Big data

Relevant to all predictive analytics, including text



The Phenomenon of Big Data
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“Data are becoming the new raw material of business: Economic input is
almost equivalent to capital and labor”

-<<Economist>>, 2010

“Information will be ‘the 21th Century oil.” - Gartner company, 2010



Horizontal vs. Vertical Scaling

Horizontal Scaling Vertical Scaling



Put differently

To scale more, Add more RAM, CPU,
Memory to the one existing machine

To scale more: Add more machines to
existing group of distributed system

Vertical Scaling

Horizontal Scaling



More precisely,

* Horizontal scaling: Horizontal scaling involves distributing the
workload across many servers which may be even commodity
machines. It is also known as “scale out” , where multiple
independent machines are added together in order to improve the
processing capability. Typically, multiple instances of the operating
system are running on separate machines.

 Vertical scaling: Vertical Scaling involves installing more processors,
more memory and faster hardware, typically, within a single server. It

is also known as “scale up” and it usually involves a single instance of
an operating system.



Examples

* Horizontal scaling: https://simplicable.com/new/horizontal-scale
* Load balancing, cloud databases, service architecture...
* Also, peer-to-peer networks, MapReduce/Hadoop...

e Vertical scaling: relational databases mostly use it (e.g., Oracle, but
also MySQL and Amazon RDS), also advanced kinds of neural network
training using lots of GPUs, HPC clusters, multicore CPUS, FPGAs...


https://simplicable.com/new/horizontal-scale

A comparison of advantages and drawbacks of horizontal and vertical scaling

Scaling Advantages Drawbacks
Horizontal scaling = Increases performance in small =>» Software has to handle all the data
steps as needed distribution and parallel processing complexities

=>» Financial investment to upgrade  => Limited number of software are available that
is relatively less can take advantage of horizontal scaling

=> Can scale out the system as much
as needed

Vertical scaling =>» Most of the software can easily =>» Requires substantial financial investment
take advantage of vertical scaling

=> Easy to manage and install =>» System has to be more powerful to handle
hardware within a single machine future workloads and initially the additional
performance in not fully utilized

=> It is not possible to scale up vertically after
a certain limit

Source: A survey on platforms for big data analytics, Singh and Reddy



Case study: MApReduce



MapReduce and Hadoop

* MapReduce is a ‘framework’ for embarrassingly parallel
programming

* Popularized in the article by Google researchers Dean and Ghemawat
(https://static.googleusercontent.com/media/research.google.com/e

n//archive/mapreduce-osdi04.pdf)
* Highly recommended reading

* Implemented as Apache Hadoop, available on all cloud platforms!



https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf

Best illustrated through an example

* (But to truly understand, you must go through the first three pages of
the linked paper)

* Example problem: Suppose we wanted to count the number of
occurrences of each word in a large collection of documents



MapReduce ‘hello world’: word counting in
large corpus

map (String key, String wvalue):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator wvalues):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));
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CLASSIC MAPREDUCE 101 EXAMPLE: WORDCOUNT

https://dzone.com/articles/word-count-hello-

word-program-in-mapreduce



https://dzone.com/articles/word-count-hello-word-program-in-mapreduce

Notes

* Splitting —splitting parameter can be anything, e.g. splitting by space, comma,
semicolon, or even by a new line (‘\n’).

* Mapping — takes a set of data and converts it into another set of data, where
individual elements are broken down into tuples (Key-Value pair)

* Intermediate splitting/partitioning: from
https://hadoop.apache.org/docs/r1.2.1/mapred tutorial.html#Partitioner :
Partitioner controls the partitioning of the keys of the intermediate map-
outputs. The key (or a subset of the key) is used to derive the partition,
typically by a hash function. The total number of partitions is the same as the
number of reduce tasks for the job. Hence this controls which of
the m reduce tasks the intermediate key (and hence the record) is sent to for
reduction.

* Reduce — group by key

* Combining — The last phase where all the data (individual result set from each
cluster) is combined together to form a result.


https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Disadvantages

* Can be very complex (this can, and does, impede adoption in more
conservative or non-technical organizations)
* Only suited for certain kinds of problems (shared-nothing parallelism)
e Can you think of problems that it’s not suited to?

 Slower than a vertical cluster because of distribution of data, latency

and processing speed
* Apache Spark was basically invented to deal with this problem

* Hadoop only ensures that the data job is complete, but it’s unable to
guarantee when the job will be complete

* Hadoop can encounter security issues (mainly because it’s written in

Java)
» Kerberos authentication supported by Hadoop is hard to manage

* Real-time and iterative processing are not feasible



Hadoop ‘stack’

Data warehouse

SQL-like language

Realtime
computation

(Pig Latin) Big-data store* system
\ 4
Hive Pig
Hbase Storm
Hadoop MR
Hadoop YARN
HDFS, S3, ... <«———— Resource manager

+——— Storage/file system

*Modeled after Google BigTable: https://research.google/pubs/pub27898/



https://research.google/pubs/pub27898/

Apache Spark™ is a unified analytics engine for large-scale data processing.

Speed
Run workloads 100x faster.

Apache Spark achieves high performance for both batch and streaming
data, using a state-of-the-art DAG scheduler, a query optimizer, and a
physical execution engine.

Ease of Use

Wirite applications quickly in Java, Scala, Python, R,
and SQL.

Spark offers over 80 high-level operators that make it easy to build parallel
apps. And you can use it interactively from the Scala, Python, R, and SQL
shells.

Generality
Combine SQL, streaming, and complex analytics.

Spark powers a stack of libraries including SQL and DataFrames, MLIib for
machine learning, GraphX, and Spark Streaming. You can combine these
libraries seamlessly in the same application.

Runs Everywhere

Spark runs on Hadoop, Apache Mesos, Kubermetes,
standalone, or in the cloud. It can access diverse data
Sources.

You can run Spark using its standalone cluster mode, on EC2, on Hadoop
YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache

Cassandra, Apache HBase, Apache Hive, and hundreds of other data
sources.
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Read JSON files with automatic schema inference

Logistic regression in Hadoop and Spark

spark.read.json("logs.json")

.where("age > 21")
.select("name.first").show()

Spark's Python DataFrame API
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Latest News
Spark 3.0.0 released (Jun 18, 2020)

Spark+Al Summit (June 22-25th,
2020, VIRTUAL) agenda posted (Jun
15, 2020)

Spark 2.4.6 released (Jun 05, 2020)
Spark 2.4.5 released (Feb 08, 2020)
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Download Spark

Built-in Libraries:

SQL and DataFrames
Spark Streaming

MLlib (machine learning)
GraphX (graph)

Third-Party Projects
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Original author(s)
Developer(s)
Initial release

Stable release

Repository
Written in
Operating system

Available in

Matei Zaharia
Apache Spark

May 26, 2014; 6 years
agor

3.0.0 / June 18, 2020;
2 months ago

Spark Repository &
Scalal'l

Microsoft Windows,
macOS, Linux

Scala, Java, SQL, Python,
R

Type Data analytics, machine
learning algorithms

License Apache License 2.0

Website spark.apache.orgi? ¢



