Big data and its applications

Mayank Kejriwal

Just last week in Science...

o

A healthy dose of skepticism can help one spot misleading data.

PODCAST

Calling Bullshit: The Art of Skepticism
in a Data-Driven World

Carl T. Bergstrom and Jevin D. West
Random House, 2020. 336 pp.

There are three kinds of lies, the oft-quoted
saying goes: lies, damned lies, and
statistics. In a world drowning in data,
statistical methods and other tools of
scientific inquiry are increasingly being
used to advance erroneous claims. This
week on the Science podcast, evolutionary
biologist Carl Bergstrom explains how

to identify data-driven misinformation
and disinformation.

10.1126/science.abd9788

sciencemag.org SCIENCE

PHOTO: ISTOCK.COM/WUTWHANFOTO

Originally 4 Vs (variety, velocity, volume

and veracity)

* Today many more...

* Think of a text
application that
‘activates’ or requires
as many of these 8Vs
as possible. What
about non-text?
Which Vs are most
important for text, in
your opinion?

VALUE
Can you find it O 2
when you most

need it?

VISCOSITY B | (D A‘l‘ A VERACITY
Does it stick with Are you dealing
with information

you? Does it call il :
for action? or disinformation?

with 8 V's

VELOCITY

Information gains
mementum and cri- VISUALISATION

ses & opportunities Can you make sensa ‘.
e | ti at a glance? Does it
O e R VARIETY trigger a decision?
How is outicok for IS 2 picture wort o
today? <

Horizontal vs. vertical scaling

Vertical Scaling

(Increase size of instance (RAM ,
CPU etc))

Horizontal Scaling

(Add more instances)

5 | PEEE
2 | DEke

>

Must it be one or the other? Can you think of hybrids?

MapReduce and Hadoop

* MapReduce is a ‘framework’ for embarrassingly parallel
programming

* Popularized in the article by Google researchers Dean and Ghemawat
(https://static.googleusercontent.com/media/research.google.com/e

n//archive/mapreduce-osdi04.pdf)
* Highly recommended reading

* Implemented as Apache Hadoop, available on all cloud platforms!

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf

Best illustrated through an example

* (But to truly understand, you must go through the first three pages of
the linked paper)

* Example problem: Suppose we wanted to count the number of
occurrences of each word in a large collection of documents

MapReduce ‘hello world’: word counting in
large corpus

map (String key, String wvalue):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator wvalues):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));

Mapreduce Case study: k-means

Very applicable to large-scale, unsupervised text analytics

Introduction to K-Means

* Those of you who have done machine learning are probably
familiar with it (but doesn’t hurt to visit)

* Even today, one of the few (if not the only) clustering
algorithms appropriate for truly large datasets!

* Good to use it as a lens for understanding the various kinds of
scaling and Big Data platforms

The k-means Clustering Algorithm

Input : Data points D, Number of clusters k

Step 1: Initialize k centroids randomly

Step 2: Associate each data point in D with the nearest centroid. This will
divide the data points into k clusters.

Step 3: Recalculate the position of centroids.

Repeat steps 2 and 3 until there are no more changes in the membership of
the data points

Output : Data points with cluster memberships

https://www.youtube.com/watch?v=513Ei69140s

https://www.youtube.com/watch?v=5I3Ei69I40s

K-MEANS IN MAPREDUCE

k-means::Map

Input: Data points D, number of clusters k and centroids
1: for each data pointd € D do

2: Assign d to the closest centroid

Output: centroids with associated data points

k-means::Reduce

Input: Centroids with associated data points

1: Compute the new centroids by calculating the average of data points in
cluster

2: Write the global centroids to the disk

Output: New centroids

. ©
+
- & (@ M ._5
© W c 0 =>0 RS
ol o]0)
=N e Q O > m =
o ® P
® ©
®
o0 o0 ° o ®
® 0o ® o Y) e ¢ e il.ﬂ.
e o' 5 e a8 g .ﬂ s ®
.o.o.oo oslg Sgat" O 03 s e .--. ® sage Bes
...oo 00#@.. ..o-..--lh f .-.-....... e -....... ... ®
e, % 0" @ 88 g ap 00 80 "8
o &% © ---\\ T e e es® @
s % QL |,"" a®n ® oo ® -ooo . -.o--. -l -m
= ° : @ .. ’ .. h...."....

at

® o e

[]] @ a8 g]
e @ e I a8 g ' e e
o af s o g BBs 0" g

(] e (] (] (] (] ﬂ. [a 00 ae

2l b T A @ n¥ e, ” SF NPy o
® o ‘ ’ e g ® a ad (] a.. as e e
e '.. a 0 8 e eg a8 o8 ® g on® @

e B 4° s %0 g%e ® = s ® .ﬂ

(] e ‘ [[]
s ® o @ e g S°®Q. 9
e e 8 S

e
g 88 @8 :..:.

Sy
ee
&b
e
)

lllustration (k=5)

4 mappers

k reducers
(centroid serves as
key)

Reducers re-
compute centroids
and write to file
Requires multiple
iterations of
mapreduce to
converge!

| haven’t shown all
arrows in figure,
but potentially all
mappers send data
to all reducers (can
you think of an
exception?)

What can go wrong?

Think about specific examples....

