ISE 599
Special Topics Applied
Predictive Analytics

Mayank Kejriwal
Research Assistant Professor/Research Lead
Department of Industrial and Systems Engineering
Information Sciences Institute
USC Viterbi School of Engineering
kejriwal@isi.edu



mailto:kejriwal@isi.edu

Linear regression



Given some data {(x,y)...}, with x, y € R,
find a function f(x) = w;Xx + w, such that f(x) =y.




Squared Loss

We want to find a weight vector w which
minimizes the loss (error) on the training

data {(Xl,yl)- . °(XN9 YN)}
L(W) = ELz(fw(xi)’yi)

= i(y, _fw(x,'))z



We need to minimize the loss on the training
data: w = argmin,, Loss(f,,)

We need to set partial derivatives of Loss(f,,)
with respect to w1, w0 to zero.

There is a closed form solution for linear regression



Gradient Descent

In general, we won’t be able to find a closed-
form solution, so we need an iterative (local
search) algorithm.

We will start with an initial weight vector w,

and update each element iteratively in the
direction of its gradient:
w;. :=w. — o d/dw, Loss(w)






Can we use linear ‘surfaces’ to do
classification?

The input x = (x; x,)€R%is real-valued vector,
We want to learn f(x).

f(x)=0

We assume the
two classes are
linearly separable




The input x = (x, x,)€RYis real-valued vector
We want to learn f(x).

We assume the classes are linearly separable, so
we choose a linear discrimant function:
f(x)=w'x+w,
- w=(w, wyERYis aweight vector
— W, is a bias term
— -w,is also called a threshold: -w,=w-x



The weight vector w defines the orientation of the
decision boundary.

The bias term w,, defines the perpendicular
distance of the decision boundary to the origin.

X2 + X




Equivalently, redefine
x = (1, %, xq) ERM
W= (W, Wy Wg) ER
f(x)=w-x

Define C,=1C,=0

Our classification hypothesis then becomes
h,x)=1iff(x)=w-x>0
0 otherwise



Our classification hypothesis then becomes
h,x)=11ff(x)=w-x>0
0 otherwise

We can also think of h(x) as a threshold function.

h,,(x) = Threshold(w - x),
where Threshold(z)=1if z>0
0 otherwise



Learning the weights

We need to choose w to minimize
classification loss.

But we cannot compute this in closed form,
because the gradient of w is either O or undefined.

lterative solution:
— Start with initial weight vector w.

— For each example (x,y) update weights w until all items
are correctly classified.



Observations

If we classify an item (x,y) correctly,
we don’t need to change w.

If we classify an item (x,y) incorrectly,
there are two cases:

— y =1 (above the true decision boundary)
h,(x) =0 (below the true decision boundary)
We need to move our decision boundary up!

— y =0 (below the true decision boundary)
h,(x) =1 (above the true decision boundary)
We need to move our decision boundary down!



Learning the weights

Evaluating y - h(x) will tell us what to do:
—h,(x) Is correct: y - h (x) = 0 (stay!)

—If y =1, but we predict h (x) =0
y-h,(x)=1-0=1
(move up!)

— If y =0, but we predict h(x) =1
y-h (x)=0-1=-1
(move down!)



Learning the weights (initial
attempt)

lterative solution:
— Start with initial weight vector w.

— For each example (x,y) update weights w until all items
are correctly classified.

Update rule:
For each example (x,y) update each weight w;:
w, ;= w. + (y - h (X)X,



There’s a problem!

Real data is not perfectly separable.
There will be noise, and our features may not be sufficient.




Learning the weights

Observation:
When we’ve only seen a few examples, we want
the weights to change a lot.

After we’ve seen a lot of examples, we want the
weights to change less and less, because we can
now classify most examples correctly.

Solution: We need a learning rate which decays
over time.



Learning the weights
(Perceptron algorithm)

lterative solution:
— Start with initial weight vector w.

— For each example (x,y) update weights w until w has
converged (does not change significantly anymore)

Perceptron update rule (‘online’):

— For each example (x,y) update each weight w;:
w; = w; o (y - hy(x)x;
— o decays over time t (t=#examples) e.g a = n/(n+t)



Batch/Epoch Perceptron
Learning

Choose a convergence criterion (#epochs, min IAwl, ...)

Choose a learning rate a, an initial w

Repeat until convergence:
Aw =3 o errx (sum over training set holding w)

W < W + AW (update with accumulated changes)

Now it always converges, regardless of o (will influence
the rate), and whether or not training points are linearly



