer. The uncertainties associated
with inference methods, e.g., regression, are incorporated
into this process.

Additionally, in (Nuamah and Bundy 2020), the authors
show how the combination of deductive and inductive rea-



soning used by the FRANK QA system makes possible the
generation of explanations for users.

Terminology and Notation
We use the terminology and formal notation in (Bundy,
Nuamah, and Lucas 2018).

• Let A = [〈a1, v1〉, . . . , 〈an, vn 〉] be an alist with at-
tributes a1 to an, each with their respective values v1 to
vn. Attributes include, but are not limited to, h = aggre-
gation operation, v = operation variable, s = subject, p =
predicate, o = object, t = time, u = uncertainty.

• A(t) is an association list (alist) of attribute/value pairs,
where t is a distinguished value within it.

• A decomposition rule in FRANK for an alist A, decom-
position type τ and aggregation operation h is defined as:

Decompose(A, τ) = [Aj |1 ≤ j ≤ m] ∧
m∧
j=1

Aj( ~?xj)

=⇒ A(~h(ε ~?x1. A1( ~?x1), . . . , ε ~?xm. Am( ~?xm))/~z)

• The Hilbert epsilon operation ε ~?x.A( ~?x) returns the val-
ues of the vector of projection variables ~?x that make
A( ~?x) true.

• A[a] represents the value of attribute a in alist A.

Injecting Context into the Inference Process
The very large size of the web means that users are often
only aware of portions of the knowledge available based on
the individual context such as their location and the time.
However, these contexts are often implied in their queries
and, without making them explicit before answering these
questions, answers that are either retrieved or computed by
an automated QA system, could easily be wrong. To avoid
this, we inject context information into the query and the
inference mechanism. We formalise the idea of context, and
show three ways in which context is injected into the QA
process for FRANK.

Formalizing Context
Let A be an alist as defined in the section on terminology.
We define a context attribute, c, as the tuple 〈cu, cs〉, with
elements representing user context and situational context
respectively. Each element of the context tuple is a set of
attribute value-pairs.

Example:

c = 〈{ gender: male, nationality: British },
{ place: United Kingdom,

device type: phone,
datetime: 2020-04-30T13:20:00 }〉

The user context contains user-specific information and
preferences. The situational context contains information
about (or from) the user’s device (e.g. mobile phone) and
other environmental information (e.g. location and time).

Unlike attributes such as ‘subject’ and ‘object’ in an alist,
the context attribute cannot be a variable (or an unknown
value). If the context attribute is used in an alist, a valid value
must be provided.

Context versus Query Filters

While context and filters are similar, we treat them differ-
ently in FRANK.

• Contexts specify constraints over an entire alist.

• Filters specify constraints over an attribute of the alist.

Example:

country in Africa with the largest population

Suppose the alist of this query is A and the answer is
ε?x.A(?x), where ?x is instantiated with the value of the
country. Then ?x in the alist is defined with the following
filter

{type: country, predicate: locatedIn, object: Africa}

However, a temporal context of this question by default is
the current date. That is,

A[c] = 〈{. . . }, {datetime : 2020-04-30T13:20:00}〉

Hence all population values retrieved will be constrained by
this date since no explicit time is provided in the query.

Using Context
Context plays different roles in FRANK. Figure 3 illustrates
how the three main components of the FRANK system are
affected by context information.

As Constraints on Questions

An inference session is a set of all the operations that are
performed to answer a question in FRANK. Context is used
as a constraint on the question, restricting answers to those
that satisfy the context for a given session. That is, for a
question q (an alist), context c and an inference session I ,
FRANK finds an answer a such that

a = I(q|c)

Formally, if a query alist, A, does not contain values for
the temporal and geospatial attributes, then we inject those
values in as context if similarly typed attributes exist in the
context tuple.

Suppose A is an alist where c is the context attribute, t is
the time attribute, A[t] = ∅ and A[c] 6= ∅. Then we perform
the following substitution on the query alist:

A(ξ(A[c])/t)

where ξ is a function that extracts the appropriate context
value.



Figure 2: A screenshot of the user interface of FRANK (Inference Explorer) showing an inference graph used to answer
the question “What is the population of England” with the context values {“place”: “London”, “datetime”: “2020-09-05
00:00:00”}. The context attribute (cx) in the selected alist (shown in the side panel) indicates the context values injected into
the alist for the time (t) and subject (s) attributes.
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Figure 3: Context affects the query, inference and informa-
tion retrieval components.

As Conditions for Decomposition and Aggregation
Context influences the decomposition of alists during infer-
ence. The presence of context attributes such as time and
location can trigger temporal and geospatial decompositions
(respectively) during inference. Thus, a function ∆ that se-
lects decomposition rules τ to apply to an alist can be con-
ditioned on the context of the alist.

τ = ∆(A|A[c])

We can inject context into this function such that it influ-
ences the selection of the aggregation function, h, where

h = f(τ,A[c])

where f is a function that selects an aggregation function
given the decomposition rule τ and the context of the alist
A[c]. This allows FRANK to apply user preferences among
statistical operations, for instance, to select how aggrega-
tions are performed for a given decomposition. An example
of this is seen in the selection of a prediction function given a
user’s preference for speed over accuracy. Given two regres-
sion function such as linear regression and Gaussian Process
regression (both of which are available as aggregation oper-
ations in FRANK), it will opt for the former given that it
is easier and faster to compute than the latter. However, the
former has lower accuracy in some cases.

As Criteria for Information Retrieval
Context serves as a criteria for selecting knowledge sources
and relevant facts within them. This is important when deal-
ing with diverse knowledge sources and the ambiguities in
search terms. For instance, in a question about restaurants
in a town, if a user’s context attribute specifies that s/he is a
vegetarian, then FRANK will prioritise knowledge sources
and facts containing information about vegetarian restau-
rants.

Concretely, for an alist A, a query generator g and a
knowledge source s, FRANK generates the native query as.



That is,
as = g(A)

Context adds additional filters, af , to the generated native
query. We use the modified generator, g′, that factors in the
context of the alist as follows:

as ∪ af = g′(A,A[c])

A typical example is the use of the date/time from the con-
text value as a filter on query to retrieve data for that specific
date.

Context Information is Defeasible
As described above, context allows one to add latent in-
formation (situational information and preferences) to the
query in order to constrain answers to those that will be rel-
evant to the user. However, a user may explicitly provide in-
formation in the query that should override the context. For
instant, in the example, “What is the population of London?”
context information on the current year and the user’s cur-
rent location will be injected into the query. However, if the
user is explicit about the date, “What was the population of
London in 2011”, then the user provided date is used instead
of injecting temporal context into the query.

Propagating Context
The context attribute in an alist is propagated to its child
nodes during decomposition. This ensures that FRANK
keeps track of all contextual information injected into the
query alist and ensures that each alist in the inference graph
is context-aware. Once an attribute in an alist is substituted
with a context value, all child nodes inherit that assignment.
For example, if no time is provided in the query and time
is injected from context, then all child alists will use the
‘assumed’ time from context. Subsequent decompositions
(temporal) of the alist using that time attribute proceeds in
the same way as the case where time is explicit in the query,
following the idea of defeasible contexts described above.

Evaluation
For convenience, we repeat our hypotheses here:

1. Incorporating context in the reasoning process im-
proves the quality of answers through personaliza-
tion.

2. Hybrid reasoning methods ensure that assumptions
made by the system based on user context are trans-
parent to the user.

At the time of writing this paper, we could not find any
benchmark datasets for evaluating the above hypothe-
ses. Hence, we created a synthetic test set of questions
and contexts within which we answer them. Although
this test set is small, it is representative of the diverse
kinds of contextual information required for inference-
based QA. However, the data to infer the answers to
these questions are retrieved in real time from Wiki-
data and the World Bank knowledge sources on the
web. We classified the World Bank as a more trusted
knowledge source than Wikidata, which we consider as

noisy given that it is based on crowd-sourced informa-
tion from sources such as Wikipedia (Wikipedia 2001).
For context, we provided synthetic values for the user’s
location, the current data/time, and the user’s prefer-
ences for speed and accuracy trade-offs. Context at-
tributes and their valid values are listed in table 1. We
considered 3 classes of questions, C1 (questions requir-
ing quantitative answers), C2 (questions requiring qual-
itative answers) and C3 (questions requiring prediction)
each with variations based on explicit information in
the question, as well as their respective contexts. The
various classes of questions are executed on FRANK
without context and with context (FRANK+). We man-
ually verified the correctness of answers by querying
the data sets by hand and aggregating the retrieved data
as required by the queries. The results are shown in ta-
ble 2. Code and data are publicly available on GitHub
and are attached as supplementary1 files to this paper.

Discussion and Related Work
The results in table 2 are based on a variety of question
types whose answers vary depending on contextual in-
formation. Due to the lack of an existing benchmark
questions and datasets, we use a representative exam-
ples of questions and context, shown in table 2, and
data from the Wikidata knowledge graph and the World
Bank dataset. They validate our hypothesis that incor-
porating context during inference improves the quality
of answers. In cases with vague questions, such as C2-0
and C2-1, answers can only be found by the injection
of the location. We also observe that in the absence of
context, the popularity of entities in a knowledge graph,
(based, for instance, on the number of edges connected
to a node) does not guarantee that the correct facts are
retrieved. C1-0 highlights this where, without context,
‘London’ is assumed to be the one in England based on
its popularity in most knowledge bases.
Related techniques for question answering using struc-
tured data such as Question Answering over Linked
Data (QALD) (Unger et al. 2014), (Fader, Zettlemoyer,
and Etzioni 2014) and (Savenkov and Agichtein 2016)
focus on translating questions in natural language to
SPARQL queries (World Wide Web Consortium, W3C
2013) that are executed on a Linked Data (or other
structured form) knowledge sources such as Wikidata.
A limitation of such methods is that the absence of ex-
plicit filters in the question means that the generated
SPARQL are no different from the manual Wikidata
queries composed in table 2, and hence, result in in-
correct answers.
In C3-0, for the query with a high accuracy user pref-
erence, a Gaussian process regression function, which
provides a better fit to the data is used for prediction.
This instance also retrieves and uses more data points
for prediction than the instance without context. Fig-
ure 4 highlights the portions in the inference graphs

1https://qa-eval.s3-eu-west-1.amazonaws.com/aaai21ws.zip



Context Attribute Values Description
User Context

nationality plain text the nationality (country name) of the user
accuracy high, low User’s preference of accuracy.
speed high, low User’s preference of speed.
trust high, low, none User’s preference for the trusted knowledge sources.

Situational Context
place plain text name of a town, country
datetime date/time the date/time within which to situate the question
device computer, phone type of computing device used to send the question

Table 1: A list of context attributes used in this evaluation and the values that can be provided for each. Default values are
underlined. Context attributes are, however, not limited to these.

Question Context FRANK FRANK+

C1-0. What is the population of London? 〈{}, {“place”: “Ohio”, “datetime”: “2025-09-01
12:00:00”}〉 9138891 10060

C1-1. What is the population of the capital? 〈{}, {“place”: “Ghana”, “device”: “phone”, “date-
time”: “2020-09-01 12:00:00”}〉 – 1665000

C2-0. Who is the prime minister?
〈{“nationality”: “United Kingdom”}, {“place”:
“United Kingdom”, “device”: “phone”, “date-
time”: “2020-09-01 12:00:00”}〉

– Boris Johnson

C2-1. Who is the mayor?
〈{“nationality”: “United Kingdom”}, {“place”:
“London”, “device”: “phone”, “datetime”: “2020-
09-01 12:00:00”}〉

– Sadiq Khan

C2-2. Who is the prime minister?
〈{“nationality”: “United Kingdom”}, {“place”:
“London”, “device”: “phone”, “datetime”: “2020-
09-01 12:00:00”}〉

– Sadiq Khan

C3-0. What will be the GDP of Brazil in 2025? 〈{“accuracy”:“high”}, {“device”:“computer”}〉 1.704e+12 2.051e+12

C3-1. What will be the GDP of Brazil in 2025? 〈{“accuracy”:“high”,“trust”:“high”},
{“device”:“computer”}〉 1.704e+12 2.052e+12

C3-2. What is the GDP?
〈{“accuracy”:“high”,“trust”:“high”}, {“place”:
“Brazil”, “device”:“computer”, “datetime”:
“2025-09-01 12:00:00”}〉

– 2.052e+12

Table 2: Questions, context provided and the answers returned by the FRANK system with context (FRANK+) and without
context (FRANK). Facts were retrieved from the Wikidata and the World Bank knowledge bases. Note that the situational
context (e.g. place, device and date/time) are not provided by the user and so are not considered as part of the user’s input when
they pose the query. For questions C2-0, C2-1, C2-2, C1-1 and C3-2, FRANK is unable to answer the questions without context
because they are missing information with which to reason and constrain information retrieval. Note that the answer to C2-2
for FRANK+ is wrong as explained in the discussion section.

where the regression operations differ. In C3-1, the
context specifies a user preference for more trustwor-
thy sources. Given our prior classification of the two
knowledge sources, the query with the trust preference
uses data from only the World Bank at its leaf nodes
(see figure 5(a)). However, in the absence of any con-
text information, data from both knowledge sources are
used (figure 5(b)).

In C3-2, the FRANK system first injects Brazil as the
subject and 2025 as the time attributes of the query.
When the attempt to retrieve the GDP in 2025 fails, the
temporal decomposition operation is applied in order
to predict the 2025 GDP from past GDP values. The
presence of trust preference forces FRANK to use data
from the World Bank only. The selection of the predic-
tion function is also similar to that of C3-0 and C3-1.
However, in the instance without context, there is in-

sufficient information to successfully answer the query.
A primary concern that is often raised about systems
that personalize user experience is one of trust and
transparency and the lack thereof. For instance, in
online shopping systems, shoppers are recommended
items primarily for the commercial interests of the ven-
dor. This arises when the basis of the recommendation
is not clear, and users cannot trace recommendations
back to their specific preferences or to assumptions that
the automated system has made with respects to a user’s
context. The benefit of using FRANK is that the entire
inference trace (see figure 2) is available to the user:
from context injection to decompositions of the query,
variable instantiations and aggregations of data.
There are challenges with context and the granu-
larity of the context provided. For instance, in the
questions “Who is the mayor?” and “Who is the



(a) Without context (b) With context
({“accuracy”:“high”}, {“place”: 
“Brazil”, “device”:“computer”})

Figure 4: FRANK inference graphs that answer the question
“What will be the GDP of Brazil in 2025?” with and with-
out context, respectively. The choice of inference operation
for regression is influenced by the user preference for ‘ac-
curacy’. Graph (a) without context uses the ‘regress’ opera-
tion (linear regression), while (b), with high accuracy pref-
erence, uses the ‘gpregress‘ (Gaussian Process regression)
operation. Black leaf nodes represent data retrieved from a
knowledge source and which are used to instantiate variables
in the circular nodes.

(a) Without context (b) With context
({“trust”:“high”,“accuracy”:“high”,

{“device”:“computer”})

Figure 5: Inference graphs that question “What will be the
GDP of Brazil in 2025?”. Graph (a) without context instan-
tiates variable in leaf nodes with data from both Wikidata
and the World Bank. Graph (b) having a preference for trust
and accuracy restricts its leaf nodes to data from the World
Bank given our prior classification of the World Bank as a
more trustworthy data source.

prime minister?” the context provided could result
in the correct or wrong answer. If the ‘place’ and
‘date’ contexts are set to (United Kingdom) and
‘2020’ respectively, the answer returned is ‘Boris
Johnson’, which is correct as at 2020. However,
when the ‘place’ context is changed to ‘London’, the
answer changes to ‘Sadiq Khan’, which is incorrect.
This is due to how data is coarsely represented and
stored in the knowledge graphs. In Wikidata, the
properties ‘mayor’ and ‘prime minister’ are both
represented by the same term labelled ‘head of govern-
ment’ (https://www.wikidata.org/wiki/Property:P6).
FRANK, therefore, has no way of distinguishing
between the two properties in the two questions,
and the fact retrieved is dependent on the location
provided. The inclusion of more knowledge sources
could remedy this.

A common limitation of neural networks and deep
learning approaches to QA is that they are unable
to deal with questions that require non-trivial statisti-
cal or arithmetic operations. Also, their inferences are
opaque. (Li et al. 2017) also create a context-aware at-
tention network mechanism in an encoder-decoder neu-
ral network model for interactive question answering
domain. Although the types of questions targeted by the
authors differ from those that we consider in this paper,
we observe that our approach makes it a lot easier for
users to see any assumptions (contextual information)
used by the QA system to infer answers.

Finally, while the goal of incorporating context into
QA involves the task of named entity disambiguation
(Cucerzan 2007), our use of context in this work goes
beyond that task.

Conclusion

We provide a mechanism for making an inference-
based question answering system, such as FRANK,
context-aware. Context is implemented as a data struc-
ture containing a tuple of attribute/value pairs. These
attribute/value pairs can include user preferences, such
as that accuracy is preferred over speed, to influence
the choice decomposition rules that sacrifice speed for
accuracy. They can also include information about the
user and situation obtaining when the user asked a
question, such as the user’s current location and the cur-
rent time. We validated our method using a variety of
questions with different contextual information and an-
swering them with data from Wikidata and the World
Bank data set on country development indicators.

We see, as future work, the potential to personalize the
inference process even further by allowing users to in-
teract with the inference graph and to change prefer-
ences or default contexts applied at different decision
points (e.g. decomposition of alists). We will also ex-
plore adding the context and preference elicitation pro-
cess into the reasoning mechanism.
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Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledgebase. Communications of the
ACM 57(10): 78–85.
Wick, M.; and Vatant, B. 2012. The geonames ge-
ographical database. https://www.geonames.org, ac-
cessed on 17/12/2020 .
Wikipedia. 2001. Wikipedia, the free encyclopedia.
https://www.wikipedia.org/, accessed on 17/12/2020 .
World Bank. 2012. World Bank Open Data.
https://data.worldbank.org/, accessed on 17/12/2020 .
World Wide Web Consortium, W3C. 2013. SPARQL
1.1 overview URL https://www.w3.org/TR/sparql11-
overview/.
Wu, Y.; Li, K.; Zhao, G.; and Xueming, Q. 2020. Per-
sonlized Long-and Short-term Preference Learning for
Next POI Recommendation. IEEE Transactions on
Knowledge and Data Engineering .


