Conditional Probability

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

$$P(X | Y)P(Y) = P(X,Y)$$

$$P(X \mid Y)P(Y) = P(Y \mid X)P(X)$$

Bayes Rule

$$P(cause \mid effect) = \frac{P(effect \mid cause)P(cause)}{P(effect)}$$

P(cause): prior probability of cause

P(cause | effect): posterior probability of cause.

P(effect | cause): likelihood of effect

Prior ∝ posterior × likelihood

 $P(cause \mid effect) \propto P(effect \mid cause)P(cause)$

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

P(h): prior probability of hypothesis

 $P(h \mid D)$: posterior probability of hypothesis.

 $P(D \mid h)$: likelihood of data, given hypothesis

Prior ∞ posterior × likelihood

$$P(h \mid D) \propto P(D \mid h)P(h)$$

$$\operatorname{argmax}_{h} P(h \mid D)$$

$$= \operatorname{argmax}_{h} \frac{P(D \mid h)P(h)}{P(D)}$$

$$= \operatorname{argmax}_{h} P(D \mid h)P(h)$$

P(h): prior probability of hypothesis

 $P(h \mid D)$: posterior probability of hypothesis.

 $P(D \mid h)$: likelihood of data, given hypothesis

Maximum Likelihood

We assume a uniform prior P(h). We then choose the hypothesis that assigns the highest likelihood to the data

$$h_{ML} = argmax_h P(D|h)$$

$$P(X \mid \mathbf{D}) = P(X \mid h_{ML})$$

This is commonly used in machine learning.

Bayes Nets

A Bayes Net defines a joint distribution $P(X_1...X_n)$ over a set of random variables $X_1...X_n$

Using the chain rule, we can factor $P(X_1...X_n)$ into a product of n conditional distributions:

$$P(X_1...X_n) = \prod_i P(X_i | X_1...X_{i-1}).$$

A Bayes Net makes a number of (conditional) independence assumptions:

$$P(X_1...X_n) =_{def} \prod_i P(X_i | Parents(X_i) \subseteq \{X_1...X_{i-1}\})$$

ADVANCED PROBABILITY, MAXIMUM LIKELIHOOD AND BAYES NETS

Learning Bayes Nets

Parameter estimation: Given some data D over a set of random variables X and a Bayes Net (with empty conditional probability tables or CPTs) estimate the parameters (= fill in the CPTs) of the Bayes Net.

Structure learning: Given some data D over a set of random variables X, find a Bayes Net (define its CPTs) and estimate its parameters.

Let's look at an example

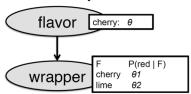
Given data \mathbf{D} , we want to find the parameters that maximize $P(\mathbf{D} \mid \theta)$.

We have a data set with N candies. c are cherry. l = (N-c), are lime. Parameter θ = probability of cherry

Maximum likelihood estimate: $\theta = c/N$

Now the candy has two kinds of wrappers (red or green).

The wrapper is chosen probabilistically, depending on the flavor of the candy.



Out of N candies, c are cherry. r_c are cherry with a red wrapper, r_l are lime with a red wrapper

The likelihood of this data set:

$$P(d \mid \theta, \theta_1, \theta_2) = \theta^{c} (1-\theta)^{N-c} \theta_1^{rc} (1-\theta_1)^{c-rc} \theta_2^{rl} (1-\theta_1)^{(N-c)-rl}$$

The log likelihood of this data set:

$$L(d \mid \theta, \theta_{1}, \theta_{2}) = [c \log\theta + (N-c)\log(1-\theta)] + [r_{c} \log\theta_{1} + (c-r_{c})\log(1-\theta_{1})] + [l_{c} \log\theta_{2} + (N-c-l_{c})\log(1-\theta_{2})]$$

The ML parameter estimates:

$$\theta = c/N$$
 $\theta_1 = r_c/c$ $\theta_2 = r_1/(N-c)$