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ABSTRACT
Product graphs have emerged as a powerful tool for online retailers
to enhance product semantic search, catalog navigation, and rec-
ommendations. Their versatility stems from the fact that they can
uniformly store and represent different relationships between prod-
ucts, their attributes, concepts or abstractions etc, in an actionable
form. Such information may come from many, heterogeneous, dis-
parate, andmostly unstructured data sources, rendering the product
graph creation task a major undertaking. Our work complements
existing efforts on product graph creation, by enabling field experts
to directly control the graph completion process. We focus on the
subtask of enriching product graphs with product attributes and we
employ statistical relational learning coupled with a novel human
in the loop enhanced inference workflow based on Probabilistic Soft
Logic (PSL), to reliably predict product-attribute relationships. Our
preliminary experiments demonstrate the viability, practicality and
effectiveness of our approach and its competitiveness comparing
with alternative methods. As a by-product, our method generates
probabilistic fact validity labels from an originally unlabeled data-
base that can subsequently be leveraged by other graph completion
methods.
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1 INTRODUCTION
E-Commerce catalogs are an essential tool for every retailer; they
are the stepping stone for online purchases as they enable and fa-
cilitate semantic search, product recommendations, etc. Catalogs
are usually created by sourcing data from sellers, suppliers and
brands. However, the data is often incomplete, sometimes missing
crucial bits of information that customers are looking for. Relevant
information can be buried within raw text (e.g. titles, product de-
scriptions) or images. Additional relevant information may exist
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on the internet in the form of product manuals, product reviews,
blogs, social media sites, etc.

To tackle data completeness issues and to also take advantage
of the abundance of relevant information on the web, many retail-
ers [4, 13] are currently looking into creating product graphs, i.e.
knowledge graphs that capture all the relevant information about
each of their products and related entities.

Figure 1: Product Graph for a Washer.
Product Entities are in gray and attribute values in green

Product graphs can capture the different types of connections
related to each product. For example, they can represent the re-
lationships between a product and its parts or attributes (e.g. the
color, and price of a fridge, the sensitivity of the speakers). They
can also represent the connection between products and real world
entities such as objects, things, concepts or abstractions that ex-
ist (e.g. kitchen, still life painting, bright colors, summer vacation,
gluten-free, cottage style). Different types of relationships help
answer different queries: the former can answer questions of the
form "‘silver washer"’ while the latter can answer questions of the
form "‘backyard furniture"’. Additionally, the product graph can
represent relationships among the products themselves, such as
substitutes and complements (accessories, compatible products, etc).
As an example in Figure 1 we show the projection of a product
graph pertaining to a particular washer.

For a product graph to be useful it has to be complete (i.e. to cover
and represent as much of the domain knowledge as possible) and
correct (i.e. to contain accurate information and, if possible, coupled
with actionable accuracy measures). Taking into consideration the
many data sources that need to be consulted, their heterogeneity,
their varying degrees or quality, as well as the sheer volume of data
that need to be collected and consolidated it becomes obvious that
product graph construction is a major undertaking. Currently ideas
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and techniques from many domains, including schema matching
[20], knowledge/information extraction and fusion [6, 26], entity
resolution [18], named entity recognition [32], entity matching
[15], and entity linking [12], have been leveraged and combined to
extract the product graph related facts from the available sources.
This extracted knowledge is usually incomplete (and at times incon-
sistent). Thus an additional step, usually referred to as knowledge
graph completion, is needed. Current techniques either are heuris-
tic (e.g. random walks), build involved statistical models [16], or
can be too computationally expensive [29]. What’s more, a major
issue for model-based techniques is the need for a large amount of
labeled data. This latter problem is typically addressed with weak
supervision techniques [9, 19], ideas from which have motivated
some of the solutions in this paper.

In our work we ameliorate the aforementioned product graph
construction problems by enabling domain expertise to directly
affect the modeling process. Our work bootstraps the process with
zero labels through a human in the loop process that enriches an
existing product graph with additional or corrected information
about the product attributes for each of the existing products in
the graph. We start with a product graph derived from a real data-
base of washers from a large retailer and we enrich it using public
information from other retailers’ websites.

We use a scalable statistical relational learning framework called
Probabilistic Soft Logic (PSL) [1] to enable domain knowledge to
be injected in the defined enrichment model. The reason we use
PSL is that it allows for expressive reasoning and ease of use by do-
main experts which are critical in our application scenario. Domain
knowledge can be expressed in PSL in the form of logical rules that
are easy to understand and reason against, while at the same time
being expressive enough to represent different types of information.
The underlying inference engine enables fast computations. The
modeling process is enhanced with a novel, fully-automated hu-
man feedback workflow that achieves good accuracy at the product
graph enrichment task.

The rest of the paper is organized as follows: in Section 2 we
summarize recent related work on product (or knowledge) graph
completion, while in Section 3 we provide some background infor-
mation on PSL. In Section 4 we formally define the graph enrich-
ment problem and in Section 5 we describe the new knowledge
acquisition process. In Section 6 we present in detail the proposed
solution and in Section 7 we present our experimental evaluation.
Finally we conclude in Section 9 with some ideas for future work.

2 RELATEDWORK
Statistical Relational Learning (SRL) [7] methods are concerned
with the statistical analysis of relational, or graph-structured, data
and naturally lend themselves to the study of knowledge graphs.
Indeed a few proposals already exist [16] that utilize statistical
graphical models to predict new facts. However those methods
involve sophisticated statistical models that (1) are computationally
expensive and (2) are not easily customized on specific domains.
In our work we devise a novel framework that combines PSL, an
efficient SRL method[1, 11], within an modeling architecture that
(1) enables injecting domain knowledge directly in the model and
(2) scales to large data volumes.

Various works have already appeared to tackle the graph comple-
tion issue for a general knowledge graph. An early work [17] em-
ploys tensor factorization to capture the structure of data in knowl-
edge graphs. Another promising approach utilizes embedding-based
methods that project a knowledge graph onto a continuous vector
space while preserving key information and characteristics of the
graph, and a host of relevant proposals [2, 14, 23, 24, 27, 29] have
already appeared. Finally, methods based on deep convolutional
[5, 22] or graph [31] neural networks have also been proposed. All
these methods require a large number of training entity pairs for
every relation. However, such training pairs are very often limited
in practice, thus hampering the applicability of those methods.

Recently one-shot [28] and few-shot [30] learning frameworks
have been proposed to substantially decrease the number of neces-
sary training relations. Our approach is complementary to those
efforts as it employs domain expert knowledge to eliminate the need
for additional training information outside of existing relations.

3 BACKGROUND
In this section, we provide information on PSL, our main rule man-
agement and statistical inference engine. We first describe the un-
derling statistical model and its inference process and then give
specific examples of PSL programs.

3.1 Probabilistic Soft Logic (PSL)
Probabilistic Soft Logic (PSL) is a probabilistic programming lan-
guage that uses a first-order logical syntax to define a graphical
model [1]. PSL uses continuous random variables in the [0, 1]
unit interval and specifies factors using convex functions, allowing
tractable and efficient inference. It defines a Markov Random Field
(MRF) associated with a conditional probability density function
over random variables Y conditioned on evidence X,

𝑃 (𝑌 |𝑋 ) ∝ exp(−
𝑚∑
𝑗=1

𝑤 𝑗𝜙 𝑗 (𝑋,𝑌 )) (1)

where 𝜙 𝑗 is a convex potential function and 𝑤 𝑗 is an associated
weight which determines the importance of 𝜙 𝑗 in the model. The
potential 𝜙 𝑗 takes the form of a hinge-loss:

𝜙 𝑗 (𝑌 |𝑋 ) = (𝑚𝑎𝑥{0, 𝑙 𝑗 (𝑋,𝑌 )})𝑝 𝑗 (2)

Here, 𝑗 is a linear function of X and Y, and 𝑝 𝑗 ∈ 1,2 option-
ally squares the potential, resulting in a squared-loss. The result-
ing probability distribution is log-concave in Y. PSL derives the
objective function by translating logical rules specifying depen-
dencies between variables and evidence into hinge-loss functions.
PSL achieves this translation by using the Lukasiewicz norm and
co-norm to provide a relaxation of Boolean logical connectives [11]:

𝑝 ∧ 𝑞 =𝑚𝑎𝑥 (0, 𝑝 + 𝑞 − 1)
𝑝 ∨ 𝑞 =𝑚𝑖𝑛(1, 𝑝 + 𝑞)
¬𝑝 = 1 − 𝑝

(3)
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3.2 Anatomy of a PSL program
A PSL program1 defines the rules and constraints that govern the
dataset under consideration and consists of the following modules:

A set of logical rules.A logical rule is a sequence of atoms or negated
atoms connected using the {𝑜𝑟, 𝑎𝑛𝑑,→} connectives. Logical rules
are either weighted or unweighted. If a logical rule is weighted, it
is annotated with a non-negative weight. For example the rule:

10 : SameAttribute(att1, att2) and
SameAttribute(att2, att3) ->
SameAttribute(att1, att3)

captures the intuition that if there are three attributes called att1,
att2, and att3, and we have strong evidence that att1 is the same
attribute as att2 and att2 is the same as att3, then we can infer that
att1 and att3 do refer to the same attribute as well. In other words,
this is a transitivity rule where we have evidence for some values
of the SameAttribute and we want to predict the values for the
SameAttribute that are unknown. The number 10 in the beginning
of the rule specifies the weight (or initial weight if weight learning
is required) of the relevant potential function(s) in the underlying
MRF.

A set of observations. Each observation is a grounded atom (i.e. a
fact) accompanied with a number in the [0, 1] unit interval that
represents the confidence of that fact.

A set of queries. Each query is a grounded atom (i.e. a fact) for which
we want to estimate the confidence.

The ground truth (optional). If weight learning is required each query
is also accompanied with a number in the [0, 1] unit interval that
represents the confidence of that fact.

When grounded over a base of grounded atoms, a PSL program
induces a HL-MRF conditioned on the specified observations.

4 PROBLEM DEFINITION
A product graph 𝑃𝐺 is represented as a collection of triplets (𝑝, 𝑟, 𝑎)
⊆ 𝑃𝑥𝑅𝑥𝐴, where 𝑃 is the set of products, 𝐴 the set of product
attribute values, and 𝑅 the set of relations (i.e. the names of the
attributes) between the products and the attribute values. Examples
of relationship types are washer depth, voltage, number of wash
cycles, number or rinse cycles, etc. Each triplet may be accompanied
by a score which represents our confidence in the correctness of
the triplet. We call those triplets facts from now on.

We define the product graph enrichment task as one of:

(1) Predict the product attribute value 𝑎 given the product 𝑝 and
the relation 𝑟 : (𝑝; 𝑟 ; ?),

(2) Predict the unseen relation r and attribute value for a product:
(𝑝; ?; ?),

(3) Compute the confidence of a given fact.

1In all our experiments we used the software provided by the LINQS group https:
//github.com/linqs/psl

In our work we represent the product graph as a database table
with the domain (𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒). 𝑃 comes from a data-
base of a large retailer (we call this database the anchor database
from now on) and includes all the products of a specific category
(i.e. in this paper we project all the information about washers).

The candidate attributes and product-attribute relationships
come from either the anchor database or can be discovered from
an external data source, i.e. the websites of other retailers, which
may have additional information about the products in the anchor
database.

5 DATA ACQUISITION
The original anchor database contains 206 products (washers), 266
distinct product attribute names, and 34𝑘 facts. For simplicity and
without loss of generality we opted to discard attributes that have
long values or high cardinality like identifiers of images or videos.
The curated database has 206 products, 210 distinct product at-
tribute names, and 26𝑘 facts.

To create the dataset with additional relevant information (i.e.
candidate attribute values) we crawl other retailers’ websites and ex-
tract relevant (𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒) facts from them. We will
call this dataset the external dataset from now on. We used Diffbot
[25], a service that uses computer vision and natural language pro-
cessing techniques to parse a web-page and extract JSON formatted
structured data from it, to create the external dataset. This service
avoids the requirement of writing site-specific scrapers.

The data acquisition process is shown in the left part of Figure 2
and can be summarized as follows: For every product in the curated
anchor database we issue the {model number, title} web keyword
search query (using a popular search engine) and gather the top 5
returned URLs. We then call the Diffbot API on the acquired URLs
and get a JSON file for each URL.

Figure 3: Top: Example of successful information product
parsing. Bottom: Example of unsuccessful product informa-
tion parsing.

https://github.com/linqs/psl
https://github.com/linqs/psl
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Figure 2: Proposed system architecture

Not all such files are useful i.e. contain product-attribute infor-
mation. Refer to Figure 3 for actual example of useful and not useful
retrieved files. To solve this issue we devised an automated filtering
process that maintains as many relevant JSON files as possible.

For this purpose, we built an XGBoost[3] classifier that decides
whether the JSON file should be kept or be discarded. The classifier
uses the features below:

• Results from another classifier trained to distinguish washer
product names from other text and used to score the page
title,

• Number of attributes extracted from the page,
• Whether the page is from a list of retailers,
• Whether the page has a list of particular attributes (product
number, product-name, etc.).

To automatically create labels for the classifier we used Snorkel,
[21] a tool that produces probabilistic labels based on user-defined
labeling functions (i.e. simple heuristics that generate noisy labels).
The labeling functions that we defined take into consideration
simple metrics such as the depth of the extracted JSON, the length
of the attribute values, and the number of images that are extracted
from the web page. The classifier achieved 87% AUC (tested against
a set of about 200 hand-labeled pages).

As a final step we need to ensure that the information retrieved
corresponds to the product under consideration (in some cases the
search engine would not return the exact washer we inquired, but
a similar model). For the purpose we defined a simple rule-based
entity linker that compares the web page extractions (provided by
Diffbot) and the product under consideration using the product
name, manufacturer name, and product model number (whenever

Diffbot can extract this information). If the web page extraction
doesn’t contain these attributes we discard it.

The resulting external dataset contains 32𝑘 extractions. An ex-
traction is a (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒) tuple. Those cover
17𝑘 distinct (𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒) triplets and 14𝑘 distinct
(𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) pairs. The total number of unique attributes
in the external database is 1639.

6 FACT GENERATION
Using the external dataset that we collected, we proceed to discover
facts from it as well as assign confidence scores to those facts. A
major component of this process is matching attribute instances in
the external dataset with those that exist in the anchor database.
These matches create the bootstrap seed of the fact generation pro-
cess. Matching is based on (1) similarity scores between attributes
and (2) logical rules that employ those scores along with domain
knowledge to create facts. Our solution is divided into two phases
that are executed in sequence to perform the aforementioned tasks.
We call the first phase the creation of zero order knowledge and the
second the knowledge injection phase.

6.1 Zero order knowledge
It is expected that the anchor database will not contain the exact
same attributes as the acquired external dataset, due to different
information encoded in the two data sources. Moreover even if the
same attribute exists in the two data sources they may be encoded
in a different way (e.g. due to different attribute names, format etc).
In this paper we assume that we have no prior knowledge about
attribute type semantics.
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In order to create such a prior we resort to similarity scores
between attributes. These similarity functions are generic and they
have no semantic context of the domain we apply them to (washers).
For that reasonwe call this step zero order knowledge. Such similarity
scores are computed on the attribute names or on the attribute
values. We conjecture that the similarity between the sets of values
that two attributes can take signals similarity between the pair of
attributes themselves. To leverage this fact, for each attribute we
compute the bag of words of all the values that are assigned to it,
vectorized using tf-idf. Subsequently for each pair of attributes we
compute a similarity function between the relevant vectors using
the Cosine and Radial basis function kernels.

As an example, the attributes "Number ofWash Cycles" and "Num-
ber of Rinse Cycles" have a Jaccard similarity of 0.6 base on the
attribute name. The list of values these two attribute can take are
"10 9 20 16 ..." and "5 3 11 13 ..." respectively. If we compute the
tf*idf vectors of these two lists of values and compute the cosine
similarity of these two vectors we get 0.72.

The similarity functions that we have employed are:
• Hamming distance
• Levenshtein distance
• Jaccard distance
• Cosine distance
• Word Mover’s distance [10]

Word Mover’s distance is a promising tool as it enables similarity
scoring both on the semantic and syntactic levels. Nonetheless, it
is computationally very expensive and would be impractical to
use in our situation where we need to compute similarities for 3𝑀
attribute pairs. Thus we first compute attribute similarities using
only the Hamming, Levenshtein, Jaccard, and cosine distances and
only maintain the top 70𝑘 most similar attribute pairs. We then also
compute the Word Mover’s distance between those 70𝑘 pairs.

6.2 Knowledge Injection
In the knowledge injection phase we employ the similarities that we
computed previously to discover facts from the external dataset.
This phase is split into two stages. In the first stage we match prod-
uct attribute names between the anchor database and the external
dataset. In the second stage we assign confidence scores to candi-
date (𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒) facts and check the validity of the
highest scored facts.

6.2.1 Stage 1: Attribute matching. The goal of the first stage is to as-
sign affinity scores for pairs of (attribute1_name, attribute2_name).
We use a PSL program to reason about the computed similarities,
and compute affinity scores for the 70𝑘 attribute pairs created in
section 6.1. The PSL program enforces two rules.

(1) similarity implies sameness
(2) transitivity of sameness

Transitivity and recursive rules in general, are an important part of
our work. They help lower the affinity score of pairs of attributes
that are hard to disambiguate (e.g. by looking at their similarities)
like product width and product depth or that can only be compared
based on their relationship with other attributes.

The PSL rules we used are

SimilarAttribute(att1, att2, similarity) ->
SameAttribute(att1, att2)

SameAttribute(att1, att2) and
SameAttribute(att2, att3) ->
SameAttribute(att1, att3)

SimilarAttribute is an observed predicate and we are predict-
ing SameAttribute.

After running stage 1, we end up with affinity scores for attribute
pairs according to how much they satisfy the rules that we want
to enforce (through the PSL program) and use these results in the
subsequent stage to assign confidence scores to candidate facts.

6.2.2 Stage 2: Scoring facts. Using the SameAttribute predicate
that we computed from stage 1, we construct a set of possible
product records and we run a second PSL program to score each
candidate fact (product,attribute,value).

We construct this set of candidate facts by joining the facts in
the anchor database with the facts in the external dataset using the
previously discovered same attribute pairs as join keys. This set may
contain multiple facts for the same {product, attribute_name} pair.
To further disambiguate the facts we compute textual similarities
like Hamming, Jaccard, and Cosine between pairs of attribute values
that appear in the candidate set of facts.

We use all this information in a PSL program that computes
confidence scores for facts:

AnchorRecord(prod-id, att1, val1) and
SameAttribute(att1, att2) ->
ProductRecord(prod-id, att2, val1)

AnchorRecord(prod-id, att1, val1) and
ExternalRecord(prod-id, att2, val2) and
SameAttribute(att1, att2) and
SimilarValue(val1, val2, similarity) ->
ProductRecord(prod-id, att2, val2)

ProductRecord(prod-id, att1, val1) and
ProductRecord(prod-id, att2, val2) and
SameAttribute(att1, att2) ->
SameValue(val1, val2)

ProductRecord(prod-id, att1, val1) and
SameAttribute(att1, att2) and
SameValue(val1, val2) ->
ProductRecord(prod-id, att2, val2)

In the previous rules, AnchorRecord, ExternalRecord,
SameAttribute and SimilarValue are observations.
AnchorRecord and ExternalRecord represent facts in the anchor
database and the external dataset respectively.
SameAttribute is the predicate computed in the previous stage.
SimilarValues represents normalized similarity values between
the attribute values.
ProductRecord and SameValue are the unobserved predicates that
we are predicting.

As we explain in detail in Section 6.2.3 the two stages are exe-
cuted multiple times (iterations).
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Table 1: Example of scored (product, attribute, value) fact

product attribute value score

1 Certifications and Listings CSA Listed 1.0
2 Returnable Non-Returnable 0.99
3 Appliance Type Top Load Washer 0.98
3 Amperage (amps) 15 0.85
5 Washer Tub/Drum Material Stainless steel 0.75

6.2.3 Human in the Loop. Due to uncertainties in the data selection
and matching process as well as the probabilistic nature of the PSL
programs we do not expect the latter to return 100% accurate results.
Thus we employ PSL programs to narrow down the facts that are
likely to be true to a manageable scale, so that a human expert
can quickly provide feedback. After running the PSL program in
stage 2 we end up with facts and their confidence scores (we show
examples of such facts in table 1).

For each {product, attribute_name} pair we pick the relevant fact
with the highest confidence score. If this fact has the same value as
the matched fact in the anchor database then we are certain about
its correctness. If it does not have the same value or if we don’t
have a fact for that {product, attribute_name} pair in the anchor
database we manually check the correctness of the extracted fact.

The extracted facts are fed as input of the next iteration. That
significantly improves the inference of PSL, as will be explained in
section 7.

We also score the attribute pairs that do not perform well. For
example we noticed that "Product Width (in.)" for every product
ends up having on average many distinct values. For example for
product "13" and attribute "Product Width (in.)" we get

(1) "46" " extracted through "product_width" attribute
(2) "27" " extracted through "product_depth" attribute
(3) "27.5 in" extracted through "packaged_depth" attribute
(4) "35 1/2 in" extracted through "product_height" attribute
This is a sign that the attribute name in the anchor database

has been matched with the wrong attribute names in the external
dataset. For example, "Product Width (in.)" tends to be confused
with "product_depth" because they have similar attribute names
and attribute values.

The human expert introduces these negations in the next itera-
tion so that the quality of the produced facts is further improved.

7 EXPERIMENTAL EVALUATION
In section 6.2 we presented an iterative process where a PSL pro-
gram generates high confidence candidate facts and a human expert
preserves the valid ones among the former. Bear in mind that some
of those facts already exist in the anchor database while others are
completely new.

Due to the lack of a ground truth for all the generated facts we
opted to check the performance of the process using the gener-
ated facts that also exist in the anchor database. For those facts
the iterative process has to match potentially different references
of the underlying entities (e.g due to typos, synonyms, format dif-
ferences). For example the depth of a washer can be reported as
(′𝑤𝑎𝑠ℎ𝑒𝑟09123′,′ 𝑑𝑒𝑝𝑡ℎ′, 30) in the anchor database and as part of

Table 2: Fact based metrics for the proposed methodology
with 0.3 threshold

Iteration Cumulative extracted facts Precision Recall F1 score

1 3731 50.84% 72.67% 59.82%
2 3846 76.39% 60.59% 67.57%
3 4051 85.3% 53.21% 65.53%

Table 3: Fact based metrics for the proposed methodology
with 0.5 threshold

Iteration Cumulative extracted facts Precision Recall F1 score

1 3052 65% 59.43% 62.09%
2 3261 83.2% 52.5% 64.37%
3 3574 98.2% 46.7% 63.29%

Table 4: Fact based metrics for the proposed methodology
with 0.7 threshold

Iteration Cumulative extracted facts Precision Recall F1 score

1 2653 64.83% 51.67% 57.5%
2 2892 89.45% 45.89% 60.65%
3 3076 99.6% 41.38% 58.46%

a dimensions attribute (′𝑤𝑎𝑠ℎ𝑒𝑟09123′,′ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 ′,′ 27𝑥35𝑥30′)
in the external dataset. We call those facts the validated facts.

After running the iterative process over the anchor database
and the external dataset 4 times we extracted 3574 validated facts.
In table 3 we present the cumulative number of validated facts
collected on every iteration after stage 2.

For this experiment, we used the LazyMPEInference inference
method for PSL, with a maximum number of inference round of 20,
and for each round a maximum number of iterations of 5000 for
the ADMMReasoner.

To extract attribute values from the external dataset we proceed
as follows: For each (product, attribute_name) pair in the anchor
database we keep the attribute value (from the external dataset)
with the highest PSL confidence. If that confidence is greater than
a chosen threshold we choose the attribute value from the external
database for that particular (product, attribute_name) pair. We then
employ a human expert to manually confirm the generated valid
facts. We repeated the confirmation process for 5135 facts.

We then compute the precision, recall and f1 score: if the ex-
tracted valid fact is confirmed by the human expert we consider it
a true positive, otherwise a false positive. As a false negative we
consider the case when we do not extract any value for a (prod-
uct, attribute_name) pair with confidence greater than the chosen
threshold but there exists a fact in the external dataset where the
attribute name in the anchor database and attribute name in the
external dataset and the human expert accepts this fact. The results
for different thresholds can be found in tables 2, 3 and 4.



Human in the Loop Enrichment of Product Graphs with Probabilistic Soft Logic KDD’20, August 2020, San Diego, CA, USA

Table 5: XGBoost performance on fact sameness
classification

Precision Recall F1 AUC

95.28% 90.38% 90.92% 99.5%

7.1 Comparison with other methods
As a next step we devised two alternative enrichment methods, one
based on (1) keyword matching and the other on (2) classification,
and measured their performance.

7.1.1 Approximate keyword matching. The algorithm comprises
the following steps:

(1) For every attribute in the anchor database we compute all
the similarities under consideration with all the attributes in
the external dataset.

(2) For each pair of attributes if the lowest similarity value that
is computed is > 0.85 then we consider the two attributes to
be the same.

(3) We do the same analysis for the attribute values.
(4) If both (2) and (3) are positive we return the relevant fact

from the external dataset.

This heuristic has a very high precision (99.45%) because we only
match attributes and values if they are almost the same, but it has
low recall (18.35%) and doesn’t perform as well as PSL in finding
attribute and value pairs that are the same but do not look the
same. For example using keyword matching we cannot predict that
’depth’ and ’dimensions’ are the same attribute or ’Digital Controls’
and ’Electronic LED’ are the same values for the ’Controls’ attribute.

7.1.2 XGBoost classifier. We trained a classifier using XGBoost to
predict whether two facts (one extracted from the external dataset
and one from the anchor database) are the same. We use as features
the similarities between anchor-attribute, external-attribute and
between anchor-attribute_value, external-attribute_value. We used
the labels that we constructed from our PSL runs. The results can
be found in table 5.

Although the final, overall performance of XGBoost is better,
this method depends on the PSL-based iterated process for the
labels. Once those are generated, XGBoost could be used in coor-
dination with the iterative process to further improve enrichment
performance.

8 ABLATION STUDY
In the final experiment we investigate the effectiveness of the pro-
posed method at enriching the anchor database with brand new
facts.

In order to do that, and in the absence of a ground truth for such
new facts, we remove some facts from the anchor database and
check if and how well our method discovers them from the external
database.

In this study we employ the same metrics as in section 7.1, on
the removed (product, attribute_name) pairs in computing the pre-
cision, recall and f1 scores and use 0.5 as our confidence threshold.

Table 6: Fact metrics on ablated data

Number of ablated facts Precision Recall F1

1500 88.45% 51.46% 65.06%
2000 90.81% 43.62% 58.92%
2500 92.19% 41.15% 56.9%

In table 6 we present the results for different numbers of facts
removed. The results indicate that the proposed method performs
equally well in finding brand new facts in the external dataset.
Thus the method is effective in not only gaining confidence in facts
that exist in our anchor database, but also in enriching the anchor
database with new facts from the external dataset.

9 CONCLUSION
In this paper we introduced a novel methodology for enriching prod-
uct graphs that seamlessly combines smart web extractors (Diffbot),
modern SRL tools (PSL), and human feedback in a practical way. Our
preliminary experiments demonstrate that it is possible to enrich
existing retail product graphs with both more precise facts as well
as brand new facts and also augment those facts with confidence
scores on their correctness. Using a real world dataset, we also gen-
erated a labeled dataset (as a by-product the proposed methodology)
for washers that we intend to open source. We also intend to con-
duct further experiments on other product categories. One of the
limitations of the current architecture is that it uses semantically
agnostic similarity functions. This is because we start the enrich-
ment of the product graph without any prior knowledge of the
attribute semantics. It is possible to utilize the product descriptions
to acquire more domain-specific embeddings. The relationships
produced by the 3rd stage of the PSL model could also be leveraged
to produce domain-specific embeddings using graph embedding
algorithms [8]. We plan to investigate all of these directions as part
of our future work.
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