Knowledge Graphs: A Practical Introduction across Disciplines

Mayank Kejriwal

University of Southern California

December, 2020

About me

E-Commerce E-Commerce Knowledge Graphs and Representation Learning

Common Sense Reasoning Multi-modal Open World Grounded Learning and Inference

The Human Trafficking Project The Human Trafficking Project

GNOME Generating Novelties in Open-world Multi-agent Environments

USCViterbi

School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering

Al for Crisis Response Text-enabled Humanitarian Operations in Real-time

Al, Networks and Society Al, Networks and Society

What is a Knowledge Graph?

Set of triples, where each triple (h, r, t) represents a relationship r between head entity h and tail entity t

(Barack Obama, wasBornOnDate, 1961-08-04), (Barack Obama, hasGender, male),

... (Hawaii, hasCapital, Honolulu),

... (Michelle Obama, livesIn, United States)

What is a Knowledge Graph?

Technically, a multi-relational directed labeled graph <u>with semantics</u>

Both edges and nodes have labels, but not all labels are equal (literals vs. identifiers)

Where do the semantics come from?

• Complex question, only starting to be understood

More on semantics

Traditionally, semantics are believed to come from ontology

- An ontology is a 'formal, explicit specification of a shared conceptualization' (we will go deeper into this in a while)
- In philosophy, an ontology is a 'study of what there is' including the study of the 'most general features of what there is, and how the things there are relate to each other in the metaphysically most general ways'

Source: https://plato.stanford.edu/entries/logic-ontology/

More recently, in AI, we have started to recognize a more commonsense view of semantics guided by findings in linguistics and distributional semantics

Have I seen this before? JQ places to visit san jose 🛛 🖓 Maps 🖾 Images 🖽 News 📿 Shopping 🗄 More Settings Tools About 77,800,000 results (1.02 seconds) Top things to do in San Jose Knowledge panel Happy Hollow Park The Tech Mission Peak Winchester San Jose Mystery House Interactive & Zoo Mountain with an Quirky mansion with Interactive displays iconic summit pole Animals, activities & City in California odd design details & an IMAX theater conservation focus San Jose is a large city surrounded by rolling hills in Silicon **I** More things to do major technology hub in California's Bay Area. Architectural landmarks, from the 1883 Italianate-style Oddfellows building to Spanish Colonial Revival structures, make up the downtown histo Things To Do & Places To See in San Jose | Visit San Jose district. The downtown area is also home to the Tech Museum of Recognition of user intent https://www.sanjose.org/things-to-do -Innovation, devoted to the exploration of science and technology. Vibrant, diverse and accessible. San Jose shines with 300+ days of sunshine that assures indoor and outdoor activities for every inclination. Whether it's nightlife ... Weather: 64°F (18°C), Wind NW at 10 mph (16 km/h), 85% Humid Attractions and Amusement · Kids and Family · San Jose Wineries · Nightlife Population: 1.035 million (2017) Complete List of San Jose Attractions | Visit San Jose Plan a trip https://www.sanjose.org/things-to-do/attractions-and-amusement -Find a complete list of San Jose attractions and things to do - perfect for tourists and ... Browse San Jose travel quide Ø Recommendations the best places to see in San Jose and the surrounding Bay Area. 3-star hotel averaging \$206 25 Best Things to Do in San Jose (CA) - The Crazy Tourist $\mathbf{+}$ 1 h 5 min flight, from \$97 https://www.thecrazytourist.com > ... > United States > California (CA) -25 Best Things to Do in San Jose (CA): Winchester Mystery House: Flickr. Tech Museum Of Diu you know. San Jose, Gamornia nas the largest vietnamese Innovation: Flickr. Children's Discovery Museum: Flickr. Rosicrucian Egyptian Museum: Flickr. San American population (106,992) among all U.S. cities. wikipedia.or Jose Heritage Rose Garden: wikimedia. Basilica Of St. Joseph: Flickr. Alum Rock Park: Flickr. Happy Hollow Zoo Entrance: Flickr. People also search for View 15+ m THE 15 BEST Things to Do in San Jose - 2019 (with Photos ... **Exploration-suggestions** https://www.tripadvisor.com/Attractions-g33020-Activities-San_Jose_Calif... • ... attractions. Find what to do today, this weekend, or in August. We have reviews of the best San Santa Clara California San San Diego places to see in San Jose. Visit top-rated & must-see attractions. Francisco County Francisc Free Entry (36) · Things to Do in San Jose · Museums in San Jose · Santana Row Bay Area

Information Sciences Institute

A typical KGC workflow starts from corpus acquisition and ends with applications

INFORMATION EXTRACTION (IE)

Information Sciences Institute

Named Entity Recognition (NER)

Source: Named Entity Recognition and Classification with Scikit-Learn. <u>https://towardsdatascience.com/named-entity-recognition-and-classification-with-scikit-learn-f05372f07ba2</u>

https://explosion.ai/demos/displacy-ent

Information Sciences Institute

NER workflows

Many methods proposed over the previous 3-4 decades:

- Rule-based
- Dictionary-based
- Simple machine learning
- Sequence labeling (e.g., using conditional random fields or, before that, hidden Markov models)

Today, deep learning methods designed for sequences (such as RNNs and, more recently, transformers) are state-of-the-art

Much research still remains (especially for social media!)

Source: Cho, H., and H. Lee. *Biomedical named entity recognition using deep neural networks with contextual information.* BMC Bioinformatics. 2019.

Other kinds of IE: Relation Extraction

per:city_of_death
Person Dille Manual de la cicle and de cicle
Billy Mays, the bearded, boisterous pitchman who, as the undisputed king of TV yell and sell,
per:city_of_death City
became an unlikely pop culture icon, died at his home in Tampa, Fla, on Sunday.

org:founded by
Person
Pandit worked at the brokerage Morgan Stanley for about 11 years until 2005, when he and some
<pre>org:founded_by Organization</pre>
Morgan Stanley colleagues quit and later founded the hedge fund Old Lane Partners.

Person
He received an undergraduate degree from Morgan State University in 1950 and applied for
Organization
admission to graduate school at the University of Maryland in College Park.

Source: Stanford TACRED

Other kinds of IE: Open Information Extraction

ID Document

- 1 Your dry cleaner set out from eastern Queens on foot Tuesday morning and now somewhere near Maspeth.
- 2 Recently, North Korea has begun to allow tourists, including Americans, ..., and South Korean tourists have been able to go to Kaesong on a limited basis.

Entity 1	Relation Phrase	Entity 2	Human Evaluation		
your dry cleaner	set out from	eastern Queens	~		
your dry cleaner	set out from_on	foot	1		
your dry cleaner	is near	Maspeth	1		
North Korea	has begun to allow	tourist	1		
South Korean tourists	to go to	Kaesong	1		
Queens	on	foot	X		
Kaesong	on	a limited basis	×		

Source: Zhu et al. Open Information Extraction with Global Structure Constraints. ACM WWW Conference. 2018.

Is IE a solved problem?

Method	CoNLL03	Tweet	OntoNote5.0	Webpage	Wikigold	
Entity Types	4	10	18	4	4	
KB Matching	71.40(81.13/63.75)	35.83(40.34/32.22)	59.51(63.86/55.71)	52.45(62.59/45.14)	47.76(47.90/47.63)	
Fully-Supervi	sed (Our implementat	ion)				
RoBERTa	90.11(89.14/91.10)	52.19(51.76/52.63)	86.20(84.59/87.88)	72.39(66.29/79.73)	86.43(85.33/87.56)	
BiLSTM-CRF	91.21(91.35/91.06)	52.18(60.01/46.16)	86.17(85.99/86.36)	52.34(50.07/54.76)	54.90(55.40/54.30)	
Baseline (Our implementation)						
BiLSTM-CRF	59.50(75.50/49.10)	21.77(46.91/14.18)	66.41(68.44/64.50)	43.34(58.05/34.59)	42.92(47.55/39.11)	
AutoNER	67.00(75.21/60.40)	26.10(43.26/18.69)	67.18(64.63/69.95)	51.39(48.82/54.23)	47.54(43.54/52.35)	
LRNT	69.74(79.91/61.87)	23.84(46.94/15.98)	67.69(67.36/68.02)	47.74(46.70/48.83)	46.21(45.60/46.84)	
Other Baselin	e (Reported Results)					
KALM [†]	76.00(- / -)	-		-	-	
ConNET *	75.57(84.11/68.61)					
Our BOND Framework						
Stage I	75.61(83.76/68.90)	46.61(53.11/41.52)	68.11(66.71/69.56)	59.11(60.14/58.11)	51.55(49.17/54.50)	
BOND	81.48(82.05/80.92)	48.01(53.16/43.76)	68.35(67.14/69.61)	65.74(67.37/64.19)	60.07(53.44/68.58)	

 Table 2: Main Results on Testing Set: F1 Score (Precision/Recall) (in %)

Source: Liang et al. BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant Supervision. KDD Conference. 2020.

Other NLP steps: Coreference Resolution, Entity Linking...

"I had no idea I was getting in so deep," says Mr. Kaye, who founded Justin in 1982. Mr. Kaye had sold Capetronic Inc., a Taiwan electronics Maker, and retired, only to find he was bored. With Justin, he began selling toys and electronics made mostly in Hong Kong, beginning with Mickey Mouse radios. The company has grown -- to about 40 employees, from four initially, Mr. Kaye says. Justin has been profitable since 1986, adds the official, who shares [his] office... (nw/wsj/2418) The Northern Lights, also called Aurora Borealis, are one of the most spectacular shows on this earth and can frequently be seen in Iceland from September through March on clear and crisp nights.

Sources:

https://aryamccarthy.github.io/wiseman2016learning/

(Wiseman, Rush, and Shieber, 2016) at NAACL

Source:

Alokaili and Menai. SVM ensembles for named entity disambiguation. Computing. 2019.

A typical KGC workflow starts from corpus acquisition and ends with applications

KNOWLEDGE GRAPH COMPLETION

Entity Resolution

Algorithmically identifying and linking/grouping different manifestations of the same real-world object

Problem has existed for 50 years in many communities (databases, graphs, networks, tables...)

before

after

Source: Entity Resolution: Tutorial. Getoor and Machanavajjhala. VLDB, 2012

In the world of knowledge graphs

Representation Learning on Knowledge Graphs aka Knowledge Graph Embeddings

Knowledge graph embeddings:

- TransE, H…
- Neural tensor networks
- Graph convolutional networks (or their variants)
- Matrix factorization

. . .

KGEs (results)

Useful resources:

- OpenKE: <u>http://139.129.163.161//index/tool</u> <u>kits#pretrained-embeddings</u>
- StarSpace: <u>https://github.com/facebookresear</u> <u>ch/StarSpace</u>
- Recent transformer-based models could potentially be adapted, including BERT and RoBERTa: <u>https://ai.facebook.com/blog/rober</u> <u>ta-an-optimized-method-for-</u> <u>pretraining-self-supervised-nlp-</u> <u>systems/</u>

		Raw				Filtered						
Method	WN18		FB15k		WN18			FB15k				
	MR	H@10	MRR	MR	H@10	MRR	MR	H@10	MRR	MR	H@10	MRR
SE (Bordes et al., 2011)	1011	68.5	-	273	28.8	-	985	80.5	-	162	39.8	-
Unstructured (Bordes et al., 2012)	315	35.3	-	1074	4.5	-	304	38.2	-	979	6.3	-
SME (Bordes et al., 2012)	545	65.1	-	274	30.7	-	533	74.1	-	154	40.8	-
TransH (Wang et al., 2014)	401	73.0	-	212	45.7	-	303	86.7	-	87	64.4	-
TransR (Lin et al., 2015b)	238	79.8	-	198	48.2	-	225	92.0	-	77	68.7	-
CTransR (Lin et al., 2015b)	231	79.4	-	199	48.4	-	218	92.3	-	75	70.2	-
KG2E (He et al., 2015)	342	80.2	-	174	48.9	-	331	92.8	-	59	74.0	-
TransD (Ji et al., 2015)	224	79.6	-	194	53.4	-	212	92.2	-	91	77.3	-
lppTransD (Yoon et al., 2016)	283	80.5	-	195	53.0	-	270	94.3	-	78	78.7	-
TranSparse (Ji et al., 2016)	223	80.1	-	187	53.5	-	211	93.2	-	82	79.5	-
TATEC (García-Durán et al., 2016)	-	-	-	-	-	-	-	-	-	58	76.7	-
NTN (Socher et al., 2013)	-	-	-	-	-	-	-	66.1	0.53	-	41.4	0.25
DISTMULT (Yang et al., 2015)	-	-	-	-	-	-	-	94.2	0.83	-	57.7	0.35
ComplEx (Trouillon et al., 2016)	-	-	0.587	-	-	0.242	-	94.7	0.941	-	84.0	0.692
HolE (Nickel et al., 2016b)	-	-	0.616	-	-	0.232	-	94.9	0.938	-	73.9	0.524
RESCAL (Nickel et al., 2011) [*]	-	-	0.603	-	-	0.189	-	92.8	0.890	-	58.7	0.354
TransE (Bordes et al., 2013) [*]	-	-	0.351	-	-	0.222	-	94.3	0.495	-	74.9	0.463
STransE (Nguyen et al., 2016b)	217	80.9	0.469	219	51.6	0.252	206	93.4	0.657	69	79.7	0.543
RTransE (García-Durán et al., 2015)	-	-	-	-	-	-	-	-	-	50	76.2	-
PTransE (Lin et al., 2015a)	-	-	-	207	51.4	-	-	-	-	58	84.6	-
GAKE (Feng et al., 2016b)	-	-	-	228	44.5	-	-	-	-	119	64.8	-
Gaifman (Niepert, 2016)	-	-	-	-	-	-	352	93.9	-	75	84.2	-
Hiri (Liu et al., 2016)	-	-	-	-	-	-	-	90.8	0.691	-	70.3	0.603
NLFeat (Toutanova and Chen, 2015)	-	-	-	-	-	-	-	94.3	0.940	-	87.0	0.822
TEKE_H (Wang and Li, 2016)	127	80.3	-	212	51.2	-	114	92.9	-	108	73.0	-
SSP (Xiao et al., 2017)	168	81.2	-	163	57.2	-	156	93.2	-	82	79.0	-

Other proposals: knowledge graph identification using probabilistic soft logic

Examples of ontological constraints

- 1. $DOM(R,L) \tilde{\wedge} REL(E_1,E_2,R) \xrightarrow{w_0} LBL(E_1,L)$
- 2. $RNG(R, L) \tilde{\wedge} REL(E_1, E_2, R) \xrightarrow{w_0} LBL(E_2, L)$
- 3. $INV(R, S) \tilde{\wedge} REL(E_1, E_2, R) \stackrel{w_o}{\Longrightarrow} REL(E_2, E_1, S)$
- 4. $SUB(L, P) \tilde{\wedge} LBL(E, L) \stackrel{w_0}{\Longrightarrow} LBL(E, P)$
- 5. $RSUB(R, S) \tilde{\land} REL(E_1, E_2, R) \xrightarrow{w_0} REL(E_1, E_2, S)$
- 6. $MUT(L_1, L_2) \tilde{\wedge} LBL(E, L_1) \stackrel{w_0}{\Longrightarrow} \tilde{\neg} LBL(E, L_2)$
- 7. $RMUT(R, S) \tilde{\land} REL(E_1, E_2, R) \stackrel{w_0}{\Longrightarrow} \tilde{\neg} REL(E_1, E_2, S)$

Knowledge Graph Identification

(Pujara et al., ISWC13)

Solution: Knowledge Graph Identification (KGI)

- Performs graph identification:
 - entity resolution
 - node labeling
 - link prediction
- Enforces ontological constraints
- Incorporates multiple uncertain sources

Information Sciences Institute

A typical KGC workflow starts from corpus acquisition and ends with applications

Open-source KGs that have been built

Information Sciences Institute

CROSS-DISCIPLINARY PERSPECTIVES: WEB AND INFORMATION RETRIEVAL

Google Knowledge Graph

About 36,700,000 results (0.67 seconds) Wonder Woman (2017) - IMDb

Domain-specific search (DSS)

The Massive YouTube Ecosystem

Emerging opportunities for DSS

Penny Stock Fraud Nets Millions

Scheme Mastermind Among Those Sentenced to Prison

NEW YORK Dot investors take e-mails advertising a 300 percent return on penny stocks sh bin. But those Internet promotions are still irresistible for some uise of making a killing. ay. July 11, 2004

> ommission is increasingly taking legal action against individuals and companies that nline. In one of its recent cases, involving lves Health Co., the SEC reported a final ner president, M. Keith lves, for disseminating misleading information on the Internet.

A 🖣

ensate investors a total of \$1.25 million for, among other things, falsely claiming the ication the company developed.

Defined by the SEC as stocks that sell below S5 a share, penny stocks have always been considered speculative and easily manipulated. But stock market experts, seeing an increase in penny stock promotion online, say investors should be wary of

Fraud

Penny Stock

DARPA/IARPA programs

Research Question

General SearchGoogle Knowledge GraphDSSDomain-Specific Knowledge Graphs

How do we construct domain specific knowledge graphs over web data for powerful DSS applications?

Knowledge Graphs for DSS

Project: atf_firearms_domain	25 of 461,480 Results @ How are search results found?							
Search Terms	PLEASE NOTE THAT ONLY THE TOP 10 EXTRACTIONS OF EACH TYPE							
Caliber or Gauge: 9mm 🗙								
Model: glock X Model: glock 26 X	2.84 Glock 26 Calibers or Gauges							
Make (Top 10) ^ View More Sort By: = Az glock 110,530 springfield 50,468 success 17,026	 <u>9mm</u> Emails gda32570@yahoo.com 							
ruger 47,236 browning 42,122 colt 40,750 smith 40,730 winchester 37,697 walther 37,037 taurus 35,942 smith & wesson 34,298	Models							
Model (Top 10) ^ View More Sort By: = Az glock 19 17,554 glock 17 12,801 desert eagle 9,556 springfield xd 8,926 glock 43 8,644	Dates (Any) grange, california <l< td=""></l<>							
glock 22 7,314 ✓ glock 26 6,966 glock 23 6,482 glock 27 6,316 springfield xdm 4,710	Jan 9, 2016 Feb 1, 2016 Section 4 Calibers or Gauges CALIBER OR GAUGE RESUL Section 4 Calibers or Gauges CALIBER OR GAUGE RESUL Section 4 Calibers or Gauges Section 4 Calibers Section 4 Cal							

Domain-specific Insight Graphs

Makes

colt

• <u>allen</u> 🔘 ✎

TLDs

🕒 pelican 🔘

🕭 walther 🔘

savage arms

bushmaster

beretta usa

🔖 <u>ruger</u> 🔘

chip mccormick

springfield armory m1a 🔵

 \equiv

WIKIDATA

Building an Enterprise Knowledge Graph @Uber:

Lessons from Reality

Joshua Shinavier, PhD Knowledge Graph Conference May 8th, 2019

Uber

Many examples in industry and non-profit

Commercial domains: Amazon Product Graph

Mission: To answer any question about products and related knowledge in the world

Source: Dong, Luna. Building a Broad Knowledge Graph for Products. Keynote at ICDE. 2019

Another example: COVID-19

June 01, 2020 | By Jan Zverina

Fighting COVID-19 with Knowledge Graphs

National Science Foundation awards funding for a semantic integration platform

"The project will be based on our knowledge graph prototype linking information about pathogens, health data, and environmental indicators and enabling cross-domain inferencing," said Peter Rose, director of SDSC's Structural Bioinformatics Laboratory and principal investigator (PI) for the project, called 'COVID-19-Net: Integrating Health, Pathogen and Environmental Data into a Knowledge Graph for Case Tracking, Analysis, and Forecasting.' "Such a graph lets researchers trace the spread of the coronavirus in different geographic conditions, focusing on specific virus strains and transmissions."

Other COVID-19 KG examples

Source: CovidGraph

Source: Verizon Media <u>https://github.com/yahoo/covid-19-dashboard</u>

Further reading: Kejriwal, M. (2020). Knowledge Graphs and COVID-19: Opportunities, Challenges, and Implementation. *Harvard Data Science Review*.

CROSS-DISCIPLINARY PERSPECTIVES: SEMANTIC WEB

What is (or even isn't) a domain?

This message brought to you by every instructor that ever lived. WWW.PHDCOMICS.COM "Piled Higher and Deeper" by Jorge Cham

Some dictionary definitions

(Merriam Webster) A sphere of knowledge, influence or activity (Oxford) A specified sphere of activity or knowledge

Specifying the sphere

Rules

Scope (e.g., the legal system) Syllabi (for classrooms) Examples

How do domain experts specify the sphere?

Examples Ontology

Modeling domains: Ontologies

What is an ontology?

Source: "Ontologies and semantic web." Stanley Wang. https://www.slideshare.net/stanleywanguni/ontologies-and-semantic-web

Examples of ontologies

Agency domain

Friend-of-a-friend

Ontologies are big in Science

Wikipedia Mered Aull article at Wikipedia Formula C16H19NO4 Average Auss 289.32640 Monoiscopic Mass 289.13141 InchLis/C16H19NO4/r-17-117-78-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/(11-,12+,1) Monoiscopic Mass 289.13141 InchLis/C16H19NO4/r-17-117-78-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/(11-,12+,1) Monoiscopic Mass 289.13141 InchLis/C16H19NO4/r-17-117-78-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/(11-,12+,1) Manoeid aptics Milles H 1c9112ccl(c)(H) ((C9H)((C9H)((C9H)(C))-G)-1ccccc1)C(0)=0)H2c	Home Advanced Sea	arch Brows	e Documentation Dow	nload Tools Abo	out ChEBI			🖀 Contact us 🛛 🖪 Submit			
	ChEBI > Main										
	CHEBI:41001 -	ecgonine	benzoate								
	Main	ChEBI Onto	ogy Automatic Xrefs	Reactions	Pathways	Models					
	ତ୍ତ୍ ଚ			-	ate			1			
	Ů	^			metabolite of coca	ine formed by hydrol	lysis of the methyl ester group, catalysed by carb	😵 Gene Ontology	/ Consortiu	m	
I contract I write do unsup dwite house double. I do unsup dwite ho	HO CH ₃	\checkmark	Secondary ChEBI IDs	CHEBI: 3041				Home - Docume	entation -	Downloads User stories Community Tools About Contact us	
 And conjugation which reader in the statistical is the st	H	н	Supplier Information	ChemicalBook:CB	1217496, eMolecu	les:535127, ZINC000	0002572652			Cono Ontology Consortium	Search Q
 Proceeding and gene products Proceeding and g			Download	Molfile XML SDF				Search GO	data	Gene Ontology Consortium	
Winderdia ChrinChriment Berzoylecgonine is the main metabolite of cocaine. Read full article at Winderdia Monoisotopic Mass 293.32640 Monoisotopic Mass Statistics Multes (H)[C@]12CC(C@)((H))((C@H)((C@H)((C@H)(C(DC)=O)cleccect)C(O)=O)N2c	Find compoundsTake structure to	which resemble the Advanced	this structure						ts	b S. aureus community network	SINT Sector Sec
Wildpedia analysis (befa) analysis (befa) becaupted and the state material file of cocalins. analysis (befa) becaupted and the state material file of cocalins. becaust and the state material file of cocalins. becaust and the state state file of cocalins. becaust and the state state file of cocalins. becaust and the stop file of cocalins. becaust and the st										Carotenolo biosynthesis Response to / SAV0825 OSAV2222	term
Read full articles at Wikipedia Vour genes here		ha main matr	halika of cooping					analysis (be	eta)	AV2221	Representing "phases" in GO biological
Formula C16H19N04 Net Charge 0 Average Mass 289.32640 Monoisotopic Mass 289.13141 Inch1 Inch1=15/C16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,r Muncod options Submit Average Mass CovYEFKIHJTNQ2-REQIPIPRSA-N Smiles (H)[C@H](C@H]((C@H](Cl@H](Cl@H](Cl)OC(=0)c1ccccc1)(C(0)=0)N2C Roles Classification Roles Classification Numeadoultic produced by metabolitie produced by metabo			bonce of cocame.					Your genes here		metabolism, TCA cycle SAV0718 SAV0708 SAV0714 SAV08490 OSAV0701	The GOC has recently introduced a new
Average Mass 289.32640 Monoisotopic Mass 289.13141 Inchi Inchi SC16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,11 Inchi Mchi Inchi SC16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,12 Monoisotopic Mass 289.13141 Inchi Mchi Inchi SC16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,12 Monoisotopic Mass 289.1314 Inchi Mchi Inchi SC16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,12+,12 Monoisotopic Mass 289.1314 Inchi Mchi Inchi SC16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,12+,12+,12+,12+,12+,12+,12+,12+,12+			NO4						1,	Tryptophan metabolism, oxidative stress metabolism Translation Translation Translation	direct subclass of biological process. This class represents a distinct period or stage during which biological processes can
Monoisotopic Mass 289.13141 Monoisotopic Mass 289.13141 Inchi = 1s/c16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,rit Advanced options Followice div p PANTHER SMILES [H](c@]12cc(c@]([H])((c@H]((c@H)(c(C))c(=0)c1ccccc1)(c(0)=0)N2c Monoisotopic metabolite Monoisotopic metabolite Monoisotopic Mass Any metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms.		_	40					biological process	\$	transport	
InchI InchI=1s/C16H19N04/c1-17-11-7-8-12(17)14(15(18)19)13(9-11)21-16(20)10-5-3-2-4-6-10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+,11 Advanced options InchIKey GVGYEFKIHJTNQZ-RFQIPJPRSA-N SMILES [H][C@]12CC[C@]([H])([C@H]((C@H](C1)OC(=O)c1ccccc1)C(O)=O)N2C Roles Classification () Statistics marine xenobiotic metabolite Any metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms.		289.13	.41					H. sapiens 🗘	Submit	Chuesel antebalism metabolism Target gene	On the web
Inchikey GVGYEFKIHJTNQZ-REQIPJPRSA-N SMILES (H][C@]12CC[C@]([H])([C@H](C1)OC(=O)c1ccccc1)C(O)=O)N2C Roles Classification Imagine xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Smite xenobiotic metabolite produced by metabolite produced by metabolite produced by metabolite prod	InChI	InChI=	S/C16H19NO4/c1-17-11-7	-8-12(17)14(15(18))19)13(9-11)21-1	6(20)10-5-3-2-4-6-	10/h2-6,11-14H,7-9H2,1H3,(H,18,19)/t11-,12+	/ = -		Inference	
SMILES [H][C@]12CC[C@]([H])([C@H](COH](COH](COH)(CO) = 0)N2C Integrating information return distant supervision for Ger ann Roles Classification	InChIKey	GVGYEFKIHJTNQZ-RFQIPJPRSA-N						Powered by PANTHER			Work on Comparative Proteomic Analysis of Supportive and Unsupportive
Roles Classification Marine xenobiotic metabolite Any metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolism of a xenobiotic compound in marine macro- and microorganisms. Marine xenobiotic metabolite produced by metabolite	SMILES	[H][C@]12CC[C@]([H])([C@H]([C	@H](C1)OC(=O)c1cc	cccc1)C(0)=0)N2C			Statistics			Extracellu Integrating information retrieval with
Any evidence metabolic metabolic reaction is plants, the kindom that include flowering plants, confers and other symposperms		marine xeno Any metabol plant metabo	ite produced by metabolism lite			-				 An introduction to the Gene Ontology What are annotations? Ten quick tips for using the Gene Ontology <i>Important</i> 	distant supervision for Gene Ontology ann The GO was elemental in defining response to cold acclimation in diapause

reaction in plants, the kingdom that include flowering plants, conifers and other gymnosper

- Downloads

Representation of knowledge graphs (and ontologies)

An RDF graph is a set of triples, where each triple is of the form (subject, predicate, object):

- Subjects must be URIs (technically, internationalized resource identifiers, in practice, just Uniform Resource Locators)
- Predicates (also called 'properties') must be URIs
- Objects can be either URIs of literals (strings, numbers, dates...)

In the Semantic Web, RDF is the 'building block' of higher order vocabularies (such as RDF Schema and OWL) that can be used to represent ontologies

Example of RDF KG

http://www.example.org/~joe/contact.rdf#joesmith http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://xmlns.com/foaf/0.1/Person

. . .

http://www.example.org/~joe/contact.rdf#joesmith http://xmlns.com/foaf/0.1/givenname "Joe"

As a graph

As a set of triples

Web Ontology Language (OWL)

OWL builds on RDF (and another layer called RDF Schema or RDFS) to provide a systematic vocabulary for defining ontologies

Because OWL builds on RDF, every OWL ontology is **also** an RDF graph, but not necessarily vice-versa

RDF Schema Features:

- Class (Thing, Nothing)
- <u>rdfs:subClassOf</u>
- <u>rdf:Property</u>
- <u>rdfs:subPropertyOf</u>
- <u>rdfs:domain</u> rd<u>fs:range</u>
- Individual
- <u>Inuiviuuai</u>

Property Restrictions:

- <u>Restriction</u>
- <u>onProperty</u>
- <u>allValuesFrom</u>
- <u>someValuesFrom</u>

Class Intersection:

• intersectionOf

Datatypes

• <u>xsd datatypes</u>

(In)Equality:

- equivalentClass
- <u>equivalentProperty</u>
- <u>sameAs</u>
- differentFrom
- <u>AllDifferent</u>
- <u>distinctMembers</u>

Restricted Cardinality:

- minCardinality (only 0 or 1)
- <u>maxCardinality</u> (only 0 or 1)
- <u>cardinality</u> (only 0 or 1)

Versioning:

- <u>versionInfo</u>
- priorVersion
- <u>backwardCompatibleWith</u>
- <u>incompatibleWith</u>
- <u>DeprecatedClass</u>
- <u>DeprecatedProperty</u>

Property Characteristics:

- <u>ObjectProperty</u>
- <u>DatatypeProperty</u>
- <u>inverseOf</u>
- TransitiveProperty
- <u>SymmetricProperty</u>
- FunctionalProperty
- InverseFunctionalProperty

Header Information:

- <u>Ontology</u>
- <u>imports</u>

Annotation Properties:

- <u>rdfs:label</u>
- <u>rdfs:comment</u>
- <u>rdfs:seeAlso</u>
- <u>rdfs:isDefinedBy</u>
- <u>AnnotationProperty</u>
- <u>OntologyProperty</u>

https://www.w3.org/TR/owl-features/

Reasoning over knowledge graphs

Assertions	DL-axioms
Every animal which can fly has wings	φ_1 : Fly \sqsubseteq HasWing
Every animal which eats fish is a piscivore	φ_2 : $\exists Eat.Fish \sqsubseteq Piscivore$
tweety is not an abnormal bird or cannot fly	φ_3 : (¬ <i>AbnBird</i> \sqcup ¬ <i>Fly</i>)(<i>tweety</i>)
ursidae eats salmon	φ_4 : Eat(ursidae, salmon)
<i>salmon</i> is some fish	φ_5 : Fish(salmon)
ursidae is not a piscivore	φ_6 : ¬ <i>Piscivore</i> (<i>ursidae</i>)

https://doi.org/10.1371/journal.pone.0181056.t001

Source: Bergman. Platforms and Knowledge Management. 2018

Example tool for reasoning and ontologies: Protege

Source: <u>https://protege.stanford.edu/</u>

Putting it all together: Semantic Web Layer Cake

CROSS-DISCIPLINARY PERSPECTIVES: KNOWLEDGE DISCOVERY & DATA MINING

Knowledge Graph in Personal Assistant

Source: Dong, Luna. Building a Broad Knowledge Graph for Products. Keynote at ICDE. 2019

Others

Scientific Text Mining

Jiang, M., & Shang, J. (2020, August). Scientific Text Mining and Knowledge Graphs. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining* (pp. 3537-3538).

Question Answering

Hixon, B., Clark, P., & Hajishirzi, H. (2015). Learning knowledge graphs for question answering through conversational dialog. In *Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies* (pp. 851-861).

Recommendation Systems

Oramas, S., Ostuni, V. C., Noia, T. D., Serra, X., & Sciascio, E. D. (2016). Sound and music recommendation with knowledge graphs. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 8(2), 1-21.

Summarization

Gunaratna, K., Yazdavar, A. H., Thirunarayan, K., Sheth, A., & Cheng, G. (2017, August). Relatedness-based multientity summarization. In *IJCAI: proceedings of the conference* (Vol. 2017, p. 1060). NIH Public Access.

Truth/fact-checking

Shiralkar, P., Flammini, A., Menczer, F., & Ciampaglia, G. L. (2017, November). Finding streams in knowledge graphs to support fact checking. In *2017 IEEE International Conference on Data Mining (ICDM)* (pp. 859-864). IEEE.

Open Knowledge Network (OKN)

Technology companies develop **proprietary knowledge networks** as key business technologies today. However, because these networks are proprietary and expensive to construct, government, academia, small businesses, and nonprofits do not have access to them. In contrast, an open knowledge network (OKN) would be available to all stakeholders, including the researchers who will help push this technology further. An OKN requires a nonproprietary, publicprivate development effort that spans the entire data science community and will result in an open, shared infrastructure.

https://www.nitrd.gov/pubs/Open-Knowledge-Network-Workshop-Report-2018.pdf

Product of the BIG DATA INTERAGENCY WORKING GROUP SUBCOMMITTEE ON NETWORKING & INFORMATION TECHNOLOGY RESEARCH & DEVELOPMENT COMMITTEE ON SCIENCE & TECHNOLOGY ENTERPRISE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

NOVEMBER 2018

OPEN KNOWLEDGE NETWORK

SUMMARY OF THE BIG DATA IWG WORKSHOP OCTOBER 4–5, 2017

https://www.nitrd.gov/news/Open-Knowledge-Network-Workshop-Report-2018.aspx

Knowledge Graphs for Social Good (KGSG)

Best Practices, Methods, and Challenges - Held May 4th, 2020 at KGC 2020

 \equiv

accenture

Technology Innovation

Applying knowledge graphs for social good

JUNE 26, 2020

Knowledge Graphs for Social Good: An Entity-centric Search Engine for the Human Trafficking Domain

Publisher: IEEE

Cite This DDF

Mayank Kejriwal ; Pedro Szekely All Authors

Information Sciences Institute

Analytics-eg, optimization, network analysis

Note: Our library of about 160 use cases with societal impact is evolving and this heat map should not be read as a comprehensive gauge of the potential application of AI or analytics capabilities. Usage frequency estimates the number of times that models trained using AI would be used in a year to predict an outcome. ¹Log base 10 scale. Deployment frequency capped at once per hour per year to prevent skewing; capping affected only a small number of use cases. ²Excluding sentiment analysis, speech to text, language understanding, and translation.

McKinsov& Company | Sauras McKinsov Clabel Institute analy

Knowledge, semantics and context: what are they and how do we better define/represent them?

Three quarks for Muster Mark!
 Sure he hasn't got much of a bark
 And sure any he has it's all beside the mark.
 But O, Wreneagle Almighty, wouldn't un be a sky
 To see that old buzzard whooping about for uns sh
 And he hunting round for uns speckled trousers at stown Park?

Quark, one of the most influential of modern Ferengi thanks to his location at Deep Space Nine when the Bajoran wormhole was discovered, owns Quark's Bar on DS9's Promenade, but hates being called a "barkeep," preferring "host" instead as he fancies himself an empathetic dispenser of advice as well as a goodwill ambassador and legitimate entrepreneur extrordinaire.

Quarks and <u>Leptons</u> are the building blocks which build up matter, i.e., they are seen as the "elementary particles". In the present standard model, there are six "flavors" of quarks. They can successfully account for all known <u>mesons</u> and <u>baryons</u> (over 200). The most familiar baryons are the <u>proton</u> and <u>neutron</u>, which are each constructed from up and down quarks. Quarks are observed to occur only in combinations of two quarks (mesons), three quarks (baryons). There was a recent claim of observation of particles with five quarks (<u>pentaquark</u>), but further experimentation has not borne it out.

Quark is similar to French fromage blanc, Indian paneer, and the queso fresco/queijo fresco made in the Iberian Peninsula and in some Latin American countries. It is distinct from Italian ricotta because ricotta (Italian "recooked") is made from scalded whey. Quark is somewhat similar to yogurt cheeses such as the South Asian *chak(k)a*, the Arabic labneh, and the Central Asian suzma or kashk, but while these products are obtained by straining yogurt (milk fermented with thermophile bacteria),

On The Role of Knowledge Graphs in Explainable AI

Explainable Artificial Intelligence (XAI)

Dr. Matt Turek

Source: Knowledge Graphs For eXplainable AI. On the Integration of Semantic Technologies and Symbolic Systems

into Deep Learning Models for a More Comprehensible Artificial Intelligence. https://towardsdatascience.com/knowledge-graphs-for-explainable-ai-dcd73c5c016

Freddy Lecue^{a,b}

Information Sciences Institute

What is a Knowledge Graph?

 Set of triples, where each triple (h, r, t) represents a relationship r between head entity h and tail entity t

```
(Barack Obama, wasBornOnDate, 1961-08-04),
(Barack Obama, hasGender, male),
```

... (Hawaii, hasCapital, Honolulu),

... (Michelle Obama, livesIn, United States)

What is a Knowledge Graph?

Technically, a multi-relational directed labeled graph <u>with semantics</u>

Both edges and nodes have labels, but not all labels are equal (literals vs. identifiers)

Where do the semantics come from?

• Complex question, only starting to be understood

More on semantics

Traditionally, semantics are believed to come from ontology

- An ontology is a 'formal, explicit specification of a shared conceptualization' (we will go deeper into this in a while)
- In philosophy, an ontology is a 'study of what there is' including the study of the 'most general features of what there is, and how the things there are relate to each other in the metaphysically most general ways'

Source: https://plato.stanford.edu/entries/logic-ontology/

More recently, in AI, we have started to recognize a more commonsense view of semantics guided by findings in linguistics and distributional semantics

A typical KGC workflow starts from corpus acquisition and ends with applications

Named Entity Recognition (NER)

Source: Named Entity Recognition and Classification with Scikit-Learn. <u>https://towardsdatascience.com/named-entity-recognition-and-classification-with-scikit-learn-f05372f07ba2</u>

Other kinds of IE: Relation Extraction

per:city_of_death
Person
Billy Mays, the bearded, boisterous pitchman who, as the undisputed king of TV yell and sell,
per:city of death
City
became an unlikely pop culture icon, died at his home in Tampa, Fla, on Sunday.

org:founded by
Person
Pandit worked at the brokerage Morgan Stanley for about 11 years until 2005, when he and some
org:founded_by Organization
Morgan Stanley colleagues quit and later founded the hedge fund Old Lane Partners.

Person
He received an undergraduate degree from Morgan State University in 1950 and applied for
Organization
admission to graduate school at the University of Maryland in College Park.

Source: Stanford TACRED

In the world of knowledge graphs

KGEs (results)

Useful resources:

- OpenKE: <u>http://139.129.163.161//index/tool</u> <u>kits#pretrained-embeddings</u>
- StarSpace: <u>https://github.com/facebookresear</u> <u>ch/StarSpace</u>
- Recent transformer-based models could potentially be adapted, including BERT and RoBERTa: <u>https://ai.facebook.com/blog/rober</u> <u>ta-an-optimized-method-for-</u> <u>pretraining-self-supervised-nlp-</u> <u>systems/</u>

	Raw							Filtered					
Method		WN18			FB15k			WN18			FB15k		
	MR	H@10	MRR	MR	H@10	MRR	MR	H@10	MRR	MR	H@10	MRR	
SE (Bordes et al., 2011)	1011	68.5	-	273	28.8	-	985	80.5	-	162	39.8	-	
Unstructured (Bordes et al., 2012)	315	35.3	-	1074	4.5	-	304	38.2	-	979	6.3	-	
SME (Bordes et al., 2012)	545	65.1	-	274	30.7	-	533	74.1	-	154	40.8	-	
TransH (Wang et al., 2014)	401	73.0	-	212	45.7	-	303	86.7	-	87	64.4	-	
TransR (Lin et al., 2015b)	238	79.8	-	198	48.2	-	225	92.0	-	77	68.7	-	
CTransR (Lin et al., 2015b)	231	79.4	-	199	48.4	-	218	92.3	-	75	70.2	-	
KG2E (He et al., 2015)	342	80.2	-	174	48.9	-	331	92.8	-	59	74.0	-	
TransD (Ji et al., 2015)	224	79.6	-	194	53.4	-	212	92.2	-	91	77.3	-	
lppTransD (Yoon et al., 2016)	283	80.5	-	195	53.0	-	270	94.3	-	78	78.7	-	
TranSparse (Ji et al., 2016)	223	80.1	-	187	53.5	-	211	93.2	-	82	79.5	-	
TATEC (García-Durán et al., 2016)	-	-	-	-	-	-	-	-	-	58	76.7	-	
NTN (Socher et al., 2013)	-	-	-	-	-	-	-	66.1	0.53	-	41.4	0.25	
DISTMULT (Yang et al., 2015)	-	-	-	-	-	-	-	94.2	0.83	-	57.7	0.35	
ComplEx (Trouillon et al., 2016)	-	-	0.587	-	-	0.242	-	94.7	0.941	-	84.0	0.692	
HolE (Nickel et al., 2016b)	-	-	0.616	-	-	0.232	-	94.9	0.938	-	73.9	0.524	
RESCAL (Nickel et al., 2011) [*]	-	-	0.603	-	-	0.189	-	92.8	0.890	-	58.7	0.354	
TransE (Bordes et al., 2013) [*]	-	-	0.351	-	-	0.222	-	94.3	0.495	-	74.9	0.463	
STransE (Nguyen et al., 2016b)	217	80.9	0.469	219	51.6	0.252	206	93.4	0.657	69	79.7	0.543	
RTransE (García-Durán et al., 2015)	-	-	-	-	-	-	-	-	-	50	76.2	-	
PTransE (Lin et al., 2015a)	-	-	-	207	51.4	-	-	-	-	58	84.6	-	
GAKE (Feng et al., 2016b)	-	-	-	228	44.5	-	-	-	-	119	64.8	-	
Gaifman (Niepert, 2016)	-	-	-	-	-	-	352	93.9	-	75	84.2	-	
Hiri (Liu et al., 2016)	-	-	-	-	-	-	-	90.8	0.691	-	70.3	0.603	
NLFeat (Toutanova and Chen, 2015)	-	-	-	-	-	-	-	94.3	0.940	-	87.0	0.822	
TEKE_H (Wang and Li, 2016)	127	80.3	-	212	51.2	-	114	92.9	-	108	73.0	-	
SSP (Xiao et al., 2017)	168	81.2	-	163	57.2	-	156	93.2	-	82	79.0	-	

Open-source KGs that have been built

Many applications and open research areas!

Information retrieval

Semantic Web

Recommender systems

?

Knowledge discovery/data mining

Numerous surveys, some more technical/field-specific

- Ehrlinger, L., & Wöß, W. (2016). Towards a Definition of Knowledge Graphs. SEMANTICS (Posters, Demos, SuCCESS), 48, 1-4
- Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., & Taylor, J. (2019). Industry-scale knowledge graphs: lessons and challenges. *Queue*, 17(2), 48-75
- Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. (2015). A review of relational machine learning for knowledge graphs. *Proceedings of the IEEE*, 104(1), 11-33.
- Ji, S., Pan, S., Cambria, E., Marttinen, P., & Yu, P. S. (2020). A survey on knowledge graphs: Representation, acquisition and applications. *arXiv preprint arXiv:2002.00388*.
- Paulheim, H. (2017). Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic web, 8(3), 489-508.

Upcoming:

Knowledge Graphs: Fundamentals, Techniques, and Applications (Adaptive Computation and Machine Learning series). *Kejriwal, Knoblock and Szekely.*

Center on Knowledge Graphs

Information Sciences Institute

USC University of Southern California

Q&A kejriwal@isi.edu

