
An Interactive Scribe for Guiding Task-Oriented
Conversations in Enterprise Call Centers

Devin Conathan, Joseph Bockhorst, Dan Dickinson, Shailesh Acharya, Glenn Fung, Scott Rouse
(dconatha,jbockhor,ddickins,sachary1,gfung,srouse)@amfam.com

American Family Insurance
Madison, WI

ABSTRACT
We introduce an approach for guiding company representatives
through customer interactions according to company protocols rep-
resented in a knowledge graph. Our proof-of-concept application
features a dynamic user interface driven by a grammar derived from
the knowledge graph. We present and suggest future directions for
our work-in-progress demonstration which addresses many chal-
lenges that arise when building task-oriented applications at enter-
prise scale.

CCS CONCEPTS
• Human-centered computing→User interface design; • Comput-
ing methodologies→ Knowledge representation and reasoning; •
Applied computing→ Service-oriented architectures; Business
process modeling.

KEYWORDS
knowledge graphs, business processes, user interface design, task-
oriented semantic parsing

1 INTRODUCTION
Enterprise call centers provide service to customers in the form of
interactions that attempt to address customers’ needs while carrying
out company protocols. There is an inherent conflict here; company
representatives must adhere to the strict protocols (deviations can
be costly) while remaining dynamic and flexible to meet the some-
times complex and multifarious needs of the customer. Addressing
this conflict without burdening the caller with a slow and stilted
conversation is a challenge even for experienced representatives. To
address these challenges we propose a system that serves as an inter-
active but unobtrusive scribe that assists the company representative
to efficiently identify and navigate the appropriate protocols and
accomplish their task.1

1.1 Background
Our system focuses on an important type of call center interaction
where the task is to capture some a priori unknown collection of
highly structured information. For example, when a customer calls
an insurance company to initiate an auto claim, the company needs
to determine certain details such as the cause of damage, contact

1A short video demonstration of our system is available at https://www.
youtube.com/watch?v=zvId4iLoJuw

Knowledge Graphs and E-Commerce Workshop ’20, August 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.

information for any third parties, if there were injuries, if the vehicle
is driveable and so on. Failure to capture the required information
results in costs and inconveniences such as routing the claim to the
wrong adjuster or not helping the customer find an appropriate repair
shop and rental vehicle. Such mistakes result in inefficient claims
processes and dissatisfied customers.

Often the schema of information needed to accomplish the task
is not known a priori and can lead to complicated workflows which
are difficult to learn and execute. In our example, a multi-vehicle
collision claim requires different information than a hail damage
claim (e.g. adjusters are generally not concerned with contacting
third parties for hail damage claims). In some extreme cases, repre-
sentatives are specialized in certain domains; however, this requires
routing of incoming calls to appropriate representatives which comes
with its own complexities and does not necessarily yield the best
customer experience.

While technical solutions such as digital assistants and chatbots
are obvious places to look for addressing the above concerns, there
are considerable challenges facing designers, including:

• Company protocols frequently reside in unstructured formats,
such as training websites or even paper manuals, and are thus out
of reach of digital systems.
• Digitizing protocols into workflows and processes for representa-

tives to follow is costly to create, error prone and challenging to
maintain. Furthermore, even when these protocols are provided to
representatives during training, they can be complex, numerous
and hard to learn.
• Workflows are frequently overly restrictive by prescribing an un-

necessarily rigid sequence of questions. This can lead to unnatural
interactions and a poor user experience for customers and repre-
sentatives.
• The speech recognition demands for speed and accuracy for a real-

time digital scribe to be viable have, until very recently, exceeded
the state-of-the-art.
• In settings where text is available (such as chat or when a speech

recognition system has been integrated), computational parsing
approaches usually fall short. While there there have been signif-
icant recent advances in machine learning and natural language
processing (NLP) techniques to train statistical models for parsing
utterances, such techniques are rarely applicable in specialized
domains because of a dearth of labeled training data.

1.2 Proposed Solution
To address these challenges, we propose a declarative digital scribe
that automatically extracts information in real time and guides repre-
sentatives through phone calls according to company protocols. Our
contributions include:

https://www.youtube.com/watch?v=zvId4iLoJuw
https://www.youtube.com/watch?v=zvId4iLoJuw

Knowledge Graphs and E-Commerce Workshop ’20, August 2020, San Diego, CA, USA Conathan, Bockhorst, Dickinson, Acharya, Fung, Rouse

• A declarative approach to storing company protocols in a knowl-
edge graph
• A grammar derived from the knowledge graph that provides for-

mal foundations to flexibly drive dynamic applications that require
parsing and integration of fragmentary information
• A system which can (1) guide representatives through the initial

claims process, (2) extract required information through incom-
ing voice streams and (3) collect highly structured training data
organized according to the graph schema and that can be used to
enhance future systems

2 PRELIMINARIES
In this section, we define some terminology to help explain the
theoretical underpinnings of our system. The system itself is detailed
in Section 3.

2.1 Knowledge Graph
The core of our application is driven by rich data structures stored
in a knowledge graph (KG). Let E be a set of entities and P be a
set of properties. A knowledge graph K ⊂ E × P × E represents
a set of facts; if (𝑒1, 𝑝, 𝑒2) ∈ K, then entity 𝑒1 has property 𝑝 equal
to 𝑒2: (Barack Obama, BIRTHPLACE, Honolulu).
E contains both instances and types. All instances are associated

with at least one type which is expressed in the graph with a special
property TYPE. For example, the tuple (10, TYPE, Integer)
says there’s an entity 10 that’s an instance of the type Integer.
We can also have a special property SUBTYPE for capturing type
hierarchies: (Integer, SUBTYPE, Number). Schemas of types
can be encoded in the graph with triplets that comprise a property and
two types. For example, (Person, AGE, Integer) indicates
that instances of Person have an AGE property that is an instance
of an Integer.2

Types like Person that have properties are called complex while
atomic-valued types (Integer, Boolean, etc.) are called simple.
Furthermore, types are characterized as either concrete or abstract,
where concrete types can have direct instances but abstract types
cannot (an abstract type can only be instantiated by instantiating one
of its concrete subtypes).

This type system allows us to store arbitrarily complex data struc-
tures and schemas in our KG. Figure 1 shows a subgraph containing
an example schema of a Claim type and its subtypes, which is a
simplified version of what drives our demo.

2.2 Episode Grammar
We define an episode of type T (or, “type T episode”) as the process
of instantiating an instance of T. For example, an episode of the type
Person would involve identifying a person’s name, age, etc. An
episode is complete when enough properties have been defined to
create a valid instance of Person according to its schema.

For a given type T episode we use the KG to construct a context-
free grammar we call the episode grammar (EG). A sentence in
the EG corresponds to an instance of T. The nonterminals of the EG
comprise types and properties from the KG. Each type in the type

2Technically a Person object must have an AGE property only if AGE is required. In our
system properties are marked as either required or optional.

Figure 1: The subgraph describing the schema of the type
Claim.

hierarchy under the T contributes a nonterminal to the EG. Given
non-final type T we create a production rule for each subtype of T.

For example, given the schema from Figure 1, the types Claim
and Weather have the following production rules:

Claim → Weather | Collision
Weather → Hail | Water | Debris

The mapping for final type T̂ with properties 𝑝1 . . . 𝑝𝑚 is a single
production rule:

T̂→ T̂.𝑝1 . . . T̂.𝑝𝑚
The final type Debris, for example, yields:

Debris → Debris.INSURED
Debris.DRIVEABLE

Note that a type inherits properties from its supertypes. Each
property T.𝑝𝑖 has a single production rule T.𝑝𝑖 → TYPE(T.𝑝𝑖). If
TYPE(T.𝑝𝑖) is not in the EG it is also added using the method for
adding types we just described. To continue our example, we expand
the properties of Debris:

Debris.INSURED → Contact
Contact → Contact.NAME

Contact.PHONE
Contact.NAME → String
Contact.PHONE → String

Debris.DRIVEABLE → Boolean

2.3 Partial Instances and the Episode Object
A type T episode begins by constructing a partial instance of T
that we call the episode object. An instance is partial if either (a) its
type is abstract or (b) any of its required properties are undefined or
partial. Typically, an episode starts with an “empty” partial instance,
whose properties are all undefined. A non-partial instance is also
called complete. An episode is complete when the episode object is
complete.

There is a close relationship between episode objects and parse
trees in the episode grammar. Specifically, a partial object corre-
sponds to an incomplete parse tree while a complete object corre-
sponds to a full parse tree in which all leaf nodes are terminals. In
the remainder of the paper we stay closer to the language of episode
objects as we find it more natural given the topics at hand. More
examples and details about our approach to derive a grammar from
a knowledge graph can be found in [1].

Interactive Scribe for Call Centers Knowledge Graphs and E-Commerce Workshop ’20, August 2020, San Diego, CA, USA

2.4 Algorithm
High-level pseudocode for an episode is shown in Algorithm 1.
The algorithm processes a sequence of inputs 𝑥 one-by-one and
returns when the episode object E is complete. The inputs arise from
interactions between the customer, the representative and the user
interface (UI) and come in a variety of forms such as voice, text and
form submissions.

An input first gets processed by the PARSE function which yields
a set of partial objects y. For example, a reasonable parse for text
input “My name is Bob Smith” is a single partial object of type
Contact with NAME=“Bob Smith” and PHONE undefined.

Next the ASSEMBLE routine attempts to integrate the parsed
partial object into the episode object. While ASSEMBLE may be a
complex routine that searches for the optimal joint merger of y into
E, presently we employ a greedy approach in which we process the
parses 𝑦𝑖 ∈ y individually and merge a given parse into E only if
there is a single valid merger.

Let a merger be a pair (𝑦, ®𝑧) where 𝑦 is a partial object and ®𝑧 =

(S, 𝑝1, . . . , 𝑝𝑛) is a path that unambiguously specifies a location in
the episode object. A path consists of exactly one type S optionally
followed by any number of properties3 𝑝1 . . . 𝑝𝑛 . For example, the
corresponding path for the parse from the “Bob Smith" example
above is Claim.insured. Within an episode of type T, S must
be T or one of its subtypes and the properties must be consistent
with the schema in the KG.

A necessary condition for the validity of merger (𝑦, ®𝑧) involves
type coherency between the partial object and its integration position
within the episode object indicated by the path. Specifically, TYPE(𝑦)
must be the same as or a subtype of TYPE(®𝑧) where we define the
type for a path to be the type of its terminal element. That is, TYPE(®𝑧)
is either S (when ®𝑧 has no properties) or TYPE(𝑝𝑛). Other validity
conditions depend on the dialog state. For example, we prevent
partial objects that arise from parses of utterances to overwrite values
explicitly set via UI form inputs. Importantly, we save these valuable
mistakes as they serve as highly-relevant negative examples that
we can use to train (or re-train) statistical parsers to improve the
performance of the system.

Algorithm 1 Pseudocode for an episode

function EPISODE(E, 𝜃)
E: the episode object
𝜃 : dialog state
if ISCOMPLETE(E) then
return E

else
𝑥 ← INPUT()
y, 𝜃 ← PARSE(y, 𝜃)
E ← ASSEMBLE(E, 𝜃, y)
return EPISODE(E, 𝜃)

end if
end function

3Our approach may be trivially extended to support indexed collections of similarly
typed objects including arrays (indexed by integers) and dictionaries (indexed by
strings).

3 SYSTEM OVERVIEW
3.1 Knowledge Graph Construction
In the previous section we detailed how the knowledge graph and the
types and schemas it contains determine the behavior of the system,
so obviously constructing the correct knowledge graph is key. As
this work is still in a proof-of-concept phase, we manually construct
the knowledge graph based on reading and interpreting company
protocols in their unstructured formats. In the future, we are inter-
ested in exploring using knowledge graph construction techniques
to automatically generate the knowledge graph from unstructured
sources.

3.2 Frontend and User Experience
The user interface (UI) is essentially a dynamic form which renders
the current state of the episode object. Undefined properties manifest
as input fields. Abstract types appear as buttons for the user to select.
The knowledge graph contains metadata about how choices and
input fields should be displayed to the user. For example, in Figure
3a, selecting the appropriate Claim subtype appears as buttons
whereas the Contact object appears as text boxes for the user to
fill in. The triplets (Claim, QUESTION, "What happened?")
and (Name, QUESTION, "What is your name?") would be
in our graph to indicate what should appear above the buttons or
fields.

3.3 Voice Input
The backend of our system has the ability to parse text inputs as de-
scribed in the next section. In order to guide a representative through
a call, we have included a voice-to-text module which transcribes
the incoming channels from the representative and customer which
can then be passed to the backend as text. The streams of voice
data are broken into utterances, and each utterance is passed to a
server running the voice-to-text speech recognition model. We use
Mozilla’s implementation [3] of the Deep Speech architecture [2].
Once the utterance has been transcribed it is passed to the backend
to be processed as a text input.

3.4 Parsing text inputs
After receiving a text input, our system parses it and produces any
number of partial objects. Which parsers are applied depend on the
current episode object and the current state of the dialog (which
is detailed in Section 3.6). For example, at the beginning when
our episode object is a Claim object, we would apply a parser
that looks for text like “crashed” or “accident”, which would pro-
duce an empty Collision partial object. Figure 2 shows an ex-
ample where the phrase “I got rear ended” is parsed as an empty
MultiVehicleCollision object.

The parsers are stored in the KG as special properties of types
and instances so they can be retrieved easily via queries. Our demo
employs simple pattern-matching parsers, but the system allows
for more complicated statistical parsers. Indeed, one of the major
features of our system is that we are continuously collecting training
data because a human is ultimately vetting the information and
submitting the final form.

Knowledge Graphs and E-Commerce Workshop ’20, August 2020, San Diego, CA, USA Conathan, Bockhorst, Dickinson, Acharya, Fung, Rouse

3.5 Processing inputs from UI
In addition to parsing voice and unstructured text inputs, our system
can also take in structured information from the UI. This feature is
essential since we cannot expect our parsers to accurately extract
all the necessary information for every interaction. We believe this
addresses the challenges surrounding the shortcomings of statistical
parsers brought forth in Section 1.1 in two ways: (1) it allows for
a human-in-the-loop interaction to correct mistakes of the statisti-
cal parsers, and (2) it generates new training data to improve the
accuracy of the parsers in the future.

Figure 3 shows some screenshots of our UI. Note that some inputs
(e.g. NAME) are text fields while others (e.g. the appropriate CLAIM
subtype) can be rendered as buttons. Metadata specifying how the
fields and options should be displayed in the UI are included in the
KG.

Inputs from the UI are processed similarly to text inputs. The sub-
mission of a field produces a partial object which is then assembled
into the episode object. For example, filling out the NAME field in
Figure 3a would correspond to creating a Contact partial object
with the given name.

3.6 State Tracking
The episode object functions as a state tracker for our system; it
contains all the data that we take in and is what ultimately gets
submitted when the task is accomplished. Within the state we also
track the origin of values to avoid overwriting values set via UI form
inputs as mentioned in Section 2.4.

Some dialog state tracking is necessary in order to parse responses
to questions in the conversation. For example, if we received the
response “yes” from a customer, we would need to know that this
was in response to the question “Is your car still driveable?” in order
to successfully parse it as the appropriate partial object. To handle
this situation, we apply parsers to the speech from the representative.
If we recognize the question “Is your car still driveable” we would
then make a “yes”/“no” parser available for the response from the
customer that would map “yes“ to a partial object with DRIVEABLE
set to True.

3.7 Assemble and Update
Partial objects obtained through the UI or by parsing text are assem-
bled into the episode object according to the algorithm detailed in
Section 2.4. The UI is updated according to the new episode object
and any relevant metadata from the KG.

3.8 Completion
When the episode is complete, the representative is given the ability
to review the information before submitting the object, thus conclud-
ing the interaction. The final episode object is usually submitted to
a backend processing system. Additionally, we store an enriched
version of the object with the raw inputs and any corrections to be
used for training data in the future.

4 CONCLUSIONS AND FUTURE WORK
We have a proposed a knowledge graph-driven system for helping
company call center representatives naturally interact with customers
while at the same time meeting company protocols. Our system’s

Figure 2: An example showing Algorithm 1 in practice. (a)
shows the episode object before processing the input, (b) shows
the parser producing a partial object from the text input, and
(c) shows the updated episode object after assembly.

Figure 3: An example showcasing the system’s dynamic UI. (a)
shows the initial screen. In (b) we see that the claim has been
marked as a Collision claim and more information is neces-
sary, and (c) shows the claim with all required information and
ready to submit.

design facilitates the natural collection of weakly-labeled data con-
necting user utterances to KG entities and types. In future work we
plan to investigate algorithms for system improvement via automatic
and human-in-the-loop machine learning algorithms. Additional fu-
ture work includes the design and implementation of an A/B testing
methodology to objectively measure the impact of the system on
day-to-day operations.

REFERENCES
[1] Joseph Bockhorst, Devin Conathan, and Glenn Fung. Knowledge graph-driven

conversational agents. Knowledge Representation & Reasoning Meets Machine
Learning (NeurIPS Workshop), 2019.

[2] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. Deep speech: Scaling up end-to-end speech recognition. CoRR,
abs/1412.5567, 2014.

[3] Mozilla. A tensorflow implementation of baidu’s deepspeech architecture, 2019.

	Abstract
	1 Introduction
	1.1 Background
	1.2 Proposed Solution

	2 Preliminaries
	2.1 Knowledge Graph
	2.2 Episode Grammar
	2.3 Partial Instances and the Episode Object
	2.4 Algorithm

	3 System Overview
	3.1 Knowledge Graph Construction
	3.2 Frontend and User Experience
	3.3 Voice Input
	3.4 Parsing text inputs
	3.5 Processing inputs from UI
	3.6 State Tracking
	3.7 Assemble and Update
	3.8 Completion

	4 Conclusions and Future work
	References

