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Support Vector Machines



Last time
I showed you a bunch of ‘linear’ classifiers and asked which one was best



Intuition

• We want the classifier with the decision boundary furthest away 
from any data point
• This classifier has the largest margin

• This additional requirement (bias) reduces the variance and 
consequently reduces overfitting

In short, we want the ‘maximum margin classifier’



Maximum margin decision boundary



How is this decision boundary defined?

• Two parallel hyperplanes:

• one that goes through the positive data points (y_j = +1) that are 
closest to the decision boundary, and
• one that goes through the negative data points (y_j = -1) that are 

closest to the decision boundary



Support vectors

• express the separating hyperplane in terms of the data points xj that 
are closest to the decision boundary
• such data points are known as ‘support vectors’



Primal vs. dual representation (advanced)

• Primal
• The data items x = (x1…xn) have n 

features
• The weight vector w = (w1…wn) 

has n elements
• Learning:

• Find a weight wj for each feature xj
• Classification:

• Evaluate wx

• Dual
• We can represent w as a linear 

combination of the items in the 
training data:

• Learning:
• Find a weight αj ( ≥ 0) for each data 

point xj
• This requires computing the inner 

product xixj = 〈xi xj〉between all 
data items xi xj

• Support vectors
• Set of data points xj with non-zero 

weights αj



Classifying test data (primal vs. dual)

• Primal:
• compute inner product between weight vector and test item

• Dual:
• compute inner product between support vectors and test item



We’ve been assuming linear separability so 
far, but what if it is violated?



Kernel trick

• Map data items to new 
feature space that will 
make them linearly 
separable
• In this example, we’ve 

taken the original 
variables (x1 and x2) 
and mapped them to 
functions of 
themselves to make 
the space amenable to 
linear classifiers



Kernel trick (cont’d)

• It turns out that N (independent) data points will always be linearly
separable in N-1 dimensions.

• Intuition 1: if we map each x to a point G(x) in a higher-dimensional 
feature space, the data become linearly separable!

• Intuition 2: in the dual, we compute 〈G(xi) G(xj)〉. This can often 
be computed directly as a ʻkernelʼ function K(xi, xj)


