

SPECULATIVE PLAN EXECUTION FOR

INFORMATION AGENTS

by

Greg Barish

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2003

Copyright 2003 Greg Barish

ii

Dedication

To my parents Tina and Frank,
my first and most influential teachers.

For their encouragement, understanding, and love.

iii

Acknowledgements
I would very much like to thank my thesis advisor Craig Knoblock for the many

enjoyable years of mentorship, support, and friendship. Craig has always given me
the freedom to explore my own paths towards solving a problem, encouraged me to
take chances, while at the same time challenging me to back up my claims and to
sometimes consider alternative approaches. Through him, I learned how to read
research papers as well as how to write them. His thoughts and advice greatly
influenced and improved this thesis. I am extremely grateful for his guidance and I
know that it will continue to inspire me as I work with and mentor others.

I would also like to thank the members of my thesis committee: Dr. Steven
Minton, Professor Paul Rosenbloom, Professor Cyrus Shahabi, and Professor Jean-
Luc Gaudiot. Their suggestions and comments on this work improved it
significantly.

In addition to being an excellent committee member, Steve Minton has been
both very supportive and influential since my first days as a graduate student. Steve
contributed a great deal to the design of the Theseus agent executor and had many
important comments and suggestions with regards to learning for speculative
execution. He has the unique ability to listen to a complex problem and not only
quickly understand and analyze it, but also to provide useful feedback. I have
greatly enjoyed working with him over the course of my research and have been
lucky to have his advice. I am also very excited to join him at Fetch.com.

I am very grateful for the thorough review that Paul Rosenbloom gave my
dissertation. During our meetings together, I was often amazed at how quickly Paul
was able to identify the key issues of the research. The questions he asked were
always important ones that really made me think. Along with Steve Minton, Paul
helped me to better understand the relationship between my work and past research
in speedup learning. The quality of this thesis is much improved because of his
feedback.

I have really enjoyed working with Cyrus Shahabi since my first years as a
graduate student. Back then, we spent many hours discussing, designing, and then
deploying the TheaterLoc information integration application. Later, Cyrus included
me in a research effort related to haptic data gathering and I enjoyed learning about
some of the challenges associated with immersidata data management. I am grateful
for his support and advice.

I owe many thanks to Jean-Luc Gaudiot for not only being a great committee
member, but for also playing a significant role in educating me about dataflow
architectures. His discussions with me and his class on functional programming,
dataflow computing, and multi-threaded systems allowed me to better understand
both the theoretical origins as well as the current state of the art. What he taught me
influenced the implementation of the Theseus executor in several important respects.

The Information Sciences Institute (ISI) in Marina del Rey is an outstanding
place to do research as a graduate student. While there, I was able to work on my
own research as well as integrate it into larger software systems and projects. I feel

iv
very fortunate to have been a member of the Intelligent Systems Division (ISD)
family at ISI, which is a supportive and inspiring group of researchers. As division
leader, Yigal Arens has been very accessible, thoughtful, and always supportive.
Others in ISD contributed directly to my own research. I very much appreciate
discussions with Kevin Knight on the use of transducers to generate value
predictions. I am also indebted to Yolanda Gil for her very timely and insightful
comments about my defense presentation slides.

I have had the great pleasure to work with many fine colleagues in the
Information Agents Group, including Jose-Luis Ambite, Naveen Ashish, Matthew
Ho, Salim Khan, Kristina Lerman, Martin Michalowski, Ion Muslea, Maria Muslea,
Jean Oh, Andrew Philpot, Sheila Tejada, Snehal Thakkar, and Rattapoom (Pipe)
Tuchinda. I learned a lot from them and had a great time working together. Many of
them – including Maria, Jean, Martin, Snehal, and Pipe – contributed to the
development and testing of the Theseus agent executor.

I am also very much indebted to three alumni of the group, Dan DiPasquo, Dan
Rosenberry, and Parag Samdadiya, as well as several people from Fetch
Technologies, notably Gary Hirschhorn, Cenk Gazen, and Bryan Pelz. All
contributed to the design and development of Theseus and I really enjoyed working
with them. In addition, I would like to thank Claude Nanjo from Fetch for useful
feedback on parts of this thesis.

Other friends in graduate school made life on campus interesting and I enjoyed
getting to know them over the years as well as celebrating and lamenting grad school
together. Thanks to Yi-Shin Chen, Chad Jenkins, Mohammad Kohladozhuan, Jay
Modi, Joonseok Park, Jae Wook Shin, Nan-Kyung Suh, and Didi Yao.

While a graduate student, I was lucky to receive the Intel Corporation Graduate
Fellowship. In addition to financial support, Intel provided me with a first-class
laptop computer. That computer increased my productivity immensely and I would
like to thank Intel for donating such a wonderfully useful gift that had a real impact
on my research.

Before graduate school, I was employed at Oracle Corporation and
Healtheon/WebMD Corporation. Many people I worked with or for inspired me to
become a better engineer and I believe this better prepared me for some of the
challenges I faced during my PhD research. These people included Sarah Groves
Hobart, Jon Veach, Curt Bennett, Mark Moore, Kittu Kolluri, and Theron Tock.

While at UCLA, I studied Cognitive Science. Some of my earliest interests in
AI stem from classes I took and people I met in this program. In particular, I would
like to thank Keith Holyoak and Barbara Spellman for giving me an opportunity to
work on their semantic priming research as an undergraduate.

I was fortunate to spend many of my pre-college years with friends Sven, Justin,
and Tom, who all shared my interests in computers and video games. I have vivid
memories of typing in programs from Compute magazine, desperately trying to get
some games on cassette tape to load, and later beginning to design our own games.
Those were very enjoyable years that played a role in where I am today.

v
To my wonderful family – Mom, Dad, Heather, Lisa, Chris, Jack, Zoey, and

Max. They have always been with me, every step of the way. Their love, support,
and advice over the years means more to me than I know how to express.

Finally, to my dear wife Seong Rim. She was always interested in my work,
understood the nights and weekends I spent writing code and running experiments,
put up with my San Francisco to Los Angeles commute, and was there with love and
inspiration every day just the same.

This material is based upon work supported in part by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research Laboratory under con-
tract/agreement numbers F30602-01-C-0197 and F30602-00-1-0504, in part by the
Air Force Office of Scientific Research under grant numbers F49620-01-1-0053 and
F49620-02-1-0270, in part by the United States Air Force under contract number
F49620-02-C-0103, in part by gifts from the Intel and Microsoft Corporations. The
U.S. Government is authorized to reproduce and distribute reports for Governmental
purposes notwithstanding any copy right annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person connected with them.

vi
Contents

Dedication ... ii

Acknowledgements ..iii

List of Tables ... ix

List of Figures ... x

Abstract ..xiii

1. ... 1Introduction

1.1 The Challenge of Performance .. 1

1.2 Motivating example... 4

1.3 Approach.. 7
1.3.1 Streaming dataflow plan execution.. 7
1.3.2 Speculative plan execution... 9
1.3.3 Learning to predict data for speculative plan execution 10

1.4 Thesis statement .. 11

1.5 Contributions... 11

1.6 Thesis organization ... 12

2. ... 13Efficient execution of information agent plans

2.1 The nature of information agent plans ... 13
2.1.1 Example Web information gathering tasks .. 14

2.2 Background.. 15
2.2.1 Dataflow Computing.. 15
2.2.2 Web-based information gathering and integration... 17

2.3 An Expressive and Efficient Agent Plan Language ... 18
2.3.1 Plan representation... 18
2.3.2 Data structures.. 21
2.3.3 Plan Operators.. 22
2.3.4 Subplans ... 28

2.4 Using the plan language to build information agents .. 30
2.4.1 The CarInfo agent plan... 30
2.4.2 Homeseekers: a more complicated type of information agent......................... 30
2.4.3 The Homeseekers agent plan ... 34

2.5 An efficient plan execution architecture ... 35
2.5.1 Dataflow executor .. 36

vii
2.5.2 Data streaming ... 39

2.6 Experimental results ... 41
2.6.1 The Theseus information agent system.. 42
2.6.2 Hypothesis 1: Efficient information agents.. 42
2.6.3 Hypothesis 2: Achieving certain information gathering goals more easily 46
2.6.4 Hypothesis 3: Increased expressivity does not impact performance 48

2.7 Summary.. 50

3. .. 51Speculative Plan Execution

3.1 Exceeding the dataflow limit with speculative plan execution.......................... 52

3.2 Speculation and confirmation .. 53
3.2.1 Safety and fairness ... 55
3.2.2 Optimistic performance benefits .. 56

3.3 Achieving better speedups.. 56
3.3.1 Cascading speculation.. 57
3.3.2 Simultaneous speculation... 62
3.3.3 Leveraging antecedent and subsequent functional dependencies 63

3.4 Automatic plan transformation ... 66
3.4.1 The set of candidate transformations ... 66
3.4.2 Heuristics to reduce the number of possible transformations 67
3.4.3 The SPEC-REWRITE algorithm ... 68

3.5 Experimental results ... 71
3.5.1 Web agent plans ... 72
3.5.2 Database query plans.. 83

3.6 Summary.. 90

4. ... 91Value Prediction for Speculative Execution

4.1 Value prediction strategies ... 91
4.1.1 Caching .. 92
4.1.2 Classification.. 93
4.1.3 Transduction... 94
4.1.4 Comparison of techniques.. 97

4.2 A unifying learning algorithm ... 97
4.2.1 Value Transducers.. 97
4.2.2 Learning templates of string sets.. 98
4.2.3 Learning hint transducers... 99
4.2.4 Detailed example of predictor learning.. 100

4.3 Experimental results ... 103

viii
4.3.1 The learning cycle .. 104
4.3.2 Measurements of predictor accuracy ... 106
4.3.3 Measurements of predictor space-efficiency ... 108
4.3.4 Discussion .. 110

4.4 Summary.. 113

5. ... 115Related Work

5.1 Expressive and efficient plan execution .. 115
5.1.1 Network query engines .. 115
5.1.2 General purpose plan execution systems ... 117
5.1.3 Other dataflow computing languages... 117

5.2 Speculative execution.. 119
5.2.1 Execution based on partial and approximate results 119
5.2.2 Executing anticipated actions in advance .. 121
5.2.3 Prefetching data.. 122
5.2.4 Speculative execution at the operating system and database level 123
5.2.5 Speculative execution at the hardware level .. 123

5.3 Value prediction .. 124
5.3.1 Value prediction as speedup learning .. 124
5.3.2 Other techniques for value prediction.. 125
5.3.3 Other approaches to learning transducers .. 126

6. .. 128Conclusion and Future Work

6.1 Limitations ... 129

6.2 Future Work.. 130
6.2.1 Learning to choose good values for speculative overhead............................. 130
6.2.2 Classifier compression / probabilistic classification...................................... 131
6.2.3 SMT Benchmarking ... 131
6.2.4 Integrating additional value prediction techniques .. 132

Bibliography ... 134

ix

List of Tables

Table 2.1a: Data gathering operators ... 23
Table 2.1b: Data manipulation operators ... 24
Table 2.1c: Data storage operators... 24
Table 2.1d: Conditional execution operator... 24
Table 2.1e: Asynchronous notification operators .. 24
Table 2.1f: Task administration operators ... 24
Table 2.1g: Extensibility operators .. 24
Table 2.2: The benefits of streaming dataflow for three other plans 44
Table 2.3: Data sources used in (Raman and Hellerstein 2002) 48
Table 2.4: Query used by (Raman and Hellerstein 2002).. 49
Table 3.1: Optimistic execution times for CarInfo flows shown in Figure 3.6 58
Table 3.2: Independent probabilities of each speculative opportunity 61
Table 3.3: Likelihood of various fcar execution schedules..................................... 61
Table 3.4: Execution schedule probability and normal/contributing performance.. 61
Table 3.5: Operator execution times in CarInfo... 80
Table 3.6: Path execution times in CarInfo.. 80
Table 3.7: Path execution times after transformation for speculative execution 80
Table 4.1: Cache for the Edmunds wrapper in CarInfo after one example.............. 92
Table 4.2: Cache for Edmunds based on three examples... 93
Table 4.3: Comparing value prediction strategies ... 97
Table 4.4a: The sequence of source examples .. 101
Table 4.4b: The sequence of target examples ... 101
Table 4.5: VTs for the ConsumerGuide search predictor after two examples....... 102
Table 4.6: VTs for the ConsumerGuide search predictor after three examples..... 103
Table 4.7: VTs for the ConsumerGuide search predictor after four examples 103
Table 4.8: Summary of predictors learned... 105
Table 4.9: Average number of examples required to learn 108
Table 4.10a: Space efficiency of classification-based predictors vs. caches 109
Table 4.10b: Space efficiency of transduction-based predictors vs. caches 110

x

List of Figures

Figure 1.1: Von Neumann vs. dataflow execution... 2
Figure 1.2: Non-streaming vs. streaming execution .. 3
Figure 1.3a: Edmunds car search results page ... 5
Figure 1.3b: NHTSA safety ratings page... 5
Figure 1.3c: ConsumerGuide car reviews page ... 6
Figure 1.4: The CarInfo plan.. 6
Figure 1.5: Execution time chart for CarInfo... 7
Figure 1.6 Dataflow-style version of CarInfo information agent plan....................... 8
Figure 1.7 Execution time chart for CarInfo under streaming dataflow.................... 8
Figure 1.8 Upper bound execution time chart of CarInfo for a single CPU 9
Figure 1.9 Optimistic time chart for CarInfo under speculative execution.............. 10
Figure 2.1: Graph form of example_plan... 20
Figure 2.2: Text form of example_plan ... 21
Figure 2.3: The Null operator... 25
Figure 2.4: Task scheduling subsystem ... 27
Figure 2.5: Text form of parent_plan... 28
Figure 2.6: Graph form of persistent_diff plan .. 29
Figure 2.7a: The query_search_engine plan .. 30
Figure 2.7b: The recursive subplan gather_and_follow... 30
Figure 2.8: Text representation of CarInfo agent plan... 31
Figure 2.9a: Homeseekers search screen ... 32
Figure 2.9b: Homeseekers results list screen ... 33
Figure 2.9c: Homeseekers detail page screen .. 33
Figure 2.10: Abstract Homeseekers plan ... 34
Figure 2.11a: Homeseekers agent plan get_houses ... 35
Figure 2.11b: Homeseekers recursive subplan get_urls... 35
Figure 2.12: Detailed architecture of executor... 38
Figure 2.13a: Text form of the Homeseekers get_houses plan................................ 42
Figure 2.13b: Text form of the Homeseekers get_urls recursive subplan 43
Figure 2.14: Average Homeseekers performance results .. 44
Figure 2.15: Theseus vs. theoretical network query engine for Homeseekers......... 45
Figure 2.16: Graph form of the plan to monitor Homeseekers 46
Figure 2.17: Comparing Theseus and Telegraph performance................................ 50
Figure 3.1: The CarInfo plan, modified for speculative execution.......................... 54
Figure 3.2: The Speculate operator .. 54
Figure 3.3: The Confirm operator .. 55
Figure 3.4: A longer sequence of operators ... 57
Figure 3.5: Cascading speculation of the sequence in Figure 3.4............................ 57
Figure 3.6: CarInfo modified for cascading speculation.. 58
Figure 3.7: Short FD example flow ... 63
Figure 3.8: Flow in Figure 3.7 modified for speculative execution......................... 64

xi
Figure 3.9: Leveraging the determinism of the Format operator 64
Figure 3.10: Leveraging the determinism of the Project operator 65
Figure 3.11: Sample plan that meets (i), (ii), and (iii) ... 66
Figure 3.12a: The SPEC-REWRITE algorithm... 69
Figure 3.12b: The GET-MEP-INFO helper function... 70
Figure 3.12c: The GET-LHS-INFO helper function.. 70
Figure 3.12c: The GET-RHS-INFO helper function ... 71
Figure 3.12d: The CALC-FLOW-TIMES helper function...................................... 71
Figure 3.13a: Congress.org Web page ... 73
Figure 3.13b: Yahoo News Web page ... 73
Figure 3.13c: Open Secrets Web page ... 74
Figure 3.14a: The RepInfo agent plan.. 74
Figure 3.14b: The modified RepInfo agent plan.. 74
Figure 3.15a: Yahoo Movies web page ... 75
Figure 3.15b: Dine.com web page ... 75
Figure 3.15c: TIGER Mapping Service web page ... 76
Figure 3.16a: The TheaterLoc agent plan .. 76
Figure 3.16b: The modified TheaterLoc agent plan... 76
Figure 3.17a: Delta Airlines web page... 77
Figure 3.17b: US Naval Time Details web page ... 77
Figure 3.18a: The FlightStatus agent plan ... 78
Figure 3.18b: The modified FlightStatus agent plan.. 78
Figure 3.19a: MarketWatch profile page ... 79
Figure 3.19b: MarketWatch industry page... 79
Figure 3.20a: The StockInfo agent plan... 79
Figure 3.20b: The modified StockInfo agent plan ... 79
Figure 3.21a: Performance improvement of time to first tuple................................ 81
Figure 3.21b: Performance improvement of time to last tuple 81
Figure 3.22a: Speedup increases related to the time to first tuple 82
Figure 3.22b: Speedup increases related to the time to last tuple 82
Figure 3.23: Converting a schema to a distributed database.................................... 84
Figure 3.24: SQL for TPC-H query #17 .. 85
Figure 3.25: The Oracle EXPLAIN PLAN for TPC-H query #17 85
Figure 3.26: Dataflow graph of the explained plan.. 85
Figure 3.27: Theseus plan based on dataflow graph .. 86
Figure 3.28a: Average speedup of TPC-H queries (s=0.2, concurrency=5)............ 87
Figure 3.28b: Average speedup of TPC-H queries (s=0.6, concurrency=5)............ 87
Figure 3.28c: Average speedup of TPC-H queries (s=0.2, concurrency=100)........ 87
Figure 3.29: Speedups obtained for TPC-H queries vs. theoretical maximums 88
Figure 4.1: Full review URL transduction is part extraction, part production......... 95
Figure 4.2: Value transducer for the full-review URL in CarInfo 96
Figure 4.3: The LEARN-VALUE-TRANSDUCER algorithm 98
Figure 4.4: The LEARN-SD-TEMPLATE algorithm ... 99
Figure 4.5: The LEARN-HINT-TRANSDUCER algorithm 100
Figure 4.6: Sample hint transducer for the names example 100

xii
Figure 4.7: The Phone Info agent plan... 104
Figure 4.8: Speculative version of PhoneInfo.. 104
Figure 4.9: Accuracy of Carsummary, Replist, and Phonestate classifiers 107
Figure 4.10: Frequency of “no predictions possible” by Carsummary.................. 108
Figure 4.11: Impact of learning on CarInfo agent execution performance............ 111
Figure 4.12: Impact of learning on RepInfo agent execution performance 112
Figure 4.13: Impact of learning on PhoneInfo agent execution performance........ 112
Figure 5.1: Basic multiplexer logic.. 118
Figure 5.2: Verilog module that represents the multiplexer logic in Fig 5.1 119

xiii

Abstract

While information agents make it possible to gather, combine, and process data on
networks like the Internet, execution performance often suffers due to remote source
latencies. Agents do not control remote sources and must wait an undetermined
amount of time for a query to be answered. The problem becomes worse when an
agent plan requires that the answers provided by one source be used as a basis for
querying another source.

In this dissertation, I make three related contributions that address these
problems and significantly improve information agent performance. The first is an
expressive agent plan language and a streaming dataflow execution system. The
combination of both allows agent plans to be described and efficiently executed,
realizing the maximum parallelism allowable by the data dependencies in the plan.
My experimental results confirm that execution is efficient and that the plan
language is expressive enough to support tasks beyond those supported by traditional
network query engines, such as recursive information gathering and monitoring.

A second contribution is a strategy for speculative plan execution within a
streaming dataflow architecture. Under speculative execution, certain operators are
issued ahead of schedule, using data predicted from experience. Through this
technique, remaining costly data dependencies between I/O-bound operators can be
broken, leading to parallelism beyond the normal dataflow limit. My experimental
results demonstrate that speculative execution can lead to significant speedups in
both Web agent plans as well as certain types of queries for distributed database
systems.

A third contribution is a technique for learning how to predict data for
speculative plan execution. This approach combines caching with classification and
transduction as a means for predicting future values from prior hints. Classification
and transduction are more space efficient than caching and can improve the accuracy
of prediction because each is capable of responding to new hints. The resulting
improved accuracy increases the utility of speculative execution and leads to greater
average plan speedups. My experimental results for a set of Web agent plans
confirm these space-efficiency and accuracy claims.

1

Chapter 1

Introduction

As the twenty-first century begins, there is an enormous amount of information
publicly accessible through electronic means. The availability of digital information
networks and the ubiquity of connectivity allows people to easily access terabytes of
data on almost every conceivable subject. People now regularly use networks like
the Internet for a variety of daily tasks – from reading the daily newspaper, to
booking travel reservations, enrolling in university courses, browsing encyclopedias,
searching classified ads, donating funds to relief organizations, and monitoring stock
portfolios. The enabling technology for all of this consists of a handful of
communication standards and tens of thousands of internetworking devices, linking
together data across all sorts of national and international boundaries.

Ever since their emergence, there has been great interest in the creation of
technology capable of automatically querying information networks. In part, this is
due to the vast amount of information online and the tediousness involved in some of
the tasks that one would like to accomplish. In recent years, an intersection of the AI
and database research communities have developed approaches to information
integration, the combining and processing of data from multiple sources. Among
other things, this research has shown that it is possible to query multiple
heterogeneous sources through a unified view, to extract data from semi-structured
sources such as Web sites, to deal with the unpredictability of remote sources, and to
resolve semantic relationships between similar data from different sources.

Information integration techniques are often used by information agents,
computer programs that gather, combine, and process data from one or more network
sources, possibly on some regular schedule. Agents execute information gathering
plans that can be more complicated than traditional database query plans. These
plans can involve monitoring sources, interacting with local databases, providing
non-interactive periodic feedback to users, and interacting with other agents. For
example, it is possible to build an agent that uses online sources to continuously
monitor travel status (Ambite et al. 2002), coordinate project activities (Chalupsky et
al. 2001), or search for houses for sale that meet a certain search criteria (Barish and
Knoblock 2002).

1.1 The Challenge of Performance
An ongoing challenge of information agent research has been improving plan
execution performance. In general, performance is determined by the time it takes to
execute various plan operators and the ordering constraints between these operators.

2
Typically, the slowest operations are those that involve gathering data from a remote
source. During such instances, the agent is generally waiting for data and has little
computational demands. Remote source latencies are generally greater than the time
it takes to complete processor-intensive operations, such as filtering data. As a
result, agent plans are often I/O-bound.

While an agent is waiting for data, local resources are being wasted. For
example, a typical desktop computer today in an office environment contains a 2.66
GHz processor, 256MB of RAM, and has access to 10Mbps bandwidth. When an
agent waits for data from a remote source, most of these resources – such as the
processor, which can execute over 4 billion integer operations per second – sit idle.

The cost of wasting resources while waiting for data will only get worse. While
Moore’s Law continues to forecast the periodic doubling of computing power
capable by a CPU, a trend expected to continue until at least 2013 (Moore 2003), the
speed of light is not changing. Fundamental principles of physics ensure that it will
always take the same minimum amount of time for a packet to travel from point A to
point B.

One strategy to combat the network latencies inherent in information gathering
plans is to extract as much parallelism as possible from the plan during execution.
For example, plan operations that are independent can be scheduled in parallel
through dataflow-style execution. In the dataflow model, the availability of data
schedules which instruction(s) to execute next and, in theory, supports concurrent
execution. Dataflow computing stands in contrast to the more well-known von
Neumann model, which schedules execution using a program counter and does not,
in theory, support concurrency.

Figure 1.1 illustrates the difference between the dataflow and von Neumann
approaches in terms of computing the set of instructions required to process the
expression ((a+b)*(b*c)). The program requires the multiplication of two
independent additions. Under the von Neumann model of execution, the ADD
operations must be executed sequentially, even though they are independent of each
other, because a program counter schedules only one instruction at a time. In

((a+b) * (c+d))

ADD

ADD

MUL

ADD ADD

MUL

a b c d a b c d

Von Neumann Dataflow

Figure 1.1: Von Neumann vs. dataflow execution

3
contrast, since the availability of data drives the scheduling of a dataflow machine,
both ADD operations can be executed as soon as their input dependencies are
fulfilled – thus, in theory, both operations can be executing at the same time.

A second method to extract parallelism from execution is to pipeline or stream
data between plan operators that are part of the same sequential flow. Streaming
allows multiple operators to concurrently process a single set of data. Figure 1.2
shows the difference between non-streaming and streaming for a single producer
and a single consumer that process a small set of data. The figure shows how a non-
streaming mode requires that all of the elements in a logical set of data be processed
before transmitting results to any consumers. As a result, consumer operators are
often idle, waiting for producers to complete processing of the entire set. In contrast,
a streaming mode enables producers to emit data as soon as it is processed. Thus,
consumers like Op2 can begin subsequent processing as soon as possible.

In summary, dataflow execution maximizes the degree of horizontal parallelism
available while data streaming maximizes the degree of vertical parallelism during
execution. By employing these strategies, an executor can process as many
independent operations in parallel on the available data, as soon as that data becomes
available.

Despite the benefits of streaming dataflow, agent plan execution can still remain
very slow because of data dependencies between remote sources. For example, a
plan that gathers reviews of automobiles in a certain price range often must first
query the source that provides the set of automobiles in the price range specified and
then query the source that provides automobile reviews. The minimum execution
time of this plan is the sum of the time required by a single query to each source.
More complex plans usually have longer chains of dependencies. Worse, if even a
single source in such a chain is slow, execution of the rest of the plan bottlenecks
until the latent source responds. Such data dependencies between sources are also
known as binding patterns.

Op1 Op2

Op1 Op2

Op1 Op2

Op1 Op2

Op1 Op2

Op1 Op2

Op1 Op2

Op1 Op2

Non-streaming Streaming

= has been processed by operator
but not yet emitted

Time

Figure 1.2: Non-streaming vs. streaming execution

4
In this thesis, I introduce an novel approach to agent execution that addresses the

ongoing problem of poor performance and in particular the penalties of sequential
execution due to binding patterns. My approach, speculative plan execution,
combines streaming dataflow execution with a new type of parallelism – speculative
parallelism – that executes plan operators ahead of their normal schedule.
Speculative plan execution relies on knowledge gained from prior plan executions to
predict future executions. In particular, it observes the relationships between the
data consumed and produced by I/O-bound operators and reasons about data likely
produced from future executions of those operators. It then uses the predicted data to
trigger the early execution of operators not yet scheduled. When speculation is
correct, plan speedups can be significant, up to a factor roughly equal to the length of
the longest, most latent dataflow within a plan. To increase the likelihood that
predictions made will be accurate, I also introduce an approach to value prediction
that combines machine learning with caching to issue predictions under a variety of
conditions, even when the hint driving prediction has not been seen and when the
value to be predicted has never been previously predicted.

1.2 Motivating example
To better understand the challenge of efficient information agent execution, and to
set the stage for an overview of the approach this thesis proposes, let us consider the
details of an example Web information agent plan.

CarInfo is an agent that collects reviews and safety ratings of used cars that meet
a specific set of user search criteria. The criteria is composed of car type, year of
original production, and a desired price range. The user also specifies a list of car
makers to avoid. Once it receives its input data, CarInfo uses a collection of Web
sources to gather the appropriate results. In particular, three different Web sources
are used:

• Edmunds.com, to get a list of used car models meeting the initial search
criteria.

• ConsumerGuide.com, to obtain the reviews for those models.
• NHTSA.gov (National Highway Traffic Safety Association), for crash

safety ratings of those models.

The Web pages for each of these sources is shown in Figures 1.3a-c. CarInfo
first gathers the list of cars from Edmunds, filters out those automakers that the user
would like to avoid (Edmunds does not allow this to specified through its search
interface), gathers the safety reports from NHTSA for the filtered set of cars,
combines this result with reviews gathered at ConsumerGuide and then outputs the
results. The plan for CarInfo that performs these operations is shown in Figure 1.4.

5

Figure 1.3a: Edmunds car search results page

Note that to gather the detailed car reviews from ConsumerGuide, additional
navigation is required. CarInfo must first query ConsumerGuide through its search
interface to find a pointer to the summary page for that car. It then queries the
summary page to find the detailed review page. Finally, it gathers the review text
from the detailed review page. Engaging in additional navigation in order to extract
the desired information is a common subtask for Web agents in particular, since Web
sites are designed to be visually browsed and may not support the direct querying of
all the information they provide.

Figure 1.3b: NHTSA safety ratings page

As a detailed example of CarInfo execution, consider the case where the initial
search criteria is (Midsize sedan, year 2002 model, minimum price $4000, maximum
price $12000) and the cars to avoid are those by the auto maker (Oldsmobile).

6

During execution, the first Wrapper operator returns (Oldsmobile Alero, Dodge
Stratus, Pontiac Grand Am, Mercury Cougar). From these, filtering out of
Oldsmobile models results in the subset (Dodge Stratus, Pontiac Grand Am,
Mercury Cougar). The safety reports and full reviews of these cars are then queried.
For example, for the first tuple (Dodge Stratus), the URL for the summary review of
that car is (http://cg.com/summ/20812.htm) and the URL for the full review is
(http://cg.com/full/20812.htm). Once at the full review URL, the review text can be
extracted and joined with the safety report.

The CarInfo plan is one common type of information agent plan. Similar plans
that extract data from two or more distinct sources and then combine them together
are common throughout the literature (Friedman et al. 1999; Ives et al. 1999; Barish
et al. 2000; Barish and Knoblock 2002). Like CarInfo, these plans also involve
extracting and combining data from multiple sources using relational-style
operations.

To understand the performance challenges of a plan like CarInfo, let us calculate
the non-optimized execution time of the plan shown in Figure 1.4. As the figure
shows, only one operator is executed at a time. Each operator receives its input from
the previous operator (or plan input), performs its function on the set of input data,
and routes the set of results to its consumer operator (or plan output).

Figure 1.3c: ConsumerGuide car reviews page

WRAPPER
ConsumerGuide

Search

search
criteria

WRAPPER
ConsumerGuide

Summary

WRAPPER
ConsumerGuide

Full Review

WRAPPER
Edmunds
Search

SELECT
maker !=

"Oldsmobile"

WRAPPER
NHTSA
Search

result

Figure 1.4: The CarInfo plan

7
Let us assume that each Wrapper operation takes 1000ms per tuple and all other

CPU-bound operations (i.e., Select) take 100ms per tuple. For the search criteria
given earlier, the baseline execution time is (1000 + 4*100 + 3*1000 + (3*1000 +
3*1000 + 3*1000) =) 13400ms. Figure 1.5 shows the corresponding execution time
chart.

time (seconds)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CPU-bound operation

I/O-bound operation

Figure 1.5: Execution time chart for CarInfo

Select
Edmunds

NHTSA
CG Search

CG Summary
CG Full

1.3 Approach
This thesis presents an approach to agent execution that seeks to dramatically
improve the performance of agents like CarInfo. The solution proposed consists of
three major parts: a streaming dataflow language and execution system for
information agents, a strategy for speculative execution in a streaming dataflow
architecture, and an accurate and space-efficient value prediction strategy. Generally
speaking, streaming dataflow increases the degree of run-time parallelism,
speculative execution allows this to be potentially increased beyond the theoretical
dataflow limit of the plan, and the learning increases the probability that speculative
execution will realize its potential benefits. I now provide an overview of each of
these components, each of which is covered in greater detail in successive chapters
of this thesis.

1.3.1 Streaming dataflow plan execution
The first part of my approach involves a streaming dataflow language and execution
system that is both expressive and efficient. The language supports the expression of
information agent tasks that range from simple information gathering, to integration,
to recursive gathering. The execution system efficiently processes agent plans
through a streaming dataflow architecture, maximizing both the available horizontal
and vertical degrees of parallelism.

For example, the language allows the CarInfo plan shown in Figure 1.4 to be
transformed from a serial sequence of steps to a partially ordered graph of data
dependent operations, shown in Figure 1.6. During execution, operators process data
as it arrives (independent of any global schedule), iterating on each tuple of data, so
that results can be streamed to consumers as early as possible. Note that an
additional operation – a Join – has been added in order to correctly combine results

8

WRAPPER
ConsumerGuide

Search

(Midsize coupe/hatchback,
$4000 to $12000,
2002)

(http://cg.com/summ/20812.htm,
other summary review URLs)

(http://cg.com/full/20812.htm,
other full review URLs)

search
criteria

WRAPPER
ConsumerGuide

Summary

WRAPPER
ConsumerGuide

Full Review

(car reviews)
WRAPPER

Edmunds
Search

(Oldsmobile Olero,
Dodge Stratus,
Pontiac Grand Am,
Mercury Cougar)

JOIN

SELECT
maker !=

"Oldsmobile"

WRAPPER
NHTSA
Search

(safety reports)
result

(Dodge Stratus,
Pontiac Grand Am,
Mercury Cougar)

gathered in parallel from different sources. With dataflow execution, the safety
report and the car reviews can be gathered in parallel. This reduces the original
execution time of 13400ms to (1*1000 + 4*100 + (3*1000 + 3*1000 + 3*1000) +
3*100 =) 10700ms . With data streaming, there is no need for the plan to stalled at
each operation for all tuples input to that operation, and the execution time can be
reduced further to (1000 + 100 + (1000 + 1000 + 3*1000) + 100 =) 6200ms. Thus,
the streaming dataflow model enables a speedup of 2.16 over the original serial, non-
streaming execution model. Figure 1.7 shows the detailed time chart for the
streaming dataflow version of CarInfo execution.

Figure 1.6 Dataflow-style version of CarInfo information agent plan

Note that if tuples can be independently processed by each operator and enough
execution resources (threads and/or processors) exist, a true dataflow machine would
not require an operator to serialize its work queue. This means that any tuple could
be executed as soon as it arrives. If we think of execution as a series of time
elements E = {E1...Em}, that each have a degree of parallelism D(Ei), and the set of
processors P = {P1...Pk}, then this can only be practically true if:

∀ Ei ∈ E, k ≥ max (D(Ei)), 1 ≤ i ≤ m
When this is not the case, the true degree of parallelism depends on how well k

processors use available threads to manage the additional request for parallelism.
Let us simplify and assume that, for computers with a single processor, (a) a CPU-
bound operator must serialize the processing of its inputs while (b) an I/O-bound
operator can parallelize the processing of its inputs. In practice, use of multiple
threads on modern CPUs do not starve CPUs as much as (a) while only closely

time (seconds)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Select
Edmunds

CG Search
CG Summary

CG Full
Join

Figure 1.7 Execution time chart for CarInfo under streaming dataflow

9
approaching (b). With these assumptions, the execution time of CarInfo cam be
further reduced to 4200ms, as the execution time chart in Figure 1.8 shows.

While the above example shows that streaming dataflow can be an effective
technique for significantly improving plan performance, it is important to note that
the plan remains I/O bound. In particular, note that (4000ms/4200ms =) over 95%
of the execution time still consists of waiting for data. The key issue is the need to
query sources in sequence. For example, for each tuple in CarInfo, the Edmunds
query must be completed before the ConsumerGuide Search can be performed, a step
that needs to be completed before the ConsumerGuide Summary query can be
executed, and so on. The binding patterns between sources continues to force
serialized execution of I/O-bound operations.

1.3.2 Speculative plan execution
To overcome the limits imposed by binding patterns between sources, speculative
execution can be employed. The general process of speculative execution involves
issuing operations ahead of their normal schedule, based on data (hints) received
earlier in the plan. Because more operators can execute in parallel at a given time,
with some executing speculatively, a higher degree of concurrency is possible. If
predictions are correct, significant plan speedups are possible.

One way to execute the CarInfo plan would be to use the car search criteria as a
hint for what kind of cars Edmunds is likely to produce (based on prior executions).
We can then use these predicted results to predict what ConsumerGuide review
URLs are likely and thus gather this information ahead of its normal schedule. In
short, the initial search criteria can directly lead to predictions (and predictions based
on predictions) that, if correct, facilitate the gathering of data based on a likely list of
cars while the actual list of cars is being retrieved.

Under the scenario proposed, execution could proceed as follows. Input data,
such as (Midsize coupe/hatchback, 2002, $4000, $12000), would result in the
retrieval of the initial search results from Edmunds.com in parallel with the retrieval
of reviews and safety ratings based on the makes and models Edmunds is predicted
to return. Furthermore, these predicted makes and models would also drive the
predictions of the ConsumerGuide Search and ConsumerGuide Summary URLs,
significantly increasing the parallelism of plan execution. Figure 1.9 shows the
corresponding theoretical execution time chart. In short, if all predictions are
correct, the resulting optimistic execution time is only (100 + 1000 + (3*100)) =

time (seconds)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Select
Edmunds

CG Search
CG Summary

CG Full
Join

 Figure 1.8 Upper bound execution time chart of CarInfo for a single CPU

10

time (seconds)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Select
Edmunds

CG Search
CG Summary

CG Full
Join

1400ms plus the overhead to speculate, a potential speedup of 4.42 over the upper
bound of streaming dataflow. All techniques thus combine to enable an overall
speedup of (13400ms/1400ms =) 9.57 in the CarInfo example.

Figure 1.9 Optimistic execution time chart for CarInfo under speculative execution

1.3.3 Learning to predict data for speculative plan execution
The third part of my approach focuses on learning to predict data for speculative plan
execution. While the average speedup due to speculative execution varies somewhat
depending source latencies and speculation overhead, a more important issue is
predictive accuracy. Had all predictions been incorrect, execution would have
actually been slightly slower (due to overhead) than the original execution time
under streaming dataflow. Thus, maintaining a high average accuracy of prediction
is key to the success of speculative execution: the greater this accuracy, the higher
the average speedup.

The value prediction challenge involves choosing one or more values to predict
for a hint, given data on prior executions. The easiest way to do this is to cache
information from prior executions. Upon future executions, the re-appearance of
hints that have been seen before can be used to generate the predictions that those
hints were associated with in past executions. For example, if a future execution of
the CarInfo plan involved the same search criteria (Midsize, 2002, $4000, $12000)
seen earlier, a caching value prediction strategy would generate the same results
confirmed last execution: (Oldsmobile Alero, Dodge Stratus, Pontiac Grand Am,
Mercury Cougar).

However, if the hint was slightly different, say (Midsize, 2002, $5000, $12000),
a caching strategy would be unable to make any kind of prediction, even though it
seems that (Oldsmobile Alero, Dodge Stratus, Pontiac Grand Am, Mercury Cougar)
might still be a good prediction. Similarly, a summary URL of
(http://cg.com/summ/2978.htm) that had not been seen in earlier executions would
not be associated with any prior cached prediction, and thus speculative execution
would not be possible. This is unfortunate, since from even a single past execution,
intuition suggests that a good prediction would be (http://cg.com/full/2978.htm).

To address these issues, and to make value prediction more accurate and
possible more often, my approach includes a set of algorithms that use machine
learning techniques to induce value predictors that combine caching with
classification and transduction. By integrating classification into a value prediction
scheme, we can learn which features of the hint are most telling of the likely

11
subsequent result – thus, we can learn that a slight alteration in the minimum price
does not make any difference as far as the likely set of cars that will be returned. By
integrating transduction into the value prediction process, we can learn how to
extract and manipulate the key piece of dynamic information from a hint, so that we
can learn the general process of data transformation.

Classification and transduction not only allow the system to make recurring
predictions based on recurring hints, but also to make recurring predictions based
on new hints, and novel predictions based on new hints. Both features increase the
accuracy of value prediction. Furthermore, the hybrid approach to value prediction I
describe is almost always more space efficient than caching. Classifiers need only to
store the values for the features that distinguish one prediction from another (as well
as discretize continuous values, instead of storing all of them). Transducers are even
more efficient: once learned, a transducer is small and its size remains finite because
it is a function valid for all examples.

1.4 Thesis statement
In summary, this thesis introduces a technique for speculative plan execution in a
streaming dataflow architecture that significantly increases the runtime performance
of information agent plans. The thesis of this dissertation is:

Speculative execution of streaming dataflow plans increases the degree of
runtime parallelism realizable by information agents, leading to better
average execution performance.

1.5 Contributions
Overall, in this thesis, I make following contributions:

1. An efficient language and execution system for information agent plans.
The language allows complicated information agent tasks to be easily
specified through its support for modularity, recursion, and extensibility. The
execution system allows true streaming dataflow execution to occur: operators
are scheduled independently and producers asynchronously transmit tuples to
consumers as soon as possible. A thread pooling approach is used to obtain
significant degrees of horizontal and vertical parallelism without exhausting
resources and without repetitive overhead costs for thread creation.

2. An approach for speculative plan execution that yields arbitrary speedups
while ensuring safety and fairness. I introduce algorithms that automatically
transform any information gathering plan into one capable of speculative
execution. I present empirical results of speculative plan execution to a set of
common information agent plans as well as plans generated by queries
contained in a well-known database benchmark standard.

3. An approach to value prediction that combines caching, classification,
and transduction to yield predictors that are accurate, generally
applicable after only a few examples, and space efficient. I introduce
algorithms that build hybrid predictors by identifying patterns in the data being
predicted and identify the right general strategy to adopt for future predictions.

12
In addition to being able to re-issue predictions for recurring hints, the value
predictors learned can generate predictions for new hints and can synthesize
novel predictions (manufacture data not yet seen).

1.6 Thesis organization
The remainder of this thesis is organized as follows. In chapter 2, I describe a
framework for expressive and efficient information gathering through a novel agent
language and an execution system based on a streaming dataflow model. In chapter
3, I show how the streaming dataflow architecture can be augmented to
automatically support speculative plan execution, in a manner that is safe, fair, and
transparent to the end-user. In chapter 4, I introduce a technique for value prediction
that combines caching, classification, and transduction to issue more accurate
predictions, which in turn lead to greater average plan speedups. In chapter 5, I
survey the related work. Finally, in chapter 6, I conclude and discuss directions for
future work.

13

Chapter 2

Efficient execution of information agent plans

In this section, I describe a novel language and execution system for information
agents. Both the language and execution system are an important foundation for
speculative plan execution. The language allows agent plans to be easily described
in a way that facilitates efficient execution. The executor implements a true
streaming dataflow architecture and maximizes the amount of run-time horizontal
and vertical parallelism possible.

This section is organized as follows. I first motivate the need for an expressive
information agent plan language, and in particular how information networks like the
Web involve tasks that are usually more complicated that traditional database-style
queries. I then describe the plan language in detail, focusing on the features that
promote expressivity. Next, I introduce the detailed design for a streaming dataflow
execution system that can process information agent plans. Finally, I present
evidence of how the combination of the language and execution system effectively
marry the efficiency of modern network query engine with the generality and
flexibility of a traditional agent executor.

2.1 The nature of information agent plans
Information agent tasks can include fetching data from one or more sources,
integrating data, filtering and other types of data processing, and communicating data
to end-users. Agent plans are usually more complex than traditional database query
plans for a number of reasons. Unlike database queries, agent plans are often non-
interactive, instead providing periodic notification to end-users. Agent plans also
may integrate data from heterogeneous types of sources, instead of combining tables
from a collection of structured relational databases. Control flow might also be more
complex: for example, agent plans may loop over a set of tasks, whereas a database
query plan is a set of flows executed once.

To better understand the challenges of Web information gathering, let us
consider automating various types of online tasks. The Web is a useful example
because while in some respects it is just a large distributed database, in other respects
it is not. For one, the Web is federated: one does not have administrative control
over all sources. Second, most Web data sources are semi-structured: the desired
data is embedded within Web pages that were originally meant for visual
consumption.

14
2.1.1 Example Web information gathering tasks
One type of difficult Web information gathering task involves interleaved gathering
and navigation. For the benefit of people that use a Web browser to access online
data, many Web sources display large sets of query results spread over a series of
Web pages connected through “Next Page” links. For example, querying an online
classified listings for automobiles for sale can generate many results. Instead of
displaying the results on a single very long Web page, many classified listings sites
group sets of results over series of hyperlinked pages. In order to automatically
collect this data, a system needs to interleave navigation and gathering: that is, it
needs to collect results from a given page, navigate to the next, gather the next set of
results, navigate, and so on. While there has been some work addressing how to
theoretically incorporate navigation into the gathering process(Friedman et al. 1999),
no attention has been given to the efficient execution of plans that engage in this type
of interleaved retrieval.

A second example has to do with monitoring a Web source. Since the Web does
not contain a built-in trigger facility, one is forced to manually check sources for
updated data. When updates are frequent or the need to identify an update
immediately is urgent, it becomes desirable to automate the monitoring of these
updates, notifying the user when one or more conditions are met. For example,
suppose we want to be alerted as soon as a particular type of used car is listed for
sale by one or more online classified ad sources. Repeated manual checking for such
changes is obviously tedious. Mediators and network query engines can automate
the query, but additional software in programming languages such as Java or C must
be written to handle the monitoring process itself, something that requires
conditional execution, comparison with past results, possible notification of the user,
and other such actions. Even network query engines that support continuous queries,
such as NiagaraCQ (Chen et al. 2000), do not provide much flexibility in how
monitoring is to be done and also require that the user program actions using a
separate stored procedure language, which does not necessarily run as efficiently as
the query plan. In short, no existing systems support a rich enough query language
make tasks like monitoring simple enough to integrate directly into the query plan.

These examples show that automatically querying the Web can be difficult and
beyond the capabilities of existing systems. Even when some type of integrated
automation is possible, overall execution is inefficient. The root of the problem is
the lack expressivity provided by traditional query languages. More complicated
tasks, such as those described here and in the Electric Elves project (Chalupsky et al.
2001; Ambite et al. 2002), usually involve actions beyond those needed for merely
querying (i.e., beyond filtering and combining) – they require agents that are capable
of a variety of actions, such as conditional execution, integration with local
databases, and asynchronous notification (e.g., e-mail or FAX) to users. At the same
time, efficiency is also important, so that information from large and/or slow data
sources can be processed as fast as possible.

One possible alternative to existing Web query systems is to use more general
robot or agent executors, such as the RAP system (Firby 1994) or PRS-Lite (Myers
1996). These systems are attractive because each offers support for more expressive

15
plans that are still capable of executing concurrent actions. For example, PRS-Lite
supports conditional actions via the IF goal and concurrent execution via the AND
and SPLIT goal modalities. Unfortunately, because they are not designed to
efficiently route large sets of information (such as relations) between plan operators,
these systems are of limited use in the domain of Web information gathering. For
example, one way that network query engines combat Web source latencies is to
stream information between operators – in this way, data that trickles in from a slow
source can be processed in parallel and delivered to the user as fast as possible.
While a substantial amount of previous work has gone into building operators that
exploit this potential for database systems (Wilschut and Apers 1993) and network
query engines (Ives et al. 2002), more general executors like the RAP system and
PRS-Lite do not offer such support. Thus, while existing agent execution systems
are attractive because of support for more expressive plans, these systems are not
designed for high-performance information gathering and are inherently less efficient
solutions.

2.2 Background
The plan language and executor that is the focus of this chapter builds on a
foundation of prior research related to dataflow computing and Web information
integration. Although seemingly orthogonal disciplines, they are effective
complements in that the parallelism and asynchrony provided by dataflow computing
lends itself to the performance problems associated with Web information gathering.

2.2.1 Dataflow Computing
The pure dataflow model of computation was first introduced by (Dennis 1974) as an
alternative to the standard von Neumann execution model. Its foundations share
much in common with past work on computation graphs (Karp and Miller 1955),
process networks (Kahn 1974), and communicating sequential processes (Hoare
1978). Dataflow computing has a long theoretical and experimental history, with the
first machines being proposed in the early 1970s and real physical systems being
constructed in the late 1970s and throughout the 1980s and early 1990s (Arvind and
Nikhil 1990; Papadopoulos and Traub 1991; Gurd and Snelling 1992).

The dataflow model of computation describes program execution in terms of
data dependencies between instructions. A dataflow graph is a directed acyclic
graph (DAG) of nodes and edges. The nodes are called actors. They consume and
produce data tokens along the edges that connect them to other actors. All actors run
concurrently and each is able to execute, or fire, at any time after its input tokens
arrive. Input tokens can come from initial program input or as a result of earlier
execution (i.e., the output of prior actor firings). The potential overall concurrency
of execution is thus a function of the data dependencies that exist in the program, a
degree of parallelism referred to as the dataflow limit.

The key observation to be made about dataflow computing that execution is
inherently parallel – actors function independently (asynchronously) and fire as
necessary. In contrast, the von Neumann execution model involves the sequential
processing of a pre-ordered set of instructions. Thus, execution is inherently serial.

16
When comparing dataflow to von Neumann, a more subtle difference (yet one at the
heart of the distinction between the two) to be noted is that the scheduling of
instructions is determined at run-time (i.e., dynamic scheduling), whereas in a von
Neumann system it occurs at compile-time (i.e., static scheduling).

Dataflow systems have evolved from the classic static (Dennis 1974) model to
dynamic tagged token models (Arvind and Nikhil 1990) that allowed multiple tokens
per arc, to hybrid models that combine von Neumann and traditional dataflow styles
of execution (Iannucci 1988; Evripidou and Gaudiot 1991; Gao 1993). Other models
that have been applied to digital signal processing include boolean dataflow and
synchronous dataflow (Lee and Messerschmitt 1987), resulting in architectures
known as “dataflow networks”. The work described in this paper is most relevant to
a specific hybrid dataflow approach, known as threaded dataflow (Papadopoulos and
Traub 1991), which maintains a data-driven model of execution but associates
instruction streams with individual threads that execute in a von Neumann fashion.
It is distinct from pure von Neumann multithreading in the sense that data, not an
instruction counter, remains the basis for scheduling instructions (operators). But it
is also distinct from pure dataflow in the sense that execution of instruction streams
is a statically scheduled sequential task, unlike the typical dynamic scheduling found
in dataflow machines. As a result, threaded dataflow can also be viewed as data-
driven multithreading.

Recent advances in processor architecture, such as the Simultaneous
Multithreading (SMT) project (Tullsen et al. 1995) have demonstrated the benefits of
data-driven multithreading. SMT-style processors differ from conventional CPUs
(such as the Intel Pentium) by partitioning on-chip resources so that multiple threads
can execute concurrently, making better use of available functional units on the same
amount of chip real estate. The resulting execution reduces “vertical waste” (the
wasting of cycles) that can occur when a sequence of instructions is executed using
only one thread, as well as “horizontal waste” (the wasting available functional units)
that can occur when executing multiple threads. To do so, the technique effectively
trades instruction-level parallelism (ILP) benefits for thread-level parallelism (TLP)
benefits. Instead of having a deep processor pipeline (which becomes less useful as
its depth increases), SMT processors contain multiple shorter pipelines, each
associated with a single thread. The result can, for highly parallel applications,
substantially improve the scheduling of on-chip resources that, on conventional
CPUs, would normally be starved as a result of both I/O stalls as well as thread
context-switching.

The work described here applies a threaded dataflow design to a higher level of
execution – the information agent plan level. Instead of executing fine-grained
instructions, we are interested in the execution of coarse-grained operators. Still,
threaded dataflow is generally an efficient strategy for executing I/O-bound
information gathering plans that integrate multiple remote sources because it allows
coarse-grained I/O requests (such as network requests to multiple Web sources) to be
automatically scheduled for parallel execution. Such plans are similar to other
systems that maintain high degrees of concurrent network connections, such as a
Web server or database system. Prior studies on such Web servers (Redstone et al.

17
2000) and database systems (Lo et al. 1998) have already shown that such systems
run very efficiently on SMT-style processors; I believe the same will hold true for
the execution of dataflow-style information gathering plans.

2.2.2 Web-based information gathering and integration
Generic information integration systems (Chawathe et al. 1994; Arens et al. 1996;
Levy et al. 1996; Genesereth et al. 1997) are concerned with the problem of allowing
multiple distributed information sources to be queried as a logical whole. These
systems typically deal with heterogeneous sources – in addition to traditional
databases, they provide transparent access to flat files, information agents, and other
structured data sources. A high-level domain model maps domain-level entities and
attributes to underlying sources and the information they provide. An information
mediator (Wiederhold 1996) is responsible for query processing, using the domain
model and information about the sources to compile a query plan. In traditional
databases, query processing involves three major phases: (a) parsing the query, (b)
query plan generation and optimization and (c) execution. Query processing for
information integration involves the same phases but builds upon traditional query
plan optimization techniques by addressing cases that involve duplicate, slow, and/or
unreliable information sources.

Web-based information integration, such as that described in (Knoblock et al.
2001), differs from other types of information integration by focusing on the specific
case where information sources are Web sites. This adds two additional challenges
to the basic integration problem: (1) that of retrieving structured information (i.e., a
relation) from a semi-structured source (Web pages written in HTML) and (2)
querying data that is often organized to facilitate human visual consumption, and not
necessarily in a strictly relational manner (e.g., a single logical table may be
associated with multiple Web pages). To address the first challenge, Web site
wrappers are used to convert semi-structured HTML into structured relations,
allowing Web sites to be queried as if they were databases. Wrappers take queries
(such as those expressed in a query language like SQL) and process them on data
extracted from a Web site, thus providing a transparent way of accessing
unstructured information as if it were structured. Wrappers can be constructed
manually or automatically, the latter using machine learning techniques (Kushmerick
2000; Knoblock et al. 2002; Muslea 2002). While wrappers can be used to extract
data from many Web sites, other sites are problematic because of how the data to be
extracted is presented. One common case is where the Web site distributes a single
logical relational answer over multiple physical Web pages, such as in the case of the
online classified ads example described earlier. Automating interleaved navigation
with gathering has received considerably less attention. One exception is (Friedman
et al. 1999), which describes how to extend traditional query answering for
information integration systems to incorporate the capability for navigation.
However, that solution addresses the query processing phase and thus it remains an
open issue regarding how to execute these types of information gathering plans
efficiently.

18
A more recent technology for querying the Web is the network query engine

(Ives et al. 1999; Hellerstein et al. 2000; Naughton et al. 2001). While these systems
are, like mediators, capable of querying multiple Web sources, there has been a
greater focus on the challenges of efficient query plan execution, robustness in the
face of network failure or large data sets, and operators for processing XML. Many
network query engines rely on adaptive execution techniques, such as dynamic
reordering of tuples among query plan operators (Avnur and Hellerstein 2000) and
the double pipelined hash join (Ives et al. 1999), to overcome the inherent latency
and unpredictable availability of Web sites.

An important aspect of network query engine research has been its focus on
dataflow-style execution. Research on parallel database systems has long regarded
dataflow-style query execution efficient (Wilschut and Apers 1993). However, when
applied to the Web, dataflow-style processing can yield even greater speedups
because (a) Web sources are remote, so the base latency of access is much higher
than that of accessing local data and (b) Web data cannot be strategically pre-
partitioned, such as in the case of shared-nothing designs (Dewitt and Gray 1992).
Thus, because the average latency of Web data access is high, the parallelizing
capability of dataflow-style execution is even more compelling than it is for
traditional parallel database systems because the potential speedups are greater.

2.3 An Expressive and Efficient Agent Plan Language
In this section, I present an information gathering plan language that goes beyond
what traditional database query languages allow and makes it possible to describe a
wide variety of information gathering tasks.

2.3.1 Plan representation
In the agent plan language, plans are textual representations of dataflow graphs
describing a set of input data, a series of operations on that data (and the
intermediate results it leads to), and a set of output data. As discussed earlier,
dataflow is a naturally efficient paradigm for information gathering plans. Graphs
consist of a set of operator sequences called flows where plan input data is iteratively
processed by a succession of operators until further propagation of data halts (either
because the flow stops or because the last operator produces one of the plan outputs).
Formally, I define the following:

Definition 1: An information gathering plan P is described as a directed acyclic
graph (DAG) where a set of operators Ops are the nodes that are connected through a
set of variables Vars that are the edges. Furthermore, a subset of Vars are plan input
variables PlanIn and another subset of variables are plan output variables PlanOut.
More specifically, let a plan P be represented as the tuple

P = <Vars, Ops, PlanIn, PlanOut>
where

Vars = {v1, ..., vn}, n > 0
Ops = {Op1, ..., Opm}, m > 0

19
PlanIn = {va1, ..., vax}, x > 0, s.t. {va1, ..., vax} ∈ Vars
PlanOut = {vb1, ..., vby}, y >= 0, s.t. {vb1, ..., vby} ∈ Vars

Definition 2: Each operator Op encapsulates a function Func that computes a set of
output variables OpOut from a set of input variables OpIn. More specifically, let
each operator Opi in P be represented as the tuple

Opi = <OpIn, OpOut, Func>
where

OpIn = {vi1, ..., vic}, c > 0, s.t. {vi1, ..., vic} ∈ Vars
OpOut = {vo1, ..., vog}, g >= 0, s.t. {vo1, ..., vog} ∈ Vars
Func = Function that computes {vo1, ..., vog} from {vi1, ..., vic}

Definition 3: The schedule of execution for any operator Opi is described by a firing
rule Ψi that depends on OpIn, an optional second set of input wait variables OpWait,
and results in the generation of OpOut and an optional second set of output
OpEnable variables. The initial firing of an operator is conditional on the
availability of at least one of OpIn and all of OpWait. After the initial firing, any
OpEnable variables are also produced. All other OpOut variables are produced in
accordance with the semantics of the operator. More specifically, let us define:

Ψi (Opi) = <OpIn, OpWait, OpOut, OpEnable>
where

OpWait = {vw1, ..., vwd}, d >= 0, s.t. {vw1, ..., vwd} ∈ Vars
OpEnable = {ve1, ..., veh}, h >= 0, s.t. {ve1, ..., veh} ∈ Vars

Operators have a predefined number of input and output slots. When specified

in a plan, input and output variables map directly to these slots. In addition, operator
slots can support a variable number of arguments. For example, a standard Union
operator would have two standard input slots, lhs and rhs, and a standard output slot
named out. In a plan, a particular instance of Union might be Opunion = <(x,y), ∅, (z),
∅, Union>. Argument matching is positional, thus x maps to lhs, y maps to rhs, and
z maps to out. However, consider a VarUnion operator that unions a variable
number of inputs to produce a single output. In this case, the operator would have a
single variable argument input slot and a single standard output slot. For example,
an instance might be Opvarunion = <((a,b,c,d)) , ∅, (z), ∅, VarUnion> or Opvarunion =
<((a,b,x)) , ∅, (z), ∅, VarUnion>. Both are legal since variable argument input slots
can accept one or more variables. The operator implementations handle the
management of variable arguments.

 Wait and enable variables are useful synchronization mechanisms that allows
operator execution to be conditional beyond its normal set of input data variables.
Before I describe how, let us first distinguish between a standard data variable and a
synchronization variable. A standard data variable is one that contains information
that is meant to be interpreted, or more specifically, processed by an operator. For
example, PlanIn, PlanOut, OpIn, and OpOut all consist of normal data variables. A

20
synchronization variable is one that consists of data not meant to be interpreted –
rather, such variables are used as additional conditions to execution. Since control in
dataflow systems is driven by the availability of data, synchronization variables in
dataflow style plans are useful because they provide more control flow flexibility.
For example, if a certain static operation should occur each time a given data flow is
active, synchronization variables allow us to declare such behavior.

The OpWait and OpEnable variable sets are the only ones that can contain
synchronization variables. These sets are not part of an operator’s definition – they
are only relevant to a particular instance of an operator within a particular plan. Plan
operators that have wait variables, contained in the OpWait set, cannot execute until
all of them have been received. After it executes (i.e., following the iterative
processing of the last input tuple), an operator then produces all of its enable
variables (if any), contained in the OpEnable set. Enable variables are exclusively
synchronization variables: they are only consumed by downstream operators as wait
variables for purposes of conditional execution. In contrast, the set of wait variables
can contain a mix of standard data variables and synchronization variables. Thus, it
is possible for the data output by an operator can be consumed as a wait variable by
another downstream operator: in effect, the execution of that downstream operator is
conditional on the production of output by the upstream operator.

Example plan
To better illustrate the representation of a plan, let us consider an example. Figure
2.1 illustrates the dataflow graph form of a plan named example_plan. It shows that
the plan consists of six nodes (operators) connected with a set of edges (variables).
As defined earlier, each operator instance consumes one or more inputs and produces
zero or more outputs. The plan appears as a standard dataflow graph, except that one
arc (from Op3 to Op5) is denoted as a synchronization arc.

Figure 2.2 shows the text form of the same plan. As shown, a header part
consists of the name of the plan (example_plan), the set of input variables (a and b),
and the set of output variables (g). The body section of the plan contains the set of
operators. The set of inputs for each operator appears to the left of the colon
delimiter and the set of outputs appears to the right of the delimiter. Wait and enable
variables are denoted within curly braces that follow an operator. Recall that, like
output variables, wait and enable variables are optional and are thus not necessary
part of an operator declaration.

Op2 Op4a Op1b

c d f

Op3 Op5
e

g

Figure 2.1: Graph form of example_plan

21

operator performs a COUNT function on a relation to determine the number of tuples

Both the graph and text forms of the example plan describe the following
execution. Variables a and b are plan input variables. Together, they trigger the
execution of Op1, which produces variable c. Op2 fires when c becomes available,
and this leads to the output of variable d. Op3 also fires upon the availability of c
and produces the synchronization variable e. Op4 uses d to compute f (the plan
output variable) and g. Finally, the availability of g and the synchronization variable
e triggers the execution of Op5.

PLAN example_plan
{

INPUT: a, b
OUTPUT: f

BODY
{

Op1 (a, b : c)
Op2 (c : d)
Op3 (c :) {ENABLE: e}
Op4 (d : f, g)
Op5 (g :) {WAIT : e}

}
}

Figure 2.2: Text form of example_plan

Note that although the body part of the text form of the plan lists operators in a
linear order, this does not affect when those operators are actually executed. Per the
dataflow model of processing, operators fire whenever their individual data
dependencies are fulfilled. For example, although Op3 follows Op2 in the order
specified by the plan text, it actually executes at the same logical time as Op2. Also
note that plan output, f, can be produced while the plan is still running (i.e., while
Op5 is still processing).

2.3.2 Data structures
Operators process and transmit data in terms of relations. Each relation R consists of
a set of attributes (i.e., columns) a1..ac and a set of zero or more tuples (i.e., rows)
t1..tr, each tuple ti containing values vi1..vic. We can express relations with attributes
and a set of tuples containing values for each of those attributes as:

R (a1, ..., ac) = { (v11, ..., v1c), (v21, ..., v2c), ..., (vr1, ..., vrc) }

Each attribute of a relation can be one of five types: char, number, date, relation
(embedded), or document (i.e., a DOM object).

Embedded relations (Schek and Scholl 1986) within a particular relation Rx are
treated as opaque objects vij when processed by an operator. However, when
extracted, they become a separate relation Ry that can be processed by the rest of the
system. Embedded relations are useful in that they allow a set of values (the non-
embedded objects) to be associated with an entire relation. For example, if an

22

 data is supported through the document attribute type. XML is one type
of d

2.3.3 Plan Operators
in the plan language represent a rich set of functions that can

• ta manipulation,

• age: the export and updating of data in traditional relational

• l execution: routing of data based on its contents at run-

• ronous notification: communication of intermediate/periodic

• tration: the dynamic scheduling or unscheduling of plans

• bed any special type of computation

Though operators differ on their exact semantics, they do share some similarities in

se data collected from one
sour

contained in that relation, the resulting tuple emitted from the operator can consist of
two attributes: (a) the embedded relation object and (b) the value equal to the number
of rows in that embedded relation. Embedded relations thus allow sets to be
associated with singletons, rather than forcing a join between the two. In this sense,
they preserve the relationship between a particular tuple and a relation without
requiring the space for an additional key or the repeating of data (as a join would
require).

XML
ocument specified by the Document Object Model (DOM). The proposed

language here contains specific operators that allow DOM objects to be converted to
relations, for relations to be converted to DOM objects, and for DOM objects that are
XML documents to be queried in their native form using XQuery. Thus, the
language supports the querying of XML documents in their native or flattened form.

The available operators
be used to address the challenges of more complex information gathering tasks, such
as monitoring. Specifically, the operators support the following classes of actions:

• Data gathering: retrieval of data from both the network and from
traditional relational databases, such as Oracle or DB2.
Data manipulation: including standard relational da
such as Select and Join, as well as XML-style manipulations such as
XQuery.
Data stor
databases.
Conditiona
time.
Asynch
results through mediums/devices where transmitted data can be queued
(e.g., e-mail).
Task adminis
from an external task database.
Extensibility: the ability to em
(single-row or aggregate) directly into the streaming dataflow query
plan.

how they process input and generate output. In particular, there are two modes
worth noting: the automatic joining of output to input (a dependent join) and the
packing/unpacking (embedding/extracting) of relations.

In information gathering plans, it is common to u
ce as a basis for querying additional sources. Later, it often becomes desirable

to associate the input to the source with the output it produces. However, doing this
join as a separate step can be tedious because it requires the creation of another key
on the existing set of data and then the cost of a join. To simplify plans and improve
the efficiency of execution, many of the operators in the language perform a

23

es the packing and unpacking of
relat

f operators in the proposed language,
grou

dependent join of input tuples onto the output tuples that they produce. A dependent
join simply combines the contents of the input tuple with any output tuple(s) it
generates, preserving the parity between the two. For example, the operator ROUND
converts a floating point value in a column to its nearest whole integer value. Thus,
if the input data consisted of the tuples ((Jack, 89.73), (Jill, 98.21)) then the result
after the ROUND operator executes would be of ((Jack, 89.73, 90), (Jill, 98.21, 98)).
Without a dependent join, a primary key would need to be added (if one did not
already exist) and then a separate join would have to be done after the ROUND
computation. Thus, dependent joins simplify plans – they reduce the total number
of operators in a plan (by reducing the number of decoupled joins) and eliminate the
need to ensure entity integrity prior to processing.1

Another processing mode of operators involv
ions. These operations are relevant in the context of embedded relations.

Instead of creating and managing two distinct results (which often need to be joined
later), it is cleaner and more space-efficient to perform a dependent join on the
packed version of an input relation with the result output by an aggregate-type
operator. For example, when using an AVERAGE operator on the input data above,
the result after a dependent join with the packed form of the original relation would
be: (((Jack, 89.73), (Jill, 98.21)), 93.97). Unpacking would be necessary to get at the
original data. In short, embedded relations make it easy to associate aggregates with
the values that led to their derivation. Packing and unpacking are useful data
handling techniques that facilitate this goal.

Tables 2.1a-e shows the entire set o
ped by function. Some of these (such as Select and Join) have well-known

semantics (Abiteboul et al. 1995) and are used in other database and information
gathering systems. As a result, I will not discuss them here in any detail. However,
many of the operators are new and provide the ability to express more complicated
types of plans. I now focus on the purpose and mechanics of some of these other
types of operators.

Operator Purpose
Wrapper Fetches and extracts data from web relations. sites into
DbQuery Queries local database relations using SQL.

Table 2.1a: Data gathering operators

1 Entity integrity refers to the existence of a primary key in the relation being processed. A relation
that will be joined with results generated by that relation (as input to an operator) requires a primary
key in order for the join to be correct. Thus, without the dependent join, some relations may have to
be “pre-tagged” with a primary key (such as a row ID) before being processed by an operator.

24
Operator Purpose

Select Filters data from a relation.
Project Filters attributes from a relation.

Join Combines data from two relations, based on a specified condition.
Union Performs a set union of two relations.

Intersect Finds the intersection of two relations.
Minus Subtracts one relation from another.

Distinct Returns tuples unique across one or more attributes.
GroupBy Groups tuples by attributes and any selected aggregate measures

Pack Embeds a relation within a new relation consisting of a single tuple.
Unpack Extracts an embedded relation from tuples of an input relation.
Format Generates a new formatted text attribute based on tuple values.

Rel2xml Converts a relation to an XML document.

Xml2rel Converts an XML document to a relation.

XQuery
Queries an XML document attribute of tuples of an input relation using language
specified by the Xquery standard, returning an XML document result attribute
contained in the tuples of the output relation.

Table 2.1b: Data manipulation operators

Operator Purpose
DbAppend Appends a relation to an existing table – creates the table if none exists.
DbExport Exports a relation to a single table.
DbUpdate Executes a SQL-style update query; no results returned.

Table 2.1c: Data storage operators

Operator Purpose
Null Conditionally routes one of two streams based on existence of tuples in a third

Table 2.1d: Conditional execution operator

Operator Purpose
Email Uses SMTP to communicate an email message to a valid email address.
Phone Sends a text message to a valid cell phone number.

Fax Faxes data to a recipient at a valid fax number.
Table 2.1e: Asynchronous notification operators

Operator Purpose
Schedule Adds a task to the task database with scheduling information.

Unschedule Removes a task from the database.
Table 2.1f: Task administration operators

Operator Purpose

Apply Executes a user-defined function on each tuple of a relation.
Aggregate Executes a user-defined function on an entire relation.

Table 2.1g: Extensibility operators

25

Interacting with local databases
There are two major reasons why it is useful to be able to interact with local database
systems during plan execution. One reason is that the local database may contain
information to be integrated with other online information. A second reason has to
do with the ability for the local database to act as “memory” for plans that run
continuously or when a plan run at a later time needs to use the results of a plan run
at an earlier time.

To address both needs, the database operators DbImport, DbQuery, DbExport,
and DbAppend are provided. A common use for these operators is to implement a
monitoring-style query. For example, suppose we wish to gradually collect data over
a period of time. To accomplish this, DbQuery can be used to bring previously
queried data into a plan so that it can be compared with newly queried data (gathered
by a Wrapper operator) by using any of the set-theoretic operators (such as Minus)
and the result or difference can be written back to the database through DbAppend or
DbExport.

Supporting conditional execution
Conditional execution is important for plans that need to perform different actions
for data based on the run-time value of that data. To analyze and conditionally route
data in a plan, the language supports the Null operator. Null acts as a switch,
conditionally routing one set of data based on the status of another set of data.

For example, suppose it is desired to have stock quotes automatically
communicated to a user every 30 minutes. Normally, quotes should be retrieved and
then e-mailed. However, if the percentage price change of any stock in the portfolio
is greater than 20%, then all quotes should be sent via cell phone messaging (since
such communication can be more immediate). Null would be useful in such a case
because it would allow a Select condition to process the check on price changes and
– if there exist tuples that match the filtering criteria – allow that data to trigger an
operator that communicated those results via cell phone. Otherwise, Null would
route the data to an operator that communicated in the information via e-mail. In
short, Null is powerful because it is a dynamic form of conditional execution in that
it can be used with other operators (like Select) to activate/deactivate flows based on
the runtime content of the data.

The input and output to Null is summarized in Figure 2.3. The input is data to
be analyzed d, data to be forwarded upon true (null) dt, and the data to be forwarded
upon false df. If d is null (i.e., contains zero tuples), then dt is copied as output

Null
d

dt
df

t
f

Figure 2.3: The Null operator

26
variable t. Otherwise, df is copied as output f. For example, if d contains three
tuples {x1, x2, x3} and if dt contains five tuples {t1, t2, t3, t4, t5} and df contains two
tuples {f1, f2}, then only a variable f containing {f1, f2} is output. Consumers of t will
never receive any data.

Calling user-defined functions
Because of the wide variety of tasks they perform, there are times when agents need
to execute some special logic (e.g., business logic) beyond that supported by the
operators listed in Table 2.1 during execution. Often, this logic does not involve
relational information processing and the plan writer simply wants to be able to code
in a standard programming language (such as Java or C). For example, some of the
plans written for the Electric Elves travel agents (Ambite et al. 2002) required the
agent to send updates to users via the DARPA CoAbs Agent Grid (Thompson et al.
1999). Other plans required normalization date strings formats produced by different
Web sources. Instead of expanding the operator set for demands of each case, it was
more convenient to have two special operators that allowed plans to make calls to
arbitrary functions written in standard programming languages. The goal of
consolidating this functionality in extensibility operators was to (a) make it easier to
write plans that required special calculations or library calls, (b) encourage non-
relational information processing (which does not benefit from the efficiency of
dataflow style processing) to be modularized outside of the plan, and (c) to simplify
plans.

The two operators, Apply and Aggregate, provide extensibility at both the tuple
and relation level. Apply calls user-defined single-row functions on each tuple of
relational data and performs a dependent join on the input tuple with its
corresponding result. For example, a user-defined single-row function called SQRT
might return a tuple consisting of two values: the input value and its square root.
The user defined function is written in a standard programming language, such as
Java, and is executed on a per-tuple basis. Thus, this type of external function is
very similar to the use of stored procedures or UDFs in commercial relational
database systems

The Aggregate operator calls user-defined multi-row functions and performs a
dependent join on the packed form of the input and its result. For example, a COUNT
function might return a relation consisting of a single tuple with two values: the first
being the packed form of the input and the second being the count of the number of
distinct rows in that relation. As with Apply, the user-defined multi-row function is
written in a standard programming language like Java. However, in contrast to being
called on a per-tuple basis, it is executed on a per-relation basis.

XML integration
For purposes of efficiency and flexibility, it is often convenient to package or
transform data to/from XML in mid-plan execution. For example, the contents of a
large data set can often be described more compactly by capitalizing on the tree
structure of an XML document. In addition, some Web sources (such as Web
services) already provide query answers in XML format. To analyze or process this

27
data, it is often simpler and more efficient to deal with it in its native form rather
than to convert it into relations, process it, and convert it back to XML. However, in
other cases, a relatively small amount of XML data might need to be joined with a
large set of relational data.

To provide flexible XML manipulation and integration, the language supports
the Rel2xml, Xml2rel, and XQuery operators. The first two convert relations to
XML documents and vice-versa. To allow XML to be processed in their native
form, the language supports the XQuery operator, based on the evolving XQuery
standard (Boag et al. 2002).

Asynchronous notification
Many continuously running plans do not involve interactive sessions with users.
Instead, users request that a plan be run on a given schedule and expect to receive
updates from the periodic execution of that plan. These updates are delivered
through asynchronous mediums, such as e-mail, cell-phone messaging, or facsimile.
To enable this kind of notification, the language includes operators such as Email,
Fax, and Phone that communicate data via these devices.

Each of these operators works in a similar fashion. Input data received by the
operator is re-formatted into a form that is suitable for transmission using the desired
medium. The data is then transmitted: Email sends an e-mail message, Fax contacts
a facsimile server with its data, and Phone routes data to a cell phone capable of
receiving messages.

Automatic task administration
The overall system that accompanies the language includes a task database and a
daemon process that periodically reads the task database and executes plans
according to their schedule. This architecture is shown in Figure 2.4. Task entries
consist of a plan name, a set of input to provide to that plan, and scheduling
information. The latter data is represented in a format similar to the UNIX crontab

Task DBPlan P1

daemon
process

Executor
Schedule S1

Pi execution may involve updating
Task DB, affecting some other Pj and/or Sj

runs Pi per S

Plans P1...Pn

Figure 2.4: Task scheduling subsystem

28

form of parent_plan treats example_plan as merely another operator. Subplans

entry. This format allows the minute, hour, day of the month, month, and year that a
plan is supposed to be run. For example, a task entry of

05 08-17 1,3,5 * * example.plan

means: run the example.plan at five minutes after every hour between 8am and 5pm
on the 1st, 3rd, and 5th days of every month of every year.

While tasks can be scheduled manually, the language also allows plans to
automatically update the scheduling of other plans, including itself. To do so, the
language supports two special scheduling operators, Schedule and Unschedule. The
former allows a plan to register a new plan to be run. It creates or updates plan
schedule data in the task database. Unschedule removes a scheduled task from the
task database. Unschedule can be used by a plan to remove itself from a monitoring
activity and is often used in tandem with a notification operator. For example, a plan
can monitor the set of available houses for sale by various real estate Web sites for
the entire month of September, send an email at the end of that month to the user
containing the results, unschedule itself from execution, and then schedule a new
plan (perhaps, for example, to clean up the database that stored the monitoring data).

2.3.4 Subplans
To promote reusability, modularity, and the capability for recursion, the plan
language supports the notion of subplans. Recall that all plans are named, consist of
a set of input and output streams, and a set of operators. If we consider that the
series of operators amounts to a complex function on the input data, then plans
present the same interface as do operators. In particular, using our earlier
definitions, it is possible that Opi = P in that OpIn = PlanIn, OpOut = PlanOut,
OpWait = ∅, OpEnable = ∅, and Func = {Op1...Opn}. Thus, a plan can be
referenced within another plan as if it were an operator. During execution, a subplan
is called just like any other operator would – as inputs of the subplan arrive, they are
executed within the body of the subplan by the operators of that subplan.

For example, consider how the example_plan, introduced earlier, can be
referenced by another plan called parent_plan. Figure 2.5 illustrates how the text

PLAN parent_plan
{

INPUT: w, x
OUTPUT: z

BODY
{
Op6 (w : y)
example_plan (x, y : z)

}
}

Figure 2.5: Text form of parent_plan

29

t_diff, shown
in F

Recursion
to promoting modularity and re-use, subplans make another form of

tomated
info

lem can be solved simply with recursion. We can use subplan
refe

lan for
proc

encourage modularity and re-use. Once written, a plan can be used as an operator in
any number of future plans. Complicated manipulations of data can thus be
abstracted away, making plan construction simpler and more efficient.

For example, one could develop a simple subplan called persisten
igure 2.6, that uses the existing operators DbQuery, Minus, Null, and DbAppend

to take any relation, compare it to a named relation stored in a local database. This
plan determines if there was an update, appends the result, and returns the difference.
Many types of monitoring style plans that operate on updated results can incorporate
this subplan into their existing plan.

MINUSrelation

DBQUERY NULL DBAPPEND

diff

Figure 2.6: Graph form of persistent_diff

In addition
control flow possible: recursion. As described earlier, a number of online
information gathering tasks require some sort of looping-style (repeat until) control
flow. Results from a single query can be spanned across multiple Web pages.
Recursion provides an elegant way to address this type of interleaved information
gathering and navigation in a streaming dataflow environment.

For example, when processing results from a search engine query, an au
rmation gathering system needs to collect results from each page, follow the

"next page" link, collect results from the next page, collect the "next page" link on
that page, and so on – until it runs out of "next page" links. If we were to express
this in von Neumann style programming language, a Do...While loop might be used
accomplish this task. However, implementing these types of loops in a dataflow
environment is problematic because it requires cycles within a plan. This leads to
data from one loop iteration possibly colliding with data from a different iteration.
In practice, loops in dataflow graphs requires a fair amount of synchronization and
additional operators.

Instead, this prob
rence as a means by which to repeat the same body of functionality and we can

use the Null operator as the test, or exit condition. The resulting simplicity and lack
of synchronization complexity makes recursion an elegant solution for addressing
cases where navigation is interleaved with retrieval and when the number of
iterations for looping style information gathering is not known until runtime.

As an example of how recursion is used, consider the abstract p
essing the results of a search engine query. A higher level plan called

query_search_engine, shown in Figure 2.7a, posts the initial query to the search
engine and retrieves the initial results. A subplan called gather_and_follow, shown
in Figure 2.7b, is then called to process these results. To do so, the subplan routes

30

2.4 Using the plan language to build information agents
 us turn to how

2.4.1 The CarInfo agent plan
s and car

 of the plan. Again,
the

2.4.2 Homeseekers: a more complicated type of information agent
sed to specify

GATHER_AND_FOLLOWWRAPPER
initial-results

search term web pages

Figure 2.7a: The query_search_engine plan

the current page results to a Union operator and then calls itself again to process
results available via the next page link. The results of this recursive call are then
combined at the Union operator with the first flow. This process continues until no
more next page links are found.

UNION

NULL

WRAPPER
next-results

GATHER_AND_FOLLOWfalse

true

PROJECT
url

DISTINCT
next-page-link

urls

Figure 2.7b: The recursive subplan gather_and_follow

Having introduced the agent plan language in the previous section, let
this language can be used to build information agents. We start with the main
example used in the paper, the CarInfo agent, which was described in Chapter 1.

Recall that the purpose of the CarInfo agent is to return safety rating
reviews for automobiles that match a particular set of user criteria, including car
type, year, and price range. Figure 1.6 of Chapter 1 showed the dataflow graph for
the CarInfo agent. Using the language introduced in this chapter, Figure 2.8 shows
the corresponding text form of the plan described by that graph.

The figure is a straightforward translation of the graph form
ordering of the operators has nothing to do with the execution schedule –

operators fire whenever their input data becomes available. Literals shown in Figure
2.8 are treated as streams containing a single tuple.

While Figure 2.8 shows how the language I have described can be u
tasks like CarInfo, some of these tasks can also be expressed in database query
languages like SQL. For example, the following SQL expresses the CarInfo task:

31

PLAN car_info
{

INPUT: criteria
OUTPUT: reviews-and-ratings

BODY
{

Wrapper ("Edmunds", criteria : cars)
Select (cars, "maker != 'Oldsmobile'" : filtered-cars)
Wrapper ("NHTSA", filtered-cars : safety-ratings)
Wrapper ("CG Search", filtered-cars : summary-urls)
Wrapper ("CG Summary", summary-urls : full-urls)
Wrapper ("CG Full", full-urls : car-reviews)
Join (safety-ratings, car-reviews,

"l.make = r.make and l.model = r.model" :
reviews-and-ratings)

}
}

Figure 2.8: Text representation of CarInfo agent plan

SELECT E.make, E.model, N.safety_rating, CFULL.review_text
 FROM edmunds as E, nhtsa as N, cg_search as CSEARCH,
 cg_summary as CSUMM, cg_full as CFULL
 WHERE E.type = ‘Midsize coupe/hatchback’
 AND E.price between 5000 and 7000
 AND E.year = 2002
 AND E.make = N.make AND E.make = CSEARCH.make
 AND E.model = N.model AND E.model = CSEARCH.model
 AND CSEARCH.summary_url = CSUMM.url
 AND CSUMM.full_url = CFULL.url
 AND E.make <> ‘Oldsmobile’

Existing query processing technology would construct a plan similar to the one in
Figure 2.8 in order to return an answer. However, more complicated Web data
gathering tasks cannot always be expressed in languages like SQL. As a result,
traditional database-like approaches to Web information gathering that use such
languages, for example mediators and network query engines, are limited in what
tasks they can perform.

As a concrete example, let us consider the “Homeseekers” task. This example
involves using the Web to search for a new house to buy. Suppose that we want to
use an online real estate listings site, such as Homeseekers
(http://www.homeseekers.com), to locate houses that meet a certain set of price,
location, and number of rooms constraints. In doing so, we want the search query to
run periodically over a medium duration of time (say a few weeks) and have any new
updates (i.e., new houses that meet specified criteria) e-mailed to us as they are
found. Finally, we would also like these summaries to include references (URLs) to
large pictures of each house.

To understand how to automate the gathering part of this task, let us first discuss
how users would complete it manually. Figures 2.9a, 2.9b, and 2.9c show the

32
interface and result pages for Homeseekers. To query for new homes, users initially
fill the criteria shown in Figure 2.9a – specifically, they enter information that
includes city, state, maximum price, etc. Once they fill in this form, they submit the
query to the site and an initial set of results are returned – these are shown in Figure
2.1b. However, notice that this page only contains results 1 through 15 of 22. To get
the remainder of the results, a "Next" link (circled in Figure 2.9b) must be followed
to the page containing results 16 through 22. Finally, to get the details of each
house, users must follow the URL link associated with each listing. A sample detail
screen is shown in Figure 2.9c. The detail screen is useful because it often contains
pictures and more information, such as the MLS (multiple listing services)
information, about each house. In this example, the detailed page for a house must
be investigated in order to identify the URL for the large image of each house. In
this example, the detail page is also important because it specifies the exact number
of rooms in each house – the search facility provided by the site only allows the user
to specify “n or more” rooms (e.g., 2 or more rooms).

To turn this one time search into a monitoring process, users would then repeat
the above procedure with some frequency over the desired number of days, weeks, or
months. Note that the user must both query the site periodically and keep track of
new results by hand. This latter activity can require a great deal of work – users
must discern which houses in each result list are new entries and identify changes
(e.g., selling price updates) for houses that have been previously viewed.

Figure 2.9a: Homeseekers search screen

33

Figure 2.9b: Homeseekers results list screen

Figure 2.9c: Homeseekers detail page screen

As I have already discussed, it is possible to accomplish part of the task using
existing Web query techniques, such as those provided by mediators and network
query engines. However, notice that the task requires actions beyond gathering and
filtering data. It involves periodic execution, comparison with past results,
conditional execution, and asynchronous notification to the user. These are not
actions that traditional Web query languages support and involve more than

34
gathering and filtering. Instead of a query plan language, what is needed is an agent
plan language that supports the operators and constructs necessary to complete the
task.

We can consider how such agent plans generally might look. Figure 2.10 shows
an abstract plan for monitoring Homeseekers. As the figure shows, search criteria is
used as input to generate one or more pages of house results. The URLs for each
house from each results page are extracted and compared against houses that already
existed in a local database. New houses – those on the Web page but not in the
database – are then queried for their details and appended to the database so that
future queries can distinguish new results. During the extraction of houses from a
given Homeseekers results page, the "Next" link (if any) on that page is followed and
the resulting new houses go through the same process. This cycle stops when the
last result page, the page without a “Next” link, has been reached. Then, after the
details of the last house has been gathered, an update on the set of new houses found
are e-mailed to the user.

GET house
results page

FILTER OUT
those houses

previously seen

LOAD DATABASE
of houses

previously seen

EXTRACT
"next page" link

EXTRACT
house URLs

SEND E-MAIL
to the user

UPDATE DATABASE
with new houses

search
criteria

GET house
detail page

Figure 2.10: Abstract Homeseekers plan

2.4.3 The Homeseekers agent plan
To solve the Homeseekers task in the agent plan language I have described, let us
first notice that it is somewhat similar to the search engine example described earlier
in section 2.3.4. The basic idea is to post the query to the Web site, gather the initial
results, gather the “next page” link, and continue gathering results from successive
pages. Then, for each result page, we would drill down on each result URL in order
to extract the details about each house.
The details of the solution are shown in the Figure 2.11a and Figure 2.11b. The
former illustrates the get_houses, required to implement the abstract real estate plan
in Figure 2.10. get_houses calls the subplan get_urls shown in Figure 2.11b, which is
nearly identical to the plan gather_and_follow, described above. The rest of
get_houses works as follows:

1. A Wrapper operator fetches the initial set of houses and link to the next page
(if any) and passes it off to the get_urls recursive subplan, which continues
this gathering process recursively. The get_urls subplan terminates after it
reaches the final page of search results.

35

WRAPPER
house-urls

GET_URLS WRAPPER
raw-house-details

SELECT
cond

FORMAT
"beds = %s"

criteria PROJECT
price, location, beds

Figure 2.11a: Homeseekers agent plan get_houses

UNION

NULL

WRAPPER
next-page-link

GET_URLS

false

true

PROJECT
house-url

DISTINCT
next-page-linkurls

Figure 2.11b: Homeseekers recursive subplan get_urls

2. Another Wrapper operator investigates the detail link for each house so that
the full set of criteria (including picture) can be returned.

3. Using these details, a Select operator filters those satisfying the search criteria.
4. The result is output from the plan.

2.5 An Efficient Plan Execution Architecture
By definition, Web information gathering involves processing data gathered from
remote sources. During the execution of an information gathering plan, it is often
the case that multiple independent requests are made for different sets of remote
data. Those data are then independently processed by a series of operations and then
combined or output. Network latencies, bandwidth limitations, slow Web sites, and
queries that yield large result sets can dramatically curtail the execution performance
of information gathering plans. This is especially the case when plan operators are
executed serially: any one of the issues mentioned can bottleneck the execution of an
entire plan.

From an efficiency standpoint, there are two problems with standard von
Neumann execution of information gathering plans. One is that it does not exploit
the independence of data flows in a common plan: for example, multiple unrelated
requests for remote data cannot be parallelized. The plan language described in this
chapter addresses this problem to some extent by allowing plans to be expressed in
terms of their minimal data dependencies: still, that does not dictate how those
operators are actually executed.

The second efficiency problem is that von Neumann execution does not exploit
the independence of tuples in a common relation: for example, when a large data set
is being progressively retrieved from a remote source, the tuples that have already
been retrieved could conceivably be operated on by successive operators in the plan.

36
This is often reasonable, since the CPU on the local system is often under-utilized
while remote data is being fetched.

Both problems are addressed through a streaming dataflow execution system for
information agent plans. The system allows plans to realize significant operator and
data parallelism at runtime by executing multiple operators concurrently and
pipelining data between operators throughout execution. Other network query
engines have implemented designs that bear some similarity. However, the
architecture I propose below is novel in two ways:

• A thread-pooling approach is applied to streaming dataflow execution,
where multiple threads are shared by all operators in a plan. This allows
significant parallelism without exhausting resources.

• Recursive streaming dataflow execution is addressed using a data
coloring approach.

2.5.1 Dataflow executor
While the plan language described here allows dataflow-style plans to be coded in
text, it does not specify how the actual execution process works. Thus, to
complement the language and to efficiently execute plans, I have developed a true
dataflow-style execution component. The executor allows plans to realize
opportunities for concurrency between independent flows of data, thus enabling
greater horizontal parallelism at runtime.

The executor functions as a virtual threaded dataflow machine. It assigns user-
level threads to execute operators that are ready to fire. This type of execution is
said to be “virtual dataflow” because thread creation and assignment is not done
natively by the CPU, nor even in kernel space by the operating system, but by an
application program (the executor) running in user space. By using threads to
parallelize execution of a plan, the executor can realize better degrees of true
parallelism, even on single CPU machines. This is because the use of threads
reduces the impact of any I/O penalties caused by a currently executing operator.
That is, multiple threads reduces the effect of vertical waste that can occur when
single-threaded execution reaches an operation that blocks on I/O.

For example, consider the case where a plan containing two independent
Wrapper operators is being executed on a machine with a single CPU. Suppose that
both Wrapper operators have their input and can fire. Both operators will be
assigned distinct threads. The single CPU will execute code that issues the network
request for the first Wrapper operator, not wait for data to be returned, and finish
issuing the network request for the second Wrapper operator. Thus, in a matter of
microseconds, both operators will have issued their requests (which typically take on
the order of hundreds of milliseconds to complete) and retrieval of the data (on the
remote sites) will have been parallelized. Thus, the overall execution time will be
equal to the slowest of the two requests to complete. This contrasts with the
execution time required for serial execution, which is equal to the sum of time
required for each request.

37
Promoting and bounding parallelism with thread pools
While using threaded dataflow has its benefits, past research in dataflow computing
and operating systems has shown that there are cases when parallelism must be
throttled or the overhead of thread management (i.e., the creation and destruction of
threads) can be overly taxing. For example, if threads are created whenever an
operator is ready, the cost to create them can add up to significant overhead. Also, if
there is significant parallelism during execution, the number of threads employed
might result in context switching costs that outweigh the parallelism benefits. To
address both issues, I describe a thread pooling architecture that allows the executor
to realize significant parallelism opportunities within fixed bounds.

There are advantages to using a pooling approach to thread management for
streaming dataflow execution as opposed to other types of thread management, such
as on-demand creation or permanent operator/thread assignment. In particular, two
key benefits are that (a) significant parallelism can be realized during execution
while at the same time (b) ensuring that the parallelism does not exceed some limit.
In contrast, if thread are created on demand, the amount of data determines the
maximum degree of parallelism – this can easily exceed machine limits.
Alternatively, if a fixed number of threads are associated per operator, then many
available threads may go unused at any given point in execution. Furthermore, since
threads in a thread pool are created once, there is practically no overhead issue. In
summary, thread pools ensure a low-overhead means to achieve significant, but
bounded parallelism during streaming dataflow execution.

Let us now turn to the details of how a thread pool is used by the executor. At
the start of plan execution, a finite number of threads are created (this number is
easily adjustable through an external configuration file) and arranged in a thread
pool. Once the threads have been created, execution begins. When data becomes
available (either via input or through operator production), a thread from the pool is
assigned to execute a method on the consuming operator with that data. Each time
that operator produces output, it hands off the output to zero or more threads so that
its consumer(s), if any, can process the output. If the pool does not contain any
available threads, the output is queued in a spillover work queue, to be picked up
later by threads as they return to the queue. This same behavior occurs for all
operator input events. Thus, parallelism is both ensured by the existence of multiple
threads in the pool and bounded by it – in the latter case, the degree of true
parallelism during execution can never exceed the pool size. Demands on
parallelism beyond the number of threads in the pool is handled by the work queue.

Figure 2.12 illustrates the details of how the thread pool is used by the executor
at runtime. The figure shows that there are four key parts to the executor:

• The thread pool: This is a collection of threads ready to process the
input collected in the queue. There can be a single thread pool or it can
be partitioned so that certain sources have a guaranteed number of
threads available to operators that query those sources. All available
threads wait for new objects in the queue. Typically, contention for the
queue on machines with a single CPU is not an issue (even with

38
hundreds of threads). However, configuration options do exist for
multiple work queues to be created and for the thread pool to be
partitioned across queues.

• The spillover work queue: All data received externally and transmitted
internally (i.e., as a result of operator execution) that cannot be
immediately assigned to an available thread is collected in this queue.
As threads return to the pool, they check if there are objects in the
queue: if there are, they process them, otherwise the thread waits to be
activated by future input. The queue itself is an asynchronous FIFO
queue implemented as a circular buffer. When the queue is full, it grows
incrementally as needed. The initial size of the queue is configurable.
The structure of a queue element is described in detail below.

• The routing table: This data structure describes the dataflow plan
graph in terms of producer/consumer operator method associations. For
example, if a Select operator produces data consumed by a Project
operator, the data structure that marshals output from the Select is
associated with the Project input method that should consume this data.
The table is computed once – prior to execution – so that the
performance of operator-to-operator I/O is not impacted at runtime by
repetitive lookups of consumers by producers. Instead, pre-computation
allows the data structure associated with a producing method to
immediately route output data to the proper set of consuming input
methods.

• The set of operator objects: These are the collection of operator

Runtime plan –
internal data structure

Operator objects

Thread
Pool

Spillover
work queue

1

4

5

3

Routing table

2a

2b

Threads
available?

Plan
Input

Plan
Output

Figure 2.12: Detailed architecture of executor

39
classes (including their input/output methods and state data structures).
There exists one operator object per instance in the plan.

Each queue object consists of a tuple that describes:
• the session ID
• the iteration ID
• the content (i.e., the data)
• destination operator interface (i.e., a function pointer).

The session ID is used to distinguish independent sessions (external invocations of
the plan) and the iteration ID to distinguish current call-graph level of a session,
which ensures safety during concurrent re-entrancy at runtime. These IDs provide a
unique key for indexing operator state information. For example, during recursive
execution, these IDs ensure that the concurrent firing of the same operator at
different levels of the call graph do not co-mingle state information. Finally, the
destination operator interface is the pointer to the code that the thread assigned to a
queue object will run.

At runtime, the system works as follows. Initial plan input arrives and is
assigned to threads from the thread pool (#1 in Figure 2.12), one thread for each
input tuple (#2a), or if no threads are available the data is added to the spillover
work queue (#2b). Each assigned thread from the pool takes its queue object and,
based on the description of its target, fetches the appropriate operator object so that it
can execute the proper function on the data (#3). During the execution of the
operator, state information from previous firings may be accessed using the (session
ID, iteration ID) pair as a key. The result of an operator firing may result in output.
If it does, the operator uses the routing table (#4) to determine the set of consumers
of that output. It then composes new data queue objects for each consumer and
hands off those objects (#5) to either an available thread in the thread pool (#2a) or
deposits them to the work queue (#2b) if no threads are available. To reduce
memory demands, producers only deep-copy data they produce if there are multiple
consumers. Finally, operators that produce plan output data route that data out of the
plan as it becomes available.

2.5.2 Data streaming
At a logical level, each of the variables in the plan language I describe are relations.
However, to provide more parallelism and thus efficiency at runtime, tuples of a
common relation are streamed between operators. Each stream consists of stream
elements (the tuples in a relation), followed by an end of stream (EOS) marker.
Thus, when communicating a relation from producer to consumer, producing
operators communicate individual tuples to consumer operators and follow the final
tuple with an EOS token.

Streaming relations between operators increases the degree of vertical
parallelism during plan execution. In revisiting the firing rule described earlier, it
can be further clarified to read:

An operator may fire upon receipt of any input tuple, providing it has
received the first tuple of all of its wait variables.

40
Thus, when an operator receives a single tuple on any of its inputs, it can consume
and process that tuple. Afterwards, it can potentially emit output that, in turn, can be
consumed by a downstream operator or output from the plan. The resulting
parallelism is “vertical” in the sense that two or more operators (e.g., one producer
and one or more consumers) can concurrently operate on the same relation of data.
Remote sources that return significant amounts of data can be more efficiently
processed through streaming, since the operator that receives the network
transmission can pass along data for processing as it becomes available and before
the rest of the data has been received.

Support for any kind of streaming implies that state must be kept by operators
between firings. This is because the operation being performed is logically on an
entire relation, even though it physically involves each tuple of that relation. If the
operator does not maintain state between firings, it cannot necessarily produce
correct results. For example, consider the set-theoretic Minus operator that takes two
inputs, lhs and rhs, and outputs the result of lhs - rhs. This operator can begin
emitting output as soon as it has received the rhs EOS token. However, the operator
must still keep track of rhs data until it receives the EOS from both; if not, it may
emit a result that is later found to be incorrect. To see how this could happen,
suppose that the order of input received by an instance of the Minus operator was:

lhs: (Thing1)
lhs: (Thing2)
rhs: (Thing3)
rhs: (Thing2)
rhs: EOS
lhs: (Thing3)
lhs: EOS

The correct output, lhs - rhs, should be

lhs-rhs: (Thing1)
lhs-rhs: EOS

However, this can only be achieved by waiting for the EOS before emitting any
output and also by keeping track (i.e., maintaining state) of both inputs. For
example, if only lhs data is retained, then the rhs instance of (Thing3) would not be
in memory when the lhs instance of (Thing3) occurred and this tuple would be
incorrectly emitted.

In summary, streaming is a technique that improves the efficiency of operator
I/O by increasing the degree of vertical parallelism that is possible at runtime. By
allowing producers to emit tuples as soon as possible – and by not forcing them to
wait for consumers to receive them – both producers and consumers can work as fast
as they are able. The main tradeoff is increased memory, for the queue required to
facilitate streaming and for the state that needs to be maintained between firings.

Recursive streaming: simplicity + efficiency
Streaming can complement the simplicity of many types of recursive plans with
highly efficient execution. Looping in theoretical dataflow systems is non-trivial
because of the desire for single-assignment and because of the need for

41
synchronization during loop iterations. Streaming further complicates this: data from
different loop iterations can collide, requiring some mechanism to color the data for
each iteration. As a result, looping becomes an even more difficult challenge.

To address this problem, I introduce a data coloring approach. Each time that
data enters a flow, it is given a color (which can be thought of as a transaction ID)
and an iteration value (initially 0). Upon re-entrancy, the iteration value is
incremented. When leaving a re-entrant module, the iteration value is decremented.
If the new value is equal to 0, the flow is routed out of the recursive module;
otherwise, the data flow continues to unravel until its iteration value is 0. For tail-
recursive situations, the system optimizes this process and simply decrements the
iteration value to 0 immediately and exits the recursive module. The two pronged
data-coloring approach, which is similar to strategies used in dataflow computing
literature, maintains the property of single assignment at each the level of the call
graph. Streaming easily fits into this model without any other changes. As a result,
many levels of the call graph can be active in parallel – effectively parallelizing the
loop.

To see how this works, let us return to the get_houses example of Figures 2.10a
and 2.10b. When the input tuple arrives, the initial page of houses is fetched. When
that happens, the “Next” link is followed in parallel with the projecting of the house
URLs to the Union operator and then to the Minus operator. Since the Union
operator can emit results immediately, and the Minus operator will have both of its
inputs, data flow continues until the next Wrapper operator, which queries the URL
and extracts the details from the house. Thus, the details of the houses from the first
page are queried in parallel with the following of the “Next” link, if it exists. Data
from the next page is then extracted in parallel with the following of the “Next” link
from this second page and so on. Meanwhile, the results from the get_urls subplan
(the house URLs) are streamed back to the first level of the plan, to the Union
operator. They continue on through and their details are gathered in parallel.

2.6 Experimental results
I conducted a set of experiments that highlight the increased expressivity and
efficient execution supported by the agent plan language and execution system. This
method consists of verifying three hypotheses that are fundamental to the key claims:

Hypothesis 1: Efficient information agents. The language and execution
system supports the efficient execution of information agent plans.

Hypothesis 2: Expressive plan language supports information gathering
loops and source monitoring, actions not supported by other network
query engine languages. The agent plan language described here allows
certain types of information gathering goals, such as those that require
interleaved gathering or source monitoring, to be achieved more easily than
would be possible using languages supported by network query engines.

Hypothesis 3: Increased expressivity does not impact performance. The
additional expressivity permitted by the plan language described here does
not negatively impact the efficiency of the system.

42
After a brief introduction about the implemented system used in the

experiments, the rest of this section is divided into three subsections, each of which
focuses on verifying each of these hypotheses.

2.6.1 The Theseus information agent system
I implemented the approach described in this chapter in a system called Theseus.
Theseus is written entirely in Java (approximately 30,000 lines of code) and thus
runs on any operating system to which the Java virtual machine (JVM) has been
ported. I ran the experiments described here on an Intel Pentium III 833MHz
machine with 256MB RAM, running Windows 2000 Professional Edition, using the
JVM and API provided by Sun Microsystems’ Java Standard Edition (JSE), version
1.4.1. This machine was connected to the Internet via a 10Mbps Ethernet network
card.

2.6.2 Hypothesis 1: Efficient information agents
To verify the first hypothesis, that the language and execution system supports the
efficient execution of information agent plans, I measured the efficiency of the
Homeseekers information agent. The experiments show that without the parallelism
benefits of the plan language and execution system, agents such as Homeseekers
would perform much more slowly than with these features.

The graphical plans for Homeseekers are the same as shown in Figures 2.11a
and 2.11b, without the operators for monitoring (the DbQuery, Minus, DbAppend,
and Email). Thus, this an interactive agent that simply gathers data once. The
textual plans required for this are simply translations of Figures 2.11a and 2.11b
using the plan language described in this paper. The textual form of the get_houses
plan is shown in Figure 2.13a and the textual form of the get_urls plan is shown in
Figure 2.13b.

To demonstrate the efficiency that streaming dataflow provides, the
Homeseekers Get_houses plan was run under three different configurations of

PLAN get_urls
{
INPUT: result-page-data
OUTPUT: combined-urls

BODY
{
project(result-page-data, “house-url” : curr-urls)
distinct(result-page-data, “next-page-url” : next-status)
null (next-status, next-status, next-status :

next-page-url, next-urls)
wrapper (“result-page”, next-page-url : next-page-data)
get_urls (next-page-data : next-urls)
union (curr-urls, next-urls : combined-urls)

}
}

Figure 2.13a: Text form of the Homeseekers get_houses plan

43

Theseus. The first configuration (D-) consisted of a thread pool with one thread –
effectively preventing true multi-threaded dataflow execution and also makes
streaming irrelevant. The resulting execution is thus very similar to the case where
the plan had been programmed directly (without threads) using a language like Java
or C++. A second Theseus configuration (D+S-) used multiple threads for
dataflow-style processing, but did not steam data between operators. Finally, the
third configuration (D+S+) consisted of running Theseus in its normal streaming
dataflow mode, enabling both types of parallelism. For the D+S- and D+S+ cases,
the number of threads was set to 15.

PLAN get_urls
{
INPUT: result-page-data
OUTPUT: combined-urls

BODY
{
project(result-page-data, “house-url” : curr-urls)
distinct(result-page-data, “next-page-url” : next-status)
null (next-status, next-status, next-status :

next-page-url, next-urls)
wrapper (“result-page”, next-page-url : next-page-data)
get_urls (next-page-data : next-urls)
union (curr-urls, next-urls : combined-urls)

}
}

Figure 2.13b: Text form of the Homeseekers get_urls recursive subplan

Each configuration was run three times (interleaved, to negate any temporary
benefits of network or source availability) and averaged the measurements of the
three runs. The search constraints consisted of finding “houses in Irvine, CA that are
priced between $500,000 and $550,000”. This query returned 72 results (tuples),
spread across 12 pages (6 results per page). Figure 2.14 shows the average
performance results for these three configurations in terms of the time it took to
obtain the first tuple (beginning of output) and the time it took to obtain the last tuple
(end of output).

As the figure shows, the parallelism provided by streaming dataflow has a
significant impact. Typical von Neumann style execution, such as that in (D-),
cannot not leverage opportunities for parallelism and suffers heavily from the
cumulative effects of I/O delays. While the D+S- fares better because concurrent
I/O requests can be issued in parallel, the inability to stream data throughout the plan
prevents all result pages from being queried in parallel. Also, because of the lack of
streaming, results obtained early during execution (i.e., the first tuple) cannot be
communicated until the last tuple is ready. Finally, the D+S+ case shows that
streaming can alleviate both problems, allowing the first tuple to be output as soon as
possible, while supporting the ability to query all result pages in parallel (and process
the detail pages as soon as possible, in parallel). In short, Figure 2.14 shows that

44

streaming dataflow is a very efficient execution paradigm for I/O-bound Web-
information gathering plans that require interleaved navigation and gathering.

0
10000
20000
30000
40000
50000
60000
70000
80000

First tuple Last tuple

Ti
m

e
(m

s) D-
D+S-
D+S+

Figure 2.14: Average Homeseekers performance results

Note that the performance benefits of streaming dataflow are not limited to
recursive streaming dataflow plans. Even for other common types of data integration
plans, where agents gather information from multiple sources and/or where queries
to some sources are dependent on answers from others (i.e., sources with binding
patterns), streaming dataflow produces noticeable benefits. Table 2.2 shows how
streaming dataflow execution is more efficient than standard von Neumann-style
execution for three common types of plans: CarInfo, RepInfo, and StockInfo2.
CarInfo has been discussed earlier and a details about the RepInfo and StockInfo
agent plans can be found in Chapter 3.

To further demonstrate the benefit of streaming dataflow for recursive plans, I
sought to compare the execution performance of the Homeseekers Get_houses plan
against the performance achieved when using another type of information gathering
system, such as a network query engine. However, since none of these systems
support the ability to express loops or recursive information gathering, it was not

Plan Scenario First Tuple (ms) Last Tuple (ms)
Car-Info D- 10578 10578
Car-Info D+S- 7438 7438
Car-Info D+S+ 4833 5879
Rep-Info D- 11104 11104
Rep-Info D+S- 4125 4125
Rep-Info D+S+ 3682 4238

Stock-Info D- 7283 7283
Stock-Info D+S- 6615 6615
Stock-Info D+S+ 6151 6151

Table 2.2: The benefits of streaming dataflow for three other plans

2 Note: Performance numbers for some of these plans, such as CarInfo, differ slightly from what has
been presented elsewhere in this document. This is because Table 2.2 measurements were taken at a
different time and reflect changes in the performance of the remote sources (i.e., Web sites) since the
time of the earlier measurements.

45
possible to simply run the same plan in these other executors. Instead, Theseus can
only be to the theoretical performance of an ad-hoc solution – a streaming dataflow
network query engine integrated into software that loops over the result pages.

More precisely, to complete an equivalent Homeseekers-like task, these systems
would need to gather data from one result page at a time. Note that while loops or
recursion for these systems is not possible (i.e., not possible to gather data spread
across a set of pages in parallel), given the type of intermediate plan language they
support, they can still be used to “drill down” on the details of a particular result (i.e.,
gather data below a set of pages) in parallel. Thus, a network query engine could
leverage its dataflow and streaming capabilities to process a single page, but could
not be used to parallelize the information gathering from a set of linked result pages.
Each page (and its details) would have to be processed separately.

To simulate this behavior, I used Theseus to extract house URLs and the details
one page at time, for each of the twelve pages of results obtained by the initial query.
The average time required to gather the details of all six housing results was 3204
ms. Note again that the time to retrieve the first detailed result was the same as in
the Theseus D+S+ case: 1852ms. If we take the time to extract all six detailed
results and multiply it by the number of pages in the query (12), the time of last tuple
is equal to (3204 * 12 =) 38448ms. Figure 2.15 shows how these results compare to
the D+S+ case of Theseus.

Thus, while an ad-hoc solution using a network query engine could allow the
first tuple of results to be returned just as fast as the system described in this paper,
the inability for the “Next” links to be navigated to immediately would result in less
loop parallelism and, as a result, would lead to slower production of the last tuple of
data. Therefore, while network query engines could be used to gather results spread
across multiple hyperlinked Web pages, their inability to natively support a
mechanism for looping negates the potential for streaming to further parallelize the
looping process.

In summary, to verify the first hypothesis, I have described how the expressivity
of the plan language presented enables more complex queries (like Homeseekers) to
be answered efficiently. These results apply not just to Homeseekers, but to any type
of site that reports a result list as a series of hyperlinked pages.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

First tuple Last tuple

Ti
m

e
(m

s)

Theoretical netw ork
query engine

Theseus D+S+

Fig ne ure 2.15: Theseus vs. theoretical network query engi

46
2.6.3 Hypothesis 2: Expressive plan language supports information gathering
loops and source monitoring, actions not supported by other network query
engine languages
To validate the second hypothesis, that the agent plan language described here
supports plans that either (a) are not simple to describe using the languages of other
network query engines or (b) cannot be represented at all by these query languages, I
compared how the task of monitoring Homeseekers could be accomplished using the
approach described in this chapter versus existing Web query systems. I have
previously described why monitoring in cases such as this would be useful –
searching for a house is a process that requires weeks, if not months of executing the
same kind of query. Thus, a corresponding information gathering plan would query
Homeseekers once per day and send newly found matches to the end user over e-
mail. Again, this type of problem is general – it is often desirable to be able to
monitor many Internet sites that produce lists of results. However, to do so requires
support for plans that are capable of expressing the monitoring task, the persistence
of monitoring data, and the ability to notify users asynchronously.

The graph form of the plan to monitor Homeseekers is shown in Figure 2.16. It
simply leverages the existing Homeseekers plan and uses a few additional operators
to support monitoring. In particular, it uses two database operators (DbQuery and
DbAppend) to integrate a local commercial database system for the persistence of
results. This allows future queries to only return new results and stored all past
results. Notice that initial DbQuery is triggered by a synchronization variable. The
plan also communicates new results asynchronously to users via an Email operator.

To measure expressivity, let us consider a comparison of the plan in Figure 2.15
with those capable of being produced by the Telegraph and Niagara network query
engines. The comparison focuses on TelegraphCQ (Chandrasekaran et al. 2003) and
NiagaraCQ (Chen et al. 2000), both of which are modifications of their original
systems to support continuous queries for the monitoring streaming data sources.
Since the TelegraphCQ and NiagaraCQ query languages are very similar, I present a
detailed comparison with the former and a general comparison with the latter.

TelegraphCQ provides a SQL-like language with extensions for expressing
operations on windows of streaming data. Specifically, the language allows one to
express Select-Project-Join (SPJ) style queries over streaming data and also includes
support for “for” loop constructs to allow the frequency of querying those streams.
For example, to treat Homeseekers as a streaming data source and to query it once
per day (for 10 days) for houses in Manhattan Beach, CA, that are less than
$800,000:

criteria GET-HOUSES
price-info

DBQUERY
houses-seen

MINUS

DBAPPEND

EMAIL

Figure 2.16: Graph form of the plan to monitor Homeseekers

47
Select street_address, num_rooms, price
 From Homeseekers
 Where price < 800000
 and city = ‘Manhattan Beach’
 and state = ‘CA”
 for (t=ST; t<ST+10; t++) {
 WindowIs(Homeseekers, t-1, t)
 }

From this, it is clear that TelegraphCQ supports some ability to monitor sources.
Unfortunately, the above example would not work the way the plan in Figure 2.16
does, for two major reasons:

• The Homeseekers source cannot simply have its data streamed, as the
query above indicates. Rather, there needs to be some way to express
the need to gather multiple results spread over multiple pages.

• Unlike the plan in Figure 2.16, the query above does not allow one to
specify that recurring queries only communicate the “diff” of prior
findings. As a result, a consumer of the above query will receive
multiple notifications about the same houses. Worse, it is possible for
the user to receive updates even if nothing has changed on the source.
In contrast, the plan shown in Figure 2.16 only updates the user if new
houses have been listed.

In addition to both of the points above, there is no mention of how periodic results
are to be communicated to users. In contrast, the Email operator in Figure 16 allows
updates to be asynchronously transmitted to users.

Finally, it is worth noting that TelegraphCQ queries only terminate based on
temporal conditions – that is, the only way to control continuous queries are through
declarations of time windows. For example, it is not possible to express that a
continuous query to Homeseekers should be terminated after, say, one hundred total
results have been found, or after no new houses have been found in the last week. In
contrast, simple modifications of the plan in Figure 2.15 using the Aggregate and
database operators could achieve both goals.

The NiagaraCQ query language, like TelegraphCQ, also allows continuous SPJ
queries to be expressed. NiagaraCQ also allows more complicated operations, such
as Email, to be accomplished by calling out to a function declared in a stored
procedure language. The format of a NiagaraCQ query is:

CREATE CQ_name XML-QL query
DO action
{START s_time} {EVERY time_interval} {EXPIRE e_time}

In the example, the “query” part would consist of the XML-QL equivalent of
selecting house information for those that met the desired search criteria. The
“action” part would be something similar to “MailTo:user@example.com”.

Generally, the NiagaraCQ query language has the same limitations that the
TelegraphCQ language does when it comes to the flexible monitoring of sources.
There is no ability to interleave gathering of data with navigation (in fact,

48
NiagaraCQ assumes that Homeseekers can be queried as an XML source that
provides a single set of XML data). There is also no support for actions (like e-
mail) based on differentials of data monitored over some period of time. Although
NiagaraCQ allows one to write a stored procedure that could accomplish this task, it
requires a separate programming task and its execution is not necessarily as efficient
as the rest of the query. Finally, as is the case in TelegraphCQ, there is no way to
terminate a query other than by temporal constraints.

In summary, I have provided a qualitative analysis of how the continuous query
languages of network query engines compare to the one presented here. As
described, while languages such as TelegraphCQ and NiagaraCQ do allow some
ability to monitor sources via continuous queries, these languages are not as flexible
as the one presented in this paper. Specifically, these languages lack the ability to
terminate monitoring for non-temporal reasons, cannot easily notify a user about
source updates, and lack the ability to query sources that require more complicated
types of data gathering (i.e., that requires interleaved navigation and gathering).

2.6.4 Hypothesis 3: Increased expressivity does not impact performance
Though it has been demonstrated that Theseus performs well on more complex
information gathering tasks, it is useful to assess whether the increased expressivity
in Theseus impacts its performance on simpler tasks – in particular, ones that
network query engines typically process. To do this, I measured the performance of
Theseus on a more traditional, database style query plan for online information
gathering and compared it to the same type of plan executed by a network query
engine.

To measure the performance of their partial results query processing technique
(Raman and Hellerstein 2002) ran a query that gathered data from three sources and
then joined them together. The specific query involved gathering information on
contributors to the 2000 U.S. Presidential campaign, and then combined this
information with neighborhood demographic information and crime index
information. Table 2.3 lists the sources and the data they provide. “Bulk scannable”
sources are those where the data to be extracted can be read directly (i.e., exists on a
static Web page or file). “Index” sources are those that provide answers based on
queries via Web forms. Index sources are thus sources which require binding
patterns. Table 2.4 shows the query that was used to evaluate the performance of
Telegraph.

Source Site Type of data

FEC www.fec.gov
Bulk scannable source that provides information
(including zip code) on each contributor to a
candidate in the 2000 Presidential campaign.

Yahoo
Real

Estate
realestsate.yahoo.com Index source that returns neighborhood demographic

information for a particular zip code.

Crime www.apbnews.com Index source that returns crime level ratings for a
particular zip code.

Table 2.3: Data sources used in (Raman and Hellerstein 2002)

49

Query

SELECT F.Name, C.Crime, Y.income
 FROM FEC as F, Crime as C, Yahoo as Y
 WHERE F.zip = Y.zip and F.zip = C.zip

Table 2.4: Query used by (Raman and Hellerstein 2002)

It is important to note that (Raman and Hellerstein 2002) measured the
performance of the query in Table 2.4 under standard pipelined mode and compared
this with their JuggleEddy partial results approach. We are only interested in the
results of the former, since this is a measure of how well an non-optimized network
query engine – what I call the “baseline” – gathers data when processing a
traditional, database-style query. Any type of further optimization, such as the
JuggleEddy, are complementary to the system described here. Since both types of
systems rely on streaming dataflow execution consisting of tuples routed through
iterative-style query operators, it would not be difficult to extend the system
described here to support this and other types of adaptive query processing
techniques.

I wrote a simple Theseus plan that allowed the query in Table 2.4 to be
executed. The same sources were used; however, it was clear that the latency of the
Crime source had increased substantially, as compared to the time when (Raman and
Hellerstein 2002) ran their tests. Instead, I used another source (Yahoo Real Estate)
but added an artificial delay to each tuple processed by that source, so that the new
source performed similarly. The results of (Raman and Hellerstein 2002) show that
the performance of their pipeline plan was as slow as the Crime source, and about
250ms per tuple (Raman 2002). To match this, I added a 150ms delay to each tuple
of processing for this new source, Yahoo, which was normally fetching data at about
100ms per tuple. The results are shown in Figure 2.17.

The results show that Theseus was not only able to execute the same plan at
least as fast as the “baseline” Telegraph plan, the non-optimized result shown in
Figure 8 of (Raman and Hellerstein 2002), but Theseus execution can be more
efficient depending on the number of threads in the thread pool. For example,
Theseus-3 describes the case where the Theseus thread pool contains 3 threads. The
result from this run performs slightly worse than the Telegraph baseline – such minor
differences could be due to changes in source behavior or in different proximities to
network sources.

However, running Theseus with more threads in the thread pool (i.e., Theseus-6
and Theseus-10) shows much better performance. This is because the degree of
vertical parallelism demanded during execution can be better accommodated with
more threads. More specifically, the thread pool architecture prevents operator input
from queuing up the way it would when only a single thread was permanently
assigned to each operator. It should be noted that the reason Telegraph does not
perform as well as Theseus-6 and Theseus-10 is likely because that system only
assigned a single thread to each operator (Raman 2002). That is, Theseus-6 and

50

Theseus-10 execution uses 6 and 10 concurrent threads on a single processor,
respectively, whereas the Telegraph plan uses only 3 concurrent threads.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0
20

00
40

00
60

00
80

00

100
00

120
00

Time (seconds)

C
el

l u
p

da
te

s

Theseus -10 Theseus-6

Telegraph

Theseus-3

Figure 2.17: Comparing Theseus and Telegraph performance

2.7 Summary
In this section, I have described an information gathering plan language and
execution system that, taken together, enable more expressive and efficient
information gathering plans. The plan language is unique because of the expressivity
it provides. Through its rich operator set and support for subplans and recursion,
plans that address more complex information gathering tasks can be built. The
language represents an improvement over plan languages found in other network
query engines because of its expressivity and its accessibility. While somewhat
related to older dataflow-style languages and more recent embedded systems
languages, the language presented in this paper is unique because it focuses on high-
level operators that process incoming streams of relational data.

In addition to the language, I have presented a design for an efficient executor.
The executor functions as a true streaming dataflow machine that enables plans to
realize significant levels of horizontal and vertical parallelism at runtime. In doing
so, the executor uses a thread pool to achieve significant concurrency without
exhausting resources.

51

Chapter 3

Speculative Plan Execution

The streaming dataflow model of execution for information gathering plans
generates significant parallelism and, as a result, improves plan performance. For
example, as described in the last chapter, the original CarInfo execution time of
13400ms can be reduced to less than a third, about 4200ms. The combination of
horizontal and vertical parallelism thus yields a speedup of about 3.19.

Despite the benefits of streaming dataflow, agent plans often remain
significantly I/O-bound. For example, almost all of the remaining 4200ms second
execution time in CarInfo is devoted to waiting for data from remote sources. This is
not unusual for Web information agent plans, which focus on gathering and
combining data from multiple online sources. Incurring network latencies for plans
like CarInfo that query remote sources are unavoidable: if we want the data from a
particular source, and we have no administrative control over that source, then we
are forced to wait for as long as the source takes. Usually, querying a single source
does not cause a noticeable degree of latency during execution. However, querying
multiple data-dependent sources in sequence can often lead to a noticeable aggregate
latency.

Unfortunately, the nature of information integration is such that there are often
data dependencies, or binding patterns, between sources: that is, plans often need to
gather data from one source and then use it to query another. Furthermore,
information networks like the Web are designed to be browsed interactively by the
user, requiring additional navigation in order to obtain a final answer (such as the
details of a house or the full review of a car). Additional navigation typically
involves chasing “Next Page” or “Details” links from a previous page, translating
into even more data-dependent remote fetches. This further increasing the
sequential nature of the plan, leading to greater overall aggregate latencies and
slower plans.

Thus, one of the primary remaining challenges associated with increasing the
performance of Web query plans has to do with improving the extent to which flows
that contain binding-pattern relationships can be parallelized. For example, in the
CarInfo plan, it is not normally possible to query NHTSA safety ratings and
ConsumerGuide car reviews until Edmunds returns the list of cars that meet the
initial search criteria. If we could somehow parallelize the gathering of ratings and
reviews with the Edmunds search, the overall execution time would be dramatically
improved. Unfortunately, this does not make logical sense: we cannot gather safety
ratings and car reviews until we know which cars that we need ratings and reviews

52
for. In short, the data dependencies between operators in a plan determine its
performance barrier. The maximum parallelism of a plan given its data
dependencies is better known as the dataflow limit.

3.1 Exceeding the dataflow limit with speculative plan execution
To combat the natural dataflow limit of a plan, I introduce a new form of run-time
parallelism: speculative plan execution. The general intuition behind this technique
is the use of hints received at earlier points in execution to generate speculative input
data to dependent operators that occur later in a plan and execute them ahead of their
normal schedule. Through this method, consumer operators that are dependent on
slow producers can be executed in parallel with those producers, using the input to
those producers as hints about how to execute.

In speculative plan execution, the knowledge of how hints are associated with
predictions occurs over time. This relationship can either be cached or learned from
earlier executions. As more knowledge is gained, predictive accuracy (recall) can
improve.

 Speculative execution can be an effective technique for overcoming the natural
dataflow limit of information gathering plans and obtaining significantly better
speedups. To better illustrate the general idea, let us return to the CarInfo plan
example presented earlier. Consider the retrievals of the car reviews from
ConsumerGuide and the safety ratings from NHTSA. Both activities occur in
parallel, but both are dependent on the cars returned from Edmunds based on the user
search criteria. As observed earlier, if Edmunds is slow, performance of the rest of
the plan suffers.

With speculative execution, however, the input to Edmunds (the price range, the
year, the type of car, mileage specifications, etc.) can be used to predict the inputs for
the ConsumerGuide and NHTSA wrappers. For example, it could be learned that
certain features of the search criteria (such as car type, year, and price range) are
good predictors of the car makes and models that Edmunds will return. This would
provide a reasonable basis upon which to predict queries to ConsumerGuide and
NHTSA – even for input never previously seen. For example, once the system has
seen the cars that the search criteria of (Midsize coupe/hatchback, 2002, $4000,
$12000) returns, it is possible to make reasonable predictions about the cars that the
criteria (Midsize coupe/hatchback, 2002, $5000, $11000) will return.

In this example, note that there is no limitation related to speculation about only
one set of cars – in fact, there is no reason why the system cannot speculatively
execute retrievals for multiple sets of cars to improve the chances for success. For
example, from prior executions, the system could learn that a price range of $4000-
$12000 returns a result set RS1 and a price range of $8000-$16000 returns a result set
RS2. When given a new criteria of $6000-$14000, the system could predict both RS1
and RS2. Identifying exactly the correct subset occurs during the processing of the
search at Edmunds. However, the capability to issue multiple sets of predictions at
once allows us to have the best of both worlds – hedging both predictions – and
confirming only those speculations that turn out to be correct. Speculatively

53
executing the same path with multiple data can thus often be useful when hints map
to multiple answers.

Speculative plan execution can enable the fetching of data from Edmunds,
NHTSA, and ConsumerGuide to be run in parallel. Since all three tasks are almost
entirely I/O-bound, using separate threads for each can result in almost true
concurrent execution. It is important to note that we cannot speculate without
caution, however. In particular, it is important to be careful about how the output
from the final Join operator is handled – that is, data should not exit the plan until the
earlier predictions that led to it have been verified as correct.

In summary, this discussion of speculatively executing information agent plans
has raised three important requirements. Specifically, for any approach, it is
important to:

• Define a process for speculation and confirmation: It is important to
specify how speculative execution actually works – what triggers it,
how are predictions made, etc.

• Ensure safety: Speculative execution must be prevented from
triggering an unrecoverable action (such as the generation of output or
the execution of an operator affecting the external world) until earlier
predictions has been verified. Thus, all speculation must be confirmed.

• Ensure fairness: Speculative execution should not be prioritized at the
same level as normal execution. Its resources demands should be
secondary. For example, the CPU should not be processing speculative
instructions while normal instructions await execution.

In the next subsections, I describe an approach in terms of each of these three
requirements. The subject of value prediction, which directly affects the utility of
speculative execution, is addressed in detail in Chapter 4.

3.2 Speculation and confirmation
The process I introduce for enabling speculative plan execution involves augmenting
a standard information agent plan with two additional operators. The first,
Speculate, is a mechanism for using hints to predict inputs to future operators, and
later for correcting or confirming those predictions. The second operator, Confirm,
halts the flow of speculative data beyond “safe points” in a plan until earlier
predictions can be confirmed or corrected.

Figure 3.1 shows how these operators are deployed in a transformation of
CarInfo for speculative execution. As the figure shows, a Speculate operator
receives its hint (the search criteria) and uses it to generate predictions about car
models. These cars, in turn, drive the remainder of execution, while the first part of
execution continues. Note that the final Join can also be executed – the only
requirement is that a Confirm operator be the last operator in the plan. This prevents
speculative results from exiting the plan until Speculate has confirmed its
predictions.

54

J

SW

W

Speculate

Confirm
hints

predictions/additions

confirmations
answers

WW

W

Figure 3.1: The CarInfo plan, modified for speculative execution
The inputs and outputs of the Speculate operator are summarized in Figure 3.2.

As the figure shows, this operator receives hints (input data to an earlier operator in
the plan) and uses those hints to generate data predictions (used as input to operators
later in the plan). These predictions are tagged as speculative; any further results
they lead to are also tagged. Later, Speculate receives answers to its earlier
predictions from the operator normally producing this data. Using these answers,
confirmations can be generated to validate prior predictions. Any data errantly
predicted is not confirmed and data that was never predicted is eventually forwarded
via the predictions/additions output, without being tagged.

For example, in Figure 3.1, search criteria is used to predict cars X and Y. This
triggers the gathering and combining of safety ratings and car reviews, with the
combination (joining) of this data held up at the Confirm operator. At the same time,
suppose that the Speculate operator receives an answer that indicates that the real
cars were X and Z. It can subsequently route confirmation for X to the Confirm
operator. In contrast, Y is not confirmed because no such answer was received from
Edmunds. In addition, Z is not tagged speculative and is propagated through to the
ConsumerGuide, NHTSA, and Join operators. Note that Z does not require
confirmation because it was never predicted (Confirm allows tuples not tagged for
confirmation to pass through). As this example demonstrates, because Speculate
operates at the tuple level, corrections to its predictions are fine-grained and require
only the minimum amount of additional work be done to correct a mistaken
prediction.

The behavior of the Confirm operator is similar to that of a relational Select – it
acts as a filter on a set of incoming tuples. Figure 3.3 illustrates its inputs and
outputs: probable_results are the incoming speculative tuples, confirmations are
generated by the Speculate operator, and actual_results are the filtered (correct)
results. The role of Confirm is to guard against the release of unconfirmed or errant

Speculate
answers

hints

confirmations

predictions/additions

Figure 3.2: The Speculate operator

55

tuples beyond a safe point in the plan. The main way it differs from a relational
Select operator is in how it uses the confirmations data as a filter to halt
probable_results tuples until each has been confirmed.

Confirm
probable_results

confirmations
actual_results

Figure 3.3: The Confirm operator

Note that this approach exploits the fine-grained property of execution that data
steaming provides. By basing production of verified results on confirmations –
instead of errors – correct data can be output as soon as possible, without waiting for
the remaining corrections to be processed. Confirm will continue to wait for
corrections until it receives an EOS (controlled and propagated by Speculate).

A final note about the Confirm operator has to do with the nature of the
confirmations input. In Figure 3.3, it is shown as a single input. However, as
supported by the language in Chapter 2, this input is actually a variable stream input.
That is, it accepts multiple producers of the same data (each producer sending its
own EOS) and unions together all of these streams. In this way, multiple producers
of confirmations (i.e., multiple Speculate operators) can share the same Confirm
operator. The advantage of this will become clear in later sections of this chapter.

3.2.1 Safety and fairness
Ensuring safety during speculative execution means preventing errant predictions
from affecting the external world in unrecoverable ways. As described above, the
Confirm operator ensures safety by only producing verified results as long as it is
correctly placed in a transformed plan. To maximize the benefits of speculative
execution while ensuring correctness, Confirm is placed as far as possible along a
speculative path, occurring just prior to plan output or an “unsafe operator”. This
allows speculation to parallelize sequential flows as much as is safely possible. For
example, in Figure 3.1, Confirm is located just prior to plan output.

Ensuring fairness means guaranteeing that normal execution is prioritized over
speculative execution in terms of access to resources. For information gathering
plans, the primary three resources to be concerned about are processing power
(CPU), physical memory (RAM), and network bandwidth. Using existing
technology, fairness with respect to the CPU can be ensured by the operating system.
During execution, operators for information gathering systems are associated with
threads and processing occurs at the tuple-level. By maintaining a pool of standard-
priority “normal threads” and a pool of lower-priority “speculative threads”, the
former can be used to handle the firing of operators under normal execution while
the latter can be used for speculative execution. Standard operating system thread
scheduling thus ensures that speculative CPU use never supersedes normal CPU use.

Memory can be metered by pooling objects. Operators can be written such that
they draw memory from different pools, based on whether the objects being
processed have been tagged as speculative. If so, new objects can be allocated from
the speculative pool of those objects. The sizes of these pools can be adjusted as

56
necessary, based on how much physical memory is allocated for speculative
processing.

In terms of bandwidth, the goal is again to make sure that speculative use of
bandwidth does not interfere with normal requests for bandwidth. Bandwidth
reservation schemes such as RSVP (Zhang et al. 1993) are one way to provide such
guarantees. In addition to hardware-based (e.g., network switch bandwidth
provisioning) and software-based (e.g., TCP/IP socket configuration) methods,
network resources can also be controlled by limiting the number of speculative
threads and handles to network connection objects. This is similar to the solution for
limiting memory use. A fixed number of threads and connection objects limits the
number of simultaneous speculative use of resources and thus can assist in bounding
the amount of speculative bandwidth (or any other resource) concurrently demanded.

3.2.2 Optimistic performance benefits
The maximum, or optimistic performance benefit resulting from speculative
execution is equal to the minimum possible execution time of a transformed plan.
Calculating this requires computing the minimum execution times for each of the
independent sequential flows of the plan and then choosing the maximum value of
that set. Using the minimum execution time for each flow implies all predictions are
correct and no further additions are needed.

For example, consider the optimistic performance of the plan in Figure 3.1. This
plan shows three paths of concurrent execution: the Edmunds flow fa, the NHTSA
speculative flow fb, and the ConsumerGuide speculative flow fc. If we again assume
that all network retrievals take 1000ms per tuple and all computations (Select, Join,
Speculate, and Confirm) each take 100ms per tuple, the resulting flow performance
for the first tuple is:

fa = 1000 + 100 + 100 = 1200 ms
fb = 100 + 100 + 1000 + 100 + 100 = 1400 ms
fc = 100 + 100 + 1000 + 1000 + 1000 + 100 + 100 = 3400 ms

Since the original time to first tuple (using these assumed values) would have
been 4200ms, the potential speedup due to speculative execution in this case is
4200ms/3400ms = 1.24. Note that if Edmunds had been very slow, say 3200ms per
tuple, overall original performance would have been slower (6400ms) and potential
speedup (6400ms/3400ms = 1.88) greater.

3.3 Achieving better speedups
While a speedup of about two allows the execution time to be nearly halved,
producing noticeable results, there is room for improvement. At first, it might not
seem possible – since all speculation must be confirmed, execution time appears
bound by either the time to perform speculative work or the time to process its
confirmation. For example, in Figure 3.1, we are either bound by the time required
by initial and confirming flow fa or the speculative flows fb or fc.

However, three additional techniques can be used to increase the degree of
speculative parallelism and the level of predictive accuracy, both leading to

57

when or why the speculation occurred . It simply determines if each answer tuple

significantly better speedups. The first involves using earlier speculation to drive
later speculation, which increases the degree of speculative parallelism at runtime.
The second is the concept of speculating multiple times per hint, which increases the
level of average predictive accuracy for a particular speculative opportunity. Finally,
the third involves leveraging some types of deterministic operators, in order to
generate predictions earlier than usual. I discuss all three in detail below.

3.3.1 Cascading speculation
We are not limited to speculating about only one input at a time. In fact, it is
possible for speculation about one input to trigger speculation about another input
and so on, an effect I call cascading speculation. When the results of an initial
prediction are known, this can trigger confirmation of the second prediction and so
on, in effect cascading confirmations.

The performance benefit of cascading is the increase in speculative parallelism it
allows, thus making it possible to achieve very high speedups. To illustrate, consider
a longer sequence of operators, such as that in Figure 3.4. Using the earlier
execution time assumptions, processing 10 Wrapper operators in succession would
normally require (10*1s =) 10 seconds. Let us also assume that each operator
consumes a single tuple of input and produces a single tuple of output. Predicting
input f in Figure 3.4, which occurs midway in the sequence, allows the first and last
halves of the plan to execute concurrently, resulting in a new execution time of 5
seconds and a speedup of 2. With a single Speculate operator, this is the maximum
speedup possible.

However, suppose that we wanted to use a to speculate about the input b to
second Wrapper, use the speculation of b to predict c, and so on. This is shown in
Figure 3.5 (each Speculate operator is denoted by an S; Confirm by a C). Note that
in the case of cascading speculation, one Confirm is still all that is required, as this
operator is used to generally verify speculative tuples and requires no knowledge of

3

W

a
W W

b c
W

d
W W

e f
W

g
W W

h i
W

j

Figure 3.4: A longer sequence of operators

3 Recall that the Confirm operator can take a variable number of confirmation inputs. For dataflow
plan languages that do not support variable inputs, cascading speculation would still be possible by
arranging a sequence of Confirm operators in place of the single Confirm operator shown in Fig 3.5.

W W W W W W W W W W

S S S S S S S S S

C

Figure 3.5: Cascading speculation of the sequence in Figure 3.4

58

xecute and are all I/O-
boun

Optimistic performance benefits (revisited)
e CarInfo plan in Figure 3.1 further

either speculative output or a product of earlier speculative output. If so, the tuple is
held up until the confirmation(s) for that tuple have arrived.

Since all wrappers require the same amount of time to e
d, they would act simultaneously and their confirmations could be processed at

once. Thus, the resulting execution time would simply be the duration of a single
wrapper call plus the overhead for speculation and the time to process confirmation.
Even if we assume that the overhead and confirmation somehow requires an
additional 100ms, execution would still only require 1000+100+100=1200ms, a
speedup of 8.33.

Figure 3.6 shows a version of the speculativ
modified for cascading speculation. Using earlier timing assumptions, then the five
flows require the execution times shown in Table 3.1. Since execution time would
be limited to the slowest of these flows, the optimistic speedup for the first tuple
would be (4200ms/1600ms =) 2.63.

Plan flow Execution
time (ms)

Edmunds + Spec + Confirm 1200
Spec + Select + CG Search + Spec + Confirm 1400
Spec + Select + Spec + CG Summary + Spec + Confirm 1500
Spec + Select + Spec + Spec + CG Full + Join + Confirm 1600

T in 3.6

Intu gational
sequ

he CarInfo plan. Consider the lower half of the
plan in Figure 3.1, where ConsumerGuide is queried for car reviews. Once the

able 3.1: Optimistic execution times for CarInfo flows shown Figure

itively, cascaded speculation seems to make the most sense for navi
ences, such as the three successive fetches from ConsumerGuide in the CarInfo

plan. Many Web sources present a visual view of an underlying relational database
schema. HTML pages are programmatically generated and thus navigation to certain
data often tends to follow some simple URL patterns. Once prediction to the initial
page is confirmed, all subsequent navigation is almost always verified because it
predictably follows from the first page. Thus, for information gathering plans that
speculate about interleaved navigation, cascading speculation can often overcome
the cost of interleaved navigation.

This specific case occurs in t

W

J

W

W

SPEC

CONFIRM

SPEC

W

WSPEC

S

Figure 3.6: CarInfo modified for cascading speculation

59
dyn

Earlier, I discussed the optimistic performance benefits of a single speculation during
 calculations give us some idea as to the potential

nditional probability that a prediction v will be
corr

Recall from Chapter 2.4 that a plan flow is any sequence of operators that spans
the entire width of the plan (from consumption of some plan input to production of
som

The average ti

1)

Per Amdahl’s e average
path fmep, which is:

 However, spe cu
the number of spe
new

probability associated with the pursuance of some flows in plan transformed for
speculative execution.

For each of these new flows, we must consider that the probability of any one
speculation in a cascade is, to an extent, dependent on the probability of any prior
prediction. That is, the prediction probabilities cascade. In basic probability theory,
two events A and B are said to be independent if

amic part of the target URL is discovered (the car ID, “20812” in the case of the
Dodge Stratus example earlier), the subsequent navigational pages are predictable.
As a result, use of cascading speculation can easily yield a speedup of 3 for this
interleaved navigation sequence.

Average performance benefits

execution. Although those simple
maximum benefit of the technique, we must also consider cases where predictions
are incorrect, and where the total mix is defined by a subset of correct predictions
and a subset of incorrect predictions.

To do so, we must figure in the probabilities of a particular speculation being
correct. Let us start by defining the co

ect given hint h as:

Pr (v | h)

e plan output – or production of no output). Thus, a given plan P with a set of
operators Ops = {Op1...Opm} contains a set of data flows:

F = {f1...fn} s.t. each flow fx = {Opb...Opc}, 1 ≤ b, c ≤ m

me T it normally takes to execute a particular flow fx is:

T(fx) = ∑ yOpT)((
=

c

by

 Law, th performance of a plan is the most expensive

∀ fx ∈ F, fmep = max (T(fx)) (2)

culative exe tion of operators in that flow creates new flows, per
culations occurring along that flow. Furthermore, some of these

 flows are non-standard because the Speculate operator may play one of two
roles: in some cases, it may act as the termination point for a tuple (if a prior
prediction made was correct) and in other cases it might not. In short, there is a

)Pr()Pr()Pr(BABA ∗=∩ (3)

where Pr(A ∩ B) is the probability that both events occur. Under speculative
execution, the li pendent, and thus kelihood of each prediction being correct is inde

60

tion being correct. Intuitively, the former refers to the
like

ing set of speculations i={0...n} is
simply the likelihood of that particular pred
hint is correct. The dependent probability DP

the likelihood of a particular set of speculative outcomes is based on the product of
all probabilities involved.

More precisely, there is an independent probability and dependent
probability of a predic

lihood that a prediction will be correct given a correct hint. In contrast, the
dependent probability of a prediction being correct is the likelihood that a prediction
will be correct given a hint that may not be correct. More formally, the independent
probability IPri for the ith speculation in a cascad

iction being correct assuming that the
ri is the likelihood that the hint will be

correct multiplied by the independent probability, which can be expressed as:

DPri (vi | hi) = ∏
−

=

culate,
Wrapper(ConsumerGuide Search), Wrapper(ConsumerGuide Summary),
Wrapper(ConsumerGuide Full), Join, Confirm}.

ailed speculative
exec

ST

⋅
1

0

)|(PrI)|(PrI
i

j
jjjiii hvhv (4)

Thus, the dependent probability is the overall likelihood that a particular
prediction will be correct in a cascading speculation environment.

Another way to express this is in terms of the flow schedules. Assume that a
particular flow fx contains a Speculate operator. This flow will have two execution
schedules, Ssucc and Sfail where the former is the flow schedule followed during a
correct prediction and the latter is the flow scheduled during a failed prediction. For
example, in Figure 3.1, Ssucc={Wrapper(Edmunds), Select, Speculate, Confirm}.
This is the optimistic case – it is the same as flow fa defined in 3.2.2. However, the
other flow schedule Sfail is where the predictions made by the Speculate operator are
not correct. In this case, Sfail={Wrapper(Edmunds), Select, Spe

There are two important notes to make with respect to the execution times of
each schedule, defined as T(Ssucc) and T(Sfail). One is that the f

ution schedule is the same as the successful schedule with the important
exception that the operators following the Speculate operator will need to be
executed again – this time, for the correct data. Thus:

T(Ssucc) < T(Sfail) (5)

The second is that Ssucc and Sfail are the only two possible execution schedules
possible for each speculative opportunity along a flow. Thus, the average time it
takes the original flow fx to execute is the sum of the probabilities of each schedule
multiplied by the execution time of each. More precisely:

T(f) = Pr()()Pr(SSTSx failfailsuccsucc)()+⋅ ⋅ (6)

 shows, three speculations are
performed among ou r
on the case where t

As a detailed example of how one can calculate the average performance of a
flow that is speculatively executed, consider the flow in CarInfo that includes the
Edmunds wrapper, the Select, the three wrappers for ConsumerGuide and the Join.
Hereafter, this flow is referred to as fcar. As Figure 3.6

the f r wrappe s on fcar. To simplify this example, let us focus
he user search criteria returned a single car from Edmunds.

61

eculation). For purposes
of example, let us suppose that the independent probabilities of correct prediction for
each of the three wrappers are as shown in Table 3.2. For exa e t ws
that

To calculate the average performance of fcar, let us first recall that the original
streaming dataflow plan execution time is 4200ms, as described when the example
was introduced in Chapter 1.

The next step is to assign probabilities to each event (sp

mple, th able sho
there is a 93% probability that, based on past results, the list of cars will be

correctly predicted based on the specified search criteria.

Name Prediction Probability
of success

P1 Car list given (user search criteria) 0.93
P2 CG summary URL given car list 0.95
P3 CG full review URL given CG summary URL 0.91

Table 3.2: Independent probabilities of each speculative opportunity

Next, let us enumerate the possible execution schedules of the modified fcar, in
terms of the success of the various predictions possible. This is shown in Table 3.3,
along with the probability of each flow schedule occurring. The flow schedule
probability is simply the aggregate product of independent probabilities shown in
Table 3.2, as specified by (4). Note that Table 3.3 does not include “lucky” cases
where a missed earlier prediction may still somehow lead to a co ion later
down the uch cases are unli

rrect predict
 line. S kely.

Schedule P1 P2 P3 Probability
S1 Y Y Y 0.804

S2 Y Y N 0.080

S3 Y N N 0.047

S4 N N N 0.070

Table 3.3: Likelihood of various fcar execution schedules

We can then use the probability of each execution schedule to determine its
“contributing” time to the overall execution time. This is done by multiplying the
probability shown in Table 3.3 with the normal execution time of each possible
schedule. This is shown in Table 3.4.

Schedule Normal Contributing

S1 1500 1206

S2 2500 199

S3 3500 163

S4 4600 322

Table 3.4: Execution schedule probability and normal/contributing performance

62

s, representing
an average speedup of (4200ms/1890ms =) 2.22.

3.3.2 Simultaneous speculation
A second technique that can d to be eedups eculative plan execution is
simultaneous speculation, the concept king m le sets of predictions. This
technique acts as a “hedging” device for a Specul perator; even if predictions
about some tuples are incor , other be corr d the additional number of
predictions can increase the likelihood of 100% accuracy. Note that perfect accuracy
does

 equivalent to a summation of
orrect:

Finally, the average execution time of the entire flow fcar is simply the
summation of the contributing values: 1206+199+163+322 = 1890m

 lea tter sp for sp
 of ma ultip

ate o
rect s may ect an

 n eans
that the complete set of correctly predicted tuples was a subset of those actually
predicted.

The net effect on multiple predictions per hint is

ot mean that only the necessary set of predictions were made – rather, it m

the probabilities that each hint is c
k

Pr (V | h) = ∑
=

ight return requires work by at least 6 threads (one for each normal
oper

at if any operator subsequent to the first
Speculate had generated m uch
worse. Overall, the that multip ore speculative
reso

i
i hv

0
)|Pr(, where V={v0...vk} (7)

Though simultaneous speculation can increase the degree of predictive accuracy,
it is important to limit how many additional speculations are made on behalf of a
single hint. Too many speculations can increase the overhead of speculative
execution in several ways. First, each speculation leads to additional speculative
work by one or more threads. In the case of CarInfo, each extra prediction of what
Edmunds m

ator) + 3 additional threads (two additional Speculate and one Confirm
operator), a total of 9 threads. Note th

ultiple outputs per input, this would have been m
 key point is le speculations consume m

urces.
A second way that multiple speculations can increase overhead is by severely

impacting a resource. For example, if a 100 different cars from Edmunds are
predicted based a single hint (when in fact there are only 3 or 4 actual answers), the
NHTSA and ConsumerGuide websites might be adversely affected by the additional
load placed on their servers, which in turn affects the execution of the CarInfo plan.
Obviously, the issue of load is one that varies tremendously among resources like
Web sites. Thus, it is not possible to use a single static cost or static cost function –
the cost for each resource must be assessed separately.

However, for certain scenarios, multiple speculations are a reasonable and
effective way to increase predictive accuracy. For example, if a Speculate operator
needed to predict the result from a weather forecasting site, there may only be a few
possible predictions (e.g., ”sun”, “clouds”, “rain”, “snow”, or “wind”). If the
forecasting site is slow, it may be worthwhile to predict all five, knowing that only
one will eventually be confirmed. By predicting all five, there is a guarantee that
predictive accuracy will be 100%.

63

 leveraging antecedent and
subs

 R consisting of
attributes A ..A , a functional dependency (FD) A → A describes a constraint

ormer.

gent plan. Recall that all
plan operators work by performing a function over the set of input, leading to a set of

deterministic and produce a

chapter, but only when the
cardinality of hints depends on the
cardinality of the that, for these
oper

S) to the left-hand side (LHS) of
the predicted operator for greater efficiency.

the case where a Format operator feeds a

3.3.3 Leveraging antecedent and subsequent functional dependencies
A third technique for improving speedups involves

equent functional dependencies of a predicted operator, enabling more efficient
hint generation and prediction. Leveraging antecedents involves using the earliest
possible form of a hint to elicit a prediction. Leveraging subsequents involves using
the latest possible form of a prediction during speculation.

Functionally dependent operator inputs and outputs
Recall that if a database schema is considered as a single relation

1 n i j
between Ai and Aj, specifically that the latter is functionally dependent on the f
Simply put, this means that Aj is determined by Ai. Several inference rules about
FDs exist, including the transitive rule, which states:

∀ attributes Ax, Ay, AZ : {Ax→ Ay, Ay→ Az} ╞ Ax→ Az

Let us extend the concept of FDs to an information a

output. Let us focus on the subset of operators that are
single stream of output where each tuple of output is a function of each tuple of
input. More precisely, the cardinality between the main input and output streams is
one to one (1:1). For example, in the plan language described in Chapter 2, the
Project, Format, Apply, and Null operators have this characteristic. The same is also
true for the Speculate operator introduced in this

 to predicted values is 1:1 (this cardinality, in turn,
operator being predicted). We can then say

ators, the main output Ay of an operator Opi is functionally dependent on its
main input stream Ax, or that the FD Ax→ Ay exists.

Leveraging functional dependencies
Functional dependencies are useful for speculative plan execution because they
allow predictions to be issued as far ahead as possible and confirmations to be issued
as early as possible. More specifically, we can make predictions based on the
earliest form of a hint from a sequence of FDs. We can also route the predictions
issued past any FD sequence that follows the operator to be predicted. This means
that predictions can reach later parts of the plan faster. Also, it allows us to
reorganize the flows that are executed in parallel, potentially reassigning the
subsequent FD operators on the right-hand side (RH

As a detailed example, consider
Wrapper operator, which feeds a Project operator, which feeds another Wrapper
operator. This is shown in Figure 3.7. For purposes of example, let us assume that

W1 PF W2

Figure 3.7: Short FD example flow

64

0ms/1500ms=) 1.47.

pred

 required by the speculative (but still dominant) subflow,
down to 1300ms and thus gives us the improved speedup of (2200ms/1300ms=)
1.69, roughly a 15% increased speedup over the initial speculative speedup.

It is important to note that while saving execution time, leveraging antecedents
and subsequents may als t of speculative execution,

W1 requires 1000ms, W2 requires 1200ms and the remaining CPU-bound operators
require 100ms per tuple. Thus, this short flow requires (100+1000+100+1200=)
2400ms to run.

Next, suppose that we wish to speculate about the output of the first Wrapper
operator W1. Normally, as described earlier in this chapter, we would use the output
from Format as the basis for hints and the Project that follows W1 as the target for
prediction. This is shown in Figure 3.8. Under optimistic circumstances, this
requires max((100+1000+100+100=1300), (100+100+1200+100=1500)) = 1500ms,
a speedup of (220

W1 SPEC CONFIRMPF W2

Figure 3.8: Flow in Figure 3.7 modified for speculative

 As described above, Format is deterministic and has a 1:1 input/output
cardinality between its input and output, using the attribute A0 to produce A1. Thus,
the FD A0→ A1 exists. If W1 also has a 1:1 input/output ratio, then so will the
Speculate operator and we can establish that the FD A1→ A2 will exist. As a result,
we can infer A0→ A2. This is important because it allows us to use the input to the
Format as the basis for issuing predictions from Speculate. Thus, we can issue

ictions earlier, as shown in Figure 3.9. As a result, the new optimistic
performance is 100ms better (execution of the speculative flow does not require the
initial Format processing time) at 1400ms, an improved speedup of
(2200ms/1400ms=) 1.59.

In addition, since the Project operator is deterministic and 1:1, we know that
A2→ A3 exists and can thus infer A1→ A3. Since the speculative flow (which includes
W2) is slower than the confirming flow (which includes W1), we can move as many
subsequent FD operators from the RHS to the LHS. In this case, there is only one
such operator, the Project, and its repositioning is shown in Figure 3.10. This allows
us to further reduce the time

W1 SPECF CONFIRMP W2

Figure 3.9: Leveraging the determinism of the Format operator

o result in changes to the cos

65
spec

operators and the number of tuples processed.

The

f all flow operators following the
Speculate operator. Also, let tdet_rhs be the time required by the sequence of

owing the predicted operator.

 as:

ifically in terms of the amount of memory required. For example, in Figure 3.8,
the hint values were the result of a Format, and were thus larger than the hint values
in Figure 3.9, which occur before the Project. Thus, potentially less memory is
required for speculation. The same is true when the RHS Project can be reassigned,
as shown in Figure 3.10, as the tuples output from Project require less space than the
tuples input In general, the amount of extra/less memory due to leveraging
antecedent/subsequent determinism is a product of the nature of the deterministic

W1 SPECF CONFIRMP W2

Figure 3.10: Leveraging the determinism of the Project operator

 benefits of exploiting functional dependencies
In terms of execution time savings and increased speedup, as the above example
demonstrates, the benefit of leveraging deterministic antecedent and subsequent FDs
depends on the cost of the flows prior to and following the Speculate operator. I now
describe these potential benefits more generally.

Let tlhs be the time required by the “hint/confirmations flow”, set of operators
prior to the Speculate operator. Next, suppose tdet_lhs is the time required by the
sequence of the FD operators on the answer flow that immediately precede the
predicted operator (e.g., W1 in Figure 3.8). Thus, tdet_lhs < tlhs Similarly, suppose that
trhs is the “predictions flow”, the sequence o

deterministic operators on the predictions flow foll
Finally, let Oppred be the predicted operator and tpred be the time to execute that
operator. Leveraging antecedent FDs is only worthwhile when:

tdet_lhs > 0
trhs > tpred (8)

Leveraging subsequent FDs is only worthwhile when the RHS is as slow or
slower than the LHS plus the FD sequence on the RHS. This can be expressed as the
case where:

tdet_rhs > 0
trhs – tdet_rhs ≥ tpred + tdet_rhs (9)

Thus, the potential overall gain g and improved execution time ∆T from
leveraging both antecedents and subsequents can be summarized

66
ax (tpred, (trhs – tdet_lhs)),

lows is dominating. If the former is the case, no benefits are realized
because confirmation is the bottleneck. Otherwise, the use of predictions is the
bottleneck. In ag ante

3.4
tion can yield

significant per ple, augmentation of the
CarInfo plan w thms that enable
the automatic
speculative exe

mations of P for speculative
xecute a particular transformation P′ is

r set of all possible plans. The class of
plans considered ar

 chain of n operators

g = min (m
 max (tpred + tdet_rhs), (trhs – tdet_lhs – tdet_rhs))) (10)
∆T = (max (tpred, trhs)) – g (11)

 Equation (10) basically determines if the cost of the predicted operator or the
flow that fol

 th s ca ever ing cedents and subsequents is clearly beneficial. i se, l

Automatic plan transformation
In the previous section, I described how speculative plan execu

formance gains. However, in that exam
as done manually. In this section, I introduce algori

transformation of any information gathering plan into one capable of
cution.

The overall goal is to maximize the theoretical average performance gain
resulting from speculative execution. At the same time, we also need to be wary of
the overhead (cost) of speculative execution. Thus, we would like to identity the
best speculative transformation P′i of a plan P, from some larger set of possible
transformations P′1..P′m, that are different transfor
execution. More specifically, if the time to e i
T(P′i), we want to find the plan Pbest where:

∀ P′i ∈ {P′1..P′m}: Pbest = min (T(P′i)), 1 ≤ i ≤ m

3.4.1 The set of candidate transformations
One natural way to approach the problem is to first generate the set of all possible
speculative transformations and then iterate through this set, applying the equation
above to identify the speculative transformation with the best theoretical execution
time. Unfortunately, this approach is impractical because the set of all possible
speculative transformations is huge.

To demonstrate why this is the case, let us consider how to calculate the number
of possible speculative transformations for certain class of very simple information
gathering plans that is a subset of the large

e those that:

(i) are composed of a single, unbroken
(ii) consist of operators that all have monadic input and output

(iii) have one plan input and one plan output

For example, the plan shown in Figure 3.11 meets these requirements.

A

a
B C

b c

Figure 3.11: Sample plan that meets (i), (ii), and (iii)

67
T l s of a particular

plan, a

 operator as a hint

For exa r the plan shown in
Figure 3 ,

The list above simply describes the
hint/prediction pairs for t the left-hand side
vari

a sequence of 10
operators has 3

e dramatically when
we relax earlier assumptions, such as that plans can only consist of a single flow. At
the same time, intuition suggests that it is better to focus on how speculation might
reduce the impact of major bottleneck operators in a plan, instead of considering
every possible speculative opportunity for every possible pair of operators.

We can reduce the size of the candidate transformation set substantially by
leveraging ution time is a function of

o ca culate the number of possible speculative transformation
 it is ssumed that we are only interested in transformations where:

• all speculations involve using the input of an upstream
for predicting the input of a downstream operator

• there can be one or more speculations in the plan (i.e., cascading
speculation)

• the same downstream input is not predicted by multiple upstream inputs

mple, there are five possible transformations fo
.11 which can be summarized as:

((b|a), (c|a), (b|a, c|a), (c|b), (b|a, c|b))

This list denotes the set of possible transformation. Each transformation
involves one or more instances of using a particular variable as a hint for issuing
predictions about another variable.

each transformation. The “|” means tha
able could be predicted by the right-hand side variable (which always precedes

the left-hand side in the plan). For example, the transformation (b|a, c|b) is one
where “a” is used to predict “b” and “b” (speculative “b”, that is) is used to predict
“c”. Thus, in this example, there are two Speculate operators and one Confirm.

To consider the total number of potential speculative transformations, we
observe that for operator sequences of lengths 2, 3, and 4, the total possible number
of transformations is 1, 5, and 23, respectively. Generally speaking, the number of
transformations for a sequence of length n consists of the number of transformations
required for a sequence of n-1 plus the additional set of speculative schedules that
involve the added operator. Specifically, the total number of possible speculative
transformations ST(n) for a particular sequence of n operators for plans is roughly
equal to the factorial series for n; it can be calculated precisely as:

ST(n) = (n-1) + n*ST(n-1), ST(1) = 0 (12)

As the equation suggests, even simple plans of moderate length can quickly
generate a very large number of candidate transformations to evaluate. For example,
even under the fairly strict set of assumptions described earlier,

,628,799 possible speculative transformations.

3.4.2 Heuristics to reduce the number of possible transformations
The problem with using a brute force approach to identify the most profitable plan
transformation is the factorial blowup of the number of candidate transformations.
The problem obviously worsens for larger plans and even mor

Amdahl’s Law, which states that program exec

68
that it is not

ons
on t

p 3, which reduces the number of operators along that path
to c proach gives the above algorithm
an a e bounded by some fixed time, if
nec

3.4.3
I present a detailed form of the above pl
sho
3.12a own in Figures 3.12b-d. I now
desc

o the new MEP in the transformed plan. In optimizing the
transformation of the MEP, SPEC-REWRITE identifies uses the GET-LHS-INFO and

rliest hint/confirmation producer and the

04

its most latent sequence of instructions. In effect, this suggests
worthwhile to consider transformations that involve operators which do not exist
along this sequence because any potential improvement cannot have any impact on
overall execution time.

Instead, Amdahl’s Law suggests that performance optimization should be
focused on the costliest flow in the plan. In particular, we can use a most-expensive-
path (MEP) approach that identifies the most latent sequence of operators in an
information gathering plan and focuses the generation of candidate transformati

hat path4. An MEP-based transformation algorithm for a given plan P consists of
the following key steps:

1. Find all paths of P and their execution costs.
2. Identify fmep.
3. Identify all possible speculative transformations of fmep, ignoring

transformations on operators that execute faster than the overhead of
speculating.

4. If at least one transform was found, apply the most profitable transform to the
plan and repeat the process. Otherwise, stop.

The key parts of this algorithm are step 2, which reduces the number of possible
paths to consider, and ste

onsider. In addition, the iterative refinement ap
er and thus allows refinement to bnytime prop ty

essary.

The SPEC-REWRITE algorithm
an transformation process in the algorithms

wn in Figures 3.12a-d. The main algorithm, SPEC-REWRITE, shown in Figure
and it calls the other three helper functions sh

ribed the details of these algorithms and relate their operation to the approach
discussed throughout this chapter.

The overall purpose of the SPEC-REWRITE algorithm is to iteratively find the
MEP, attempt to optimize it for speculative execution, and then continue the process
with respect t

GET-RHS-INFO functions to locate the ea
latest possible deployment of predictions, per the discussion on functional
dependencies in section 3.3.3.

01 Function SPEC-REWRITE
02 Input: oldPlan
03 Returns: newPlan

 {
05 newPlan ← Ø
06
07 do
08 newMep ← Ø

4 The terms “path” and “flow” are henceforth used interchangably in this chapter.

69

pInfo.mep)
15 ET HS NFO .mep)

RATOR-EXECUTION-TIME (op)
2 * PTO) * GET-OPERATOR-TUPLES(op)

LC-SRC-DST-INFO (opTime, lhsInfo, rhsInfo)
srcDstInfo.lhsTime + MAX (opTime, srcDstInfo.rhsTime) + opOverheadTime

 ← mepInfo.time / newMepTime
up > bestSpeedup then

 ← GENERATE-TRANSFORM-PATH(mepInfo.mep, op, srcDstInfo.srcOp, srcDstInfo.dstOp)
 ← candSpeedup

newMep)

ic key parts of the SPEC-REWRITE algorithm are:

 start of the main loop that iteratively refines the plan based
t MEP.

Lines 10-11: Find the MEP from the set of all possible paths in the plan.
e MEP, searching for the most

perator to speculate about.
: Get timing statistics (overall execution time, FD time

s) from both LHS and RHS parts of the flow.
• Lines 16- and overhead time.

CALC-OPERATOR-EXECUTION IME returns the average execution time
t typically processes and

verhead, the additional time required per-tuple for

on and Confirmation per tuple.

•

09 bestSpeedup ← 1
10 planPaths ← GET-ALL-PATHS (oldPlan)
11 mepInfo ← GET-MEP-INFO (planPaths)
12
13 foreach operator op ∈ mepInfo.mep
14 lhsInfo ← GET-LHS-INFO (op, me

 rhsInfo ← G -R -I (op, mepInfo
16 opTime ← CALC-OPE

ime ← (17 opOverheadT
18 srcDstInfo ← CA

 newMepTime ← 19
20 candSpeedup

 if candSpeed21
22 newMep
23 bestSpeedup
24 endif
25 end
26

 if bestSpeedup > 1 then 27
28 if newPlan == Ø then

 o la 29 newPlan ← ldP n
30 endif

EPLACE-PATH(wPlan, mepInf31 newPlan ← R ne o.mep,
32 endif
33
34 while newMep != Ø
35
36 return newPlan
37 }

2a: The SPEC-REWRITE algorithm Figure 3.1

Specif
• Line 07: The

on the curren
•
• Line 13: Loop through all operators on th

profitable o
• Lines 14-15

saving
17: Calculate operator execution time

-T
of an operator based on the number of tuples i
its average execution time per tuple. The predefined constant PTO
stands for per-tuple o
context switching and speculation/confirmation processing. It is
multiplied by 2 in the Spec-Rewrite algorithm to account for the
overhead associated with both Speculati

• Line 18: Compute times for revised LHS and RHS parts of the MEP,
based on whether FDs can be leveraged.

• Lines 20-24: Compare resulting speedup to current best speedup and
revise best speedup as necessary.
Lines 27-32: Transform MEP into LHS and RHS flows if better
speedup can be achieved. Doing this will ensure that iterative
refinement of the plan continues.

70
The GE

functions ca
informat
called durin ation to locate which flow is
the prim

01 Funct
02 Input: l
03 Returns:
04 {
05

13 curCost ← curCost + CALC-OPERATOR-EXECUTION IME(op)
 end

epCost then

 ← curCost

3.12b: The GET-MEP-INFO helper function

O, shown in Figures 3.12c and
 very similar, but both are included for completeness. Each function

 the MEP from the standpoint of the operator to be
 execution time as well as the execution time savings

1:1 FDs, like Project.

S-INFO
nput: op, mep

 Returns: lhsInfo
04 {
05 lhsInfo ← new LhsI
06

ECUTION-TIME(predOp)
 lhsInfo.time ← lhsInfo.time + curOpTime

.succ() input is functionally dependent on predOp output then
e lhsInfo.fdTime + curOpTime
← predOp.pred()

 else

 endif

Figure 3.12c: The GET-LHS-INFO helper function

T-MEP-INFO algorithm, shown in Figure 3.12b is one of the helper
lled by SPEC-REWRITE. It returns an object called mepInfo that contains

ion on the most expensive path and the cost of that path. This function is
g each iteration of original plan transform

ary plan bottleneck.

ion GET-MEP-INFO

 p anPaths
 mepInfo

mepInfo ←new MepInfo
06
07 mepInfo.mep ← Ø
08 mepInfo.mepCost ← Ø
09
10 foreach path p ∈ planPaths
11 curCost ← 0
12 foreach operator op ∈ p

-T
14
15 if mep=∅ or curCost>m

p16 mepInfo.mep ←
17 mepInfo.mepCost

endif 18
19 end
20
21 return mepInfo
22 }

Figure

The functions GET HS-INFO and GET-RHS-INF-L
3.12d are
examines the LHS or RHS part of
predicted, calculating overall
due to any

01
02 I
03

 Function GET-LH

nfo

07 lhsInfo.time ← 0
08 lhsInfo.fdTime ← 0
09 fdActive ← true
10 lhsInfo.srcOp = lhsInfo.origSrcOp = op.pred()
11
12 foreach predecessor operator predOp ∈ mep s.t. predOp < op
13 curOpTime ← CALC-OPERATOR-EX
14
15 if fdActive and predOp

←16 lhsInfo.fdTim
17 lhsInfo.srcOp
18
19 fdActive ← false
20
21 end
22
23 return lhsInfo
24 }

71

time ← 0

← true
fo.dstOp = rhsInfo.origDstOp = op.succ()

sor operator succOp ∈ mep s.t. succOp > op
 curOpTime ← CALC-OPERATOR-EXECUTION-TIME(succOp)

 rhsInfo.time ← rhs
t then

fdTime + curOpTime
 succOp.succ()

ET HS-INFO helper function

own in Figure 3.12d. The main
arget operator

HS-INFO and GET-RHS-INFO, as well as
-REWRITE (the caller).

-INFO
pTime, lhsInfo, rhsInfo

rns: flowTimes

w SrcDstInfo

07 srcDstInfo.lhsTime =
08
09

en
fo.rhsTime – rhsInfo.fdTime

lhsTime + rhsInfo.fdTime
stOp

CALC-FLOW-TIMES helper function

on on the information gathering
he first involved measuring the

Web information agent plans. The goal of
iment was to discover how useful the technique would be for the types of

tion plans that are common to Internet information gathering.

01 Function GET-RHS-INFO
02 Input: op, mep
03 Returns: rhsInfo
04 {
05 rhsInfo ← new RhsInfo
06
07 rhsInfo.
08 rhsInfo.fdTime ← 0
09 fdActive
10 rhsIn
11
12 foreach succes
13
14 Info.time + curOpTime

 input is functionally dependent on succOp.pred() outpu15 if fdActive and succOp
e ← rhsInfo.16 rhsInfo.fdTim

17 rhsInfo.dstOp ←
 else 18

19 fdActive ← false
 endif 20

21 end
22
23 return rhsInfo
24 }

Figure 3.12c: The G -R

Finally, the CALC-SRC-DST-INFO function is sh
purpose of this function is to adjust the hint source and predictions t
based on the FD information found in GET-L
the operator time calculated in SPEC

01 Function C
t: o

ALC-SRC-DST
02 Inpu

 Retu03
04 {

rcDstInfo ← ne05 s
06

 lhsInfo.time
 srcDstInfo.rhsTime = rhsInfo.time
 srcDstInfo.lhsOp = lhsInfo.origSrcOp

10 srcDstInfo.rhsOp = rhsInfo.origDstOp
11
12 if opTime < srcDstInfo.rhs then
13 srcDstInfo.rhsTime ← srcDstInfo.rhsTime – lhsInfo.fdTime
14 srcDstInfo.lhsOp = lhsInfo.srcOp
15 if opTime < srcDstInfo.rhs th
16 srcDstInfo.rhsTime ← srcDstIn

← srcDstInfo.17 srcDstInfo.lhsTime
 srcDstInfo.dstOp = rhsInfo.d18

19 endif
endif 20

21
22 return srcDstInfo
23 }

Figure 3.12d: The

3.5 Experimental results
To measure the impact of speculative plan executi
process, I conducted two sets of experiments. T
impact of speculation for a set of typical
this exper
information integra

72
 second set of tests involved applyin the technique to standard database query

plans that were ouncil’s TPC-H
benchmark, a set of ad-hoc business-style chema. I was

nerating a query plans for each of a subset of the 22

 specify an U.S. nine-digit zip code to query multiple Web
sources that identify the set of corresponding U.S. federal congressional

epresentative and senators), along with funding charts and

rated map that plots their locations.
002) that queries

•

t company is in, identifies
the largest competitor (based on market capitalization) and retrieves a

A g
ragenerated from the T nsaction Processing C
queries to an order-entry s

able to use this benchmark by ge
specified TPC-H queries and then, when executing that plan, simulating latencies for
each table accessed (thus, the schema becomes a distributed database with noticeable
latencies). I measured the effectiveness of speculative execution for different
degrees of latency and database sizes. The goal of this second type of experiment
was to measure the utility of speculative execution for a more traditional type of
distributed database using a standard schema and standard set of queries.

Both experiments were conducted using Theseus, the implementation of the
streaming dataflow execution system for information agents described earlier in
Chapter 2. Theseus was modified to support the automatic transformation of plans
using the SPEC-REWRITE algorithm. In addition, Theseus was instrumented to count
the average number of tuples per operator, per transaction as well as the average time
it took to process each tuple. Using these numbers, Theseus iteratively transformed
the MEPs in each plan, until no further transformations were possible (or profitable).
For the second and successive runs, Theseus issued predictions when possible using
data acquired from past executions. It also collected source/target data for each
Speculative opportunity from to improve its predictive accuracy for future runs. I
now focus on the tests run for each group of plans – the Web agent plans and the
TPC query plans.

3.5.1 Web agent plans
To measure the utility of speculative execution on online information gathering, I
looked at how the technique affected the performance of five different types of Web
agent plans that integrate information between multiple Internet sources. These
plans included:

• CarInfo: The main example, introduced in Chapter 1.
• RepInfo: An agent described in (Barish and Knoblock 2002) that allows

users to

members (r
recent news corresponding to each member.

• TheaterLoc: An agent described in (Barish et al. 2000) that combines
restaurant and theater data for a particular city and emits a dynamically
gene

• FlightStatus: An agent described in (Ambite et al. 2
the status of a particular flight, and then e-mails the user/hotel with
updates as necessary.
StockInfo: An agent that takes a particular company name, identifies
the stock symbol associated with it, locates profile information on that
company, finds out what industry sector tha

73

I now descr ns, except CarInfo (which has
been sho
of the plans.

RepInfo
This agent u
members ba
about each
charts for ea
of these sour

Figure 3.14a shows the original RepInfo plan while Figure 3.14b shows the plan
modified for speculative execution. Note that querying both Congress.org and the
chart from Open Secrets requires navigating from links derived from an initial query

chart that compares the 1 year performance of that competitor with the
input company and the sector.
ibe the details of each of these agent pla

wn earlier in this chapter), including the original and transformed versions

 ses Congress.org (http://www.congress.org) to identify the congressional

sed on zip code, Yahoo News (http://news.yahoo.com) for headlines
member, and Open Secrets (http://www.opensecrets.org) for funding
ch member. Figure 3.13a-c show the Web pages corresponding to each
ces.

Figure 3.13a: Congress.org Web page

Figure 3.13b: Yahoo News Web page

74

execution.

TheaterLoc

), respectively.
It combines that data r, which is very similar to
the one provided by E-Tak (http://www.etak.com) and then plots the locations based
on their resulting latitude and longitude on a map dynamically generated by U.S.
Census Tiger service (http://tiger.census.gov). Figures 3.15a-c show the Web pages
for some of these sources.

Figure 3.13c: Open Secrets Web page

W

J

SW

W

SPEC

CONFIRM

SPEC

W

WSPEC

WSPEC

 Figure 3.14b: The modified RepInfo agent plan

nine-digit
zip code

WRAPPER
Open Secrets

Search

WRAPPER
Open Secrets

Info

W
O

RAPPER
pen Secrets
Funding

WRAPPER
Congress.org

Search

JOIN

SELECT
title =

'Rep' or 'Sen'

WRAPPER
Yahoo
News

Rep
info

WRAPPER
Congress.org

Info

Figure 3.14a: The RepInfo agent plan

The TheaterLoc agent plan queries for restaurant and theater data from Dine.com
(http://www.dine.com) and Yahoo Movies (http://movies.yahoo.com

ode and uses it to query a local geoc

– thus, interleaved navigation is required in order to obtain an answer during plan

75

Figure 3.15a:Yahoo Movies web page

Figure 3.15b: Dine.com web page

76

Figure 3.15c: TIGER Mapping Service web page

Figure 3.16a shows the original TheaterLoc plan while Figure 3.16b shows the
plan modified for speculative execution.

Note that the Confirm operator appears before the final wrapper (the call to the
U.S. Census Tiger Service). This is because the operator was tagged (in the plan) as
being “unsafe”, since it needs to write to the file system before calling the Tiger
Service (which produces dynamic maps from locally defined URLs – Web pages that
must be generated by the agent).

WRAPPER
Yahoo Movies

city UNION WRAPPER
Geocoder

WRAPPER
Dine.com

WRAPPER
U.S. CensusTiger Map

map

Figure 3.16a: The TheaterLoc agent plan

W

SPEC

CONFIRMU
W

W

SPEC

W

Figure 3.16b: The modified TheaterLoc agent plan

77
FlightStatus
The FlightStatus agent queries the status of a particular flight, and then e-mails the
user/hotel with updates as necessary. The plan first queries a flight status Web site (I
used Delta Airlines, at http://www.delta.com) and then takes the resulting destination
city and converts the destination time based on the time zone of that city, via an
online time conversion source (U.S. Naval Observatory Astronomical Applications
Department, at http://aa.usno.navy.mil). An e-mail may also be sent to the user in
certain cases (i.e., if a flight status changes to “Cancelled”) or the agent may be
unscheduled in other (i.e., if the flight status has changed to “Arrived”). Figures
3.17a and 3.17b show the Delta Airlines and US Naval Time zone conversion Web
pages.

Figure 3.17a: Delta Airlines web page

 Figure 3.18a shows the original version of the FlightStatus agent plan. Figure
3.18b shows the one modified for speculative execution.

Figure 3.17b: US Naval Time Details web page

78

WRAPPER
Delta.com

flight
number

WRAPPER
Sunrise/Sunset

SELECT
status = 'Arrived'

UNSCHEDULE
Flight-Status agent

SELECT
status = 'Cancelled'

SELECT
status = 'Departed'

E-MAIL
user@isi.edu

SCHEDULE
Flight-Connection agent

Figure 3.18a: The FlightStatus agent plan

Note that three Confirm operators are needed since there are three different
paths on which speculative results can propagate. Since E-Mail, Unschedule, and
Schedule are also operations that are unsafe and affect the external world, the
Confirm operators were placed prior to their execution.

W WSPEC

S

S

S

CONFIRM

CONFIRM

CONFIRM

U

E

S

Figure 3.18b: The modified FlightStatus agent plan

StockInfo
To return stock information for a collection of stocks in a portfolio, this agent uses a
single site – CBS MarketWatch (http://www.marketwatch.com) – for all of its
queries. One of the reasons I chose this plan was to investigate the impact of
speculative execution on a more extreme case, a dataflow graph that was completely
sequential due to data dependencies.

The plan involves collecting competitor information about a particular stock. To
do that requires first looking up the symbol, going to the profile page for that stock,
identifying the business industry name (e.g., software) and then gathering competitor
information in that industry. Figures 3.19a and 3.19b show two web pages in this
sequence – the profile page and the industry page.

Figure 3.20a shows the StockInfo agent plan. Figure 3.20b shows the version of
the plan transformed for speculative execution.

Example plan transformation
To better illustrate the details of plan transformation using SPEC-REWRITE, I describe
the process of optimization on the real CarInfo plan, using actual operator execution
times. In practice, the initial run of this plan took 6900 seconds and yielded the
operator execution times shown in Table 3.5.

79

Figure 3.19a: MarketWatch profile page

Figure 3.19b: MarketWatch industry page

WRAPPER
Symbol Lookup

company
name

WRAPPER
Stock Info

WRAPPER
Profile

WRAPPER
Industry Info

WRAPPER
Sorted Industry

WRAPPER
Competitor Chart

WRAPPER
Compare Chart

Figure 3.20a: The StockInfo agent plan

W W W W W W W

SPEC SPEC SPEC SPEC SPEC SPEC SPEC

CONFIRM

Figure 3.20b: The modified StockInfo agent plan

80
Operator Time (ms)
Join 10
Select 153
Wrapper (NHTSA) 359
Wrapper (Consumer Guide - Summary) 1912
Wrapper (Consumer Guide - Full Review) 2175
Wrapper (Consumer Guide - Search) 1478
Wrapper (Edmunds) 812
Total 6900

Table 3.5: Operator execution times in CarInfo

From this, the path execution times shown in Table 3.6 were calculated.

Path Path operators Time (ms)
P1 Edmunds + Select + NHTSA + Join 1334
P2 Edmunds + Select + CG-Search + CG-Summary + CG-Full + Join 6900

Table 3.6: Path execution times in CarInfo

The SPEC-REWRITE algorithm then used the above statistics to transform the
plan for speculative execution. It first determined that the MEP of the plan was path
P2. Initially, the most profitable operator to speculate about was the Consumer
Guide Search wrapper. Parallelizing its execution through speculation with
operators on the MEP leading up to it theoretically saved just over 1900ms
(assuming 100% correct predictions). Note that even though the Consumer Guide
Full Review wrapper took longer, parallelizing its execution with the rest of the plan
would save little time, since only a very fast Join follows. By continuing with the
algorithm, the original MEP was reduced further by speculating about both the
Consumer Guide Summary wrapper and Edmunds wrapper. In short, the algorithm
transformed the plan so that instead of only two long parallel paths (as in Table 3.6),
there were now many short parallel paths, as shown in Table 3.7.

Path operators Estimated Time (ms)
Edmunds + Spec 812
Select + NHTSA + Join + Confirm 522
Select + CG-Search + Spec 1631
CG-Summary + Spec 1912
CG-Full + Join + Confirm 2185

Table 3.7: Path execution times after transformation for speculative execution

Thus, the estimated execution time of the plan would be equal to the new MEP,
the {CG Full, Join, Confirm} path, of about 2200ms. Note that Table 3.7 does not
take into account the overhead of speculation. For example, if we assume that it
costs roughly 100ms per tuple for each of execution of Speculate and Confirm, then
an optimistic execution of the new MEP would be (2200+100+100) = 2400ms,
representing a speedup of (6900ms/2400ms =) 2.88 for the time to first tuple.

81
Overall results
I compared the performance of normal execution to speculative execution for all five
agent plans, focusing specifically on the speedups associated with the time to first
and last tuple. When comparing normal execution to speculative execution, I looked
at three cases of speculative execution:

• Optimistic: 100% of the predictions made were correct
• Average: 50% of the predictions made were correct
• Pessimistic: none of the predictions made were correct

I chose to measure these three cases of speculative execution to show the impact
of prediction quality on plan speedup. Figures 3.11a and 3.11b show the average
performance of the different predictive accuracy scenarios. Figure 3.11a shows the
affect of speculative execution on the time to first tuple (start of output), while
Figure 3.21b shows the impact on the time to the final tuple (end of output). The
resulting average speedups for each of the plans, for both the 100% correct and 50%
correct predictions cases, are shown are shown in Figures 3.22a and 3.22b.

0
1000
2000
3000
4000
5000
6000
7000
8000

CarInfo RepInfo TheaterLoc FlightStatus StockInfo

Plan

Ti
m

e
to

 la
st

 tu
pl

e
(m

s) No speculation
100% correct
50% correct
0% correct

Figure 3.21b: Performance improvement of time to last tuple

0
1000
2000
3000
4000
5000
6000
7000
8000

CarInfo RepInfo TheaterLoc FlightStatus StockInfo

Plan

Ti
m

e
to

 fi
rs

t t
up

le
 (m

s)

No speculation

100% correct

50% correct

0% correct

 Figure 3.21a: Performance improvement of time to first tuple

82

0.00
0.50
1.00

CarInfo RepInfo TheaterLoc FlightStatus StockInfo

Plan

1.50
2.00
2.50
3.00

3.50
4.00
4.50

Sp
ee

du
p

100% correct

50% correct

Figure 3.22a: Speedup increases related to the time to first tuple

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

CarInfo RepInfo TheaterLoc FlightStatus StockInfo

Plan

Sp
ee

du
p

100% correct

50% correct

Figure 3.22b: Speedup increases related to the time to last tuple

Discussion
There were two interesting findings worth noting from the Web information
gathering results. The first was that speculative execution reduced average execution
time significantly for CarInfo, RepInfo, TheaterLoc, StockInfo, and less significantly
for FlightStatus. Clearly, this difference in the impact of speculative execution has
to do with two factors: (a) the number of binding patterns between Wrapper
operators in plan and (b) the latency of the sources used.

For example, the StockInfo plan had an MEP parallelizable to a degree of seven.
Correspondingly, its average speedup was just under 4, the difference likely due to
the overhead of speculation. The same is true for CarInfo and RepInfo, which had
MEPs parallelizable up to 3 and 4, respectively, and yielded average speedups of 2
and 2.5. In contrast, the maximum possible speedup for FlightStatus – if the sources
were equally latent – was 2.0. However, since one of the sources (the U.S. Naval
Time source) was very fast, execution time was dominated by the slower source
(Delta airlines).

83
A second notable finding was the difference in speedups between first and last

tuple as a function of predictive accuracy. For example, for a predictive accuracy of
100%, we see that the speedups of the time to first and the time to last tuple due to
speculative execution roughly correspond. Consider CarInfo, where the first tuple
and last tuple speedups were 1.98 and 1.76, respectively, a standard deviation of
0.16. However, for predictive accuracies less than 100%, there were significant
differences between first and last tuple speedups. For example, the CarInfo first and
last tuple speedups when 50% accurate were 1.80 and 1.24, respectively, a standard
deviation of 0.39. The difference in deviations can be explained by the fact that, in
cases where the predictive accuracy was less than 100%, the last tuple(s) will have
required traveling through the normal path of execution – that is, since confirmation
failed at an earlier stage, some tuples needed to pass through some or all of the plan.
However, note that speedups on the last tuple were still possible because (a)
execution was more “spread out” (smaller groups of tuples required concurrent
processing by Wrapper operators) and (b) although speculation failed some
percentage of the time, it was rare that a tuple which failed but was corrected in the
middle of the plan, failed again at a later point in the plan.

Finally, for purposes of clarity, it is useful to revisit the definitions of
“optimistic” and “average” in the experiments. Note that for cascading speculation,
the “optimistic” case assumed that all predictors in the modified plan are 100%
accurate in their predictions, all of the time. In contrast, the “average” case assumed
that all predictors are 50% correct. This is equivalent to having said that (a) the plan
input data is repeated 100% (or 50%) of the time and that (b) no generalization (such
as learning, discussed in Chapter 4) is performed. This means that, to an extent, the
boundaries can be viewed as somewhat “over optimistic” and “over pessimistic”,
depending on the application. Nevertheless, these assumptions allow us to get some
feel for the impact of speculative execution given different degrees of predictive
accuracy, underscore how important good predictions are during speculative
execution, and help motivate the discussion on learning in Chapter 4.

3.5.2 Database query plans
A second set of experiments focused on applying speculative execution to plans
generated by SQL queries from the TPC-H ad-hoc query benchmark. The goal was
to understand the impact of speculation on complex queries that involve a very
common type of schema, where each of the entities (tables) of that schema were
independent sources on a network. Figure 3.23 summarizes how the TPC-H schema
was converted to a distributed database.

The TPC-H benchmark is composed of a schema and 22 queries over this
schema. The schema approximates a typical order-entry system, composed of
customers, suppliers, orders, line items, parts, and nation as well as regional
information about customers and suppliers. The 22 queries developed by the TPC
organization target typical ad-hoc queries that analysts invoke on such schemas.
These queries commonly require gathering data from multiple tables and then
computing some aggregate value (such as a SUM or AVERAGE) from the combined
data, or grouping and/or ordering of those results. The TPC also provides tools for

84

generating databases based on the TPC-H schema (at a variety of scales) and for
randomizing certain parts of each of the 22 queries (such as randomizing the content
of SELECT WHERE clauses).

Attr1 Attr2 Attr3

Entity A
Attr1 Attr2 Attr3 Attr4

Attr1 Attr2 Attr3

Entity C

Entity B
Attr1 Attr2 Attr3

Entity A
Attr1 Attr2 Attr3 Attr4

A ttr1 Attr2 Attr3

Entity C

Entity B

network

Host C

Host A Host B

Figure 3.23: Converting a schema to a distributed database

I generated Theseus plans for each of these queries using the results of plan
generation by a commercial relational database management system, Oracle 8.1.6.
To do this, I loaded the sample TPC-H database into Oracle. Then, I used Oracle’s
EXPLAIN PLAN feature to generate the query plan produced by each of the queries.
As the TPC-H benchmark suggests, I did not pre-index any attributes of any tables
and cleared all prior statistics from Oracle’s data dictionary, so no other types of
cost-based optimizations were used during plan generation. I then took the plan
produced by EXPLAIN PLAN and converted it into a Theseus plan, which was then
executed using Theseus.

Example query transformation
To illustrate the entire process of converting a SQL query to a Theseus plan, let us
consider the steps required in the conversion of TPC-H query #17. The SQL for this
query is shown in Figure 3.24:

When TPC-H schema was loaded into an Oracle 8.1.6 database, the Oracle
EXPLAIN PLAN feature returned the query plan in Figure 3.25. This plan
corresponds to the dataflow graph shown in Figure 3.26. Based on this graph, and
mindful of the results of EXPLAIN PLAN as well as the details of the query, the
Theseus plan shown in Figure 3.27 was constructed. This plan performs the
operations suggested by EXPLAIN PLAN to address the original SQL query.

Overall results
In running the experiments, 13 of the 22 queries from the TPC-H benchmark were
tested. I believe that the subset of queries tested contain enough evidence of the
impact of speculative execution on database-style query plans in order to reach some
reasonable conclusions. The queries not evaluated fall into two classes:

select
sum(l_extendedprice) / 7.0 as avg_yearly

from
lineitem,
part

where
p_partkey = l_partkey
and p_brand = 'Brand#45'
and p_container = 'WRAP CAN'
and l_quantity < (

select
0.2 * avg(l_quantity)

from
lineitem

where
l_partkey = p_partkey

);

85

SELECT STATEMENT () 1
SORT (AGGREGATE) 2
FILTER () 3
NESTED LOOPS () 4
TABLE ACCESS (FULL) LINEITEM 5
TABLE ACCESS (BY INDEX ROWID) PART 5
INDEX (UNIQUE SCAN) PART_PK 6

SORT (AGGREGATE) 4
TABLE ACCESS (FULL) LINEITEM 5

Figure 3.24: SQL for TPC-H query #17

Figure 3.25: The Oracle EXPLAIN PLAN for TPC-H query #17

•

an (no joins with

•

oins, SQL ELSE
clause, and SQL EXISTS and NOT EXISTS clauses.

Those not applicable: Of the 22 TPC-H queries, query 1 and 6 were the
only ones that theoretically could not benefit from speculative
parallelism. For both queries, this was due to the fact that they
consisted of cal

DBSCAN
lineitem

DBINDEX
part

AGGREGATE
AVERAGE
(l_quantity)

SELECT
l_quantity <

(0.2* average)

SELECT
p_brand = 'Brand#45'

p_container = 'WRAP CAN'

JOIN
l_partkey =
p_partkey

AGGREGATE
SUM

(l_extendedprice)

Figure 3.26: Dataflow graph of the explained plan

culations based on only a single table sc
other tables).
Those requiring operations not currently supported by Theseus:
Some of the TPC-H queries involve more advanced SQL functionality
not currently supported by Theseus. The queries that fall into this
category include queries 11, 13, 14, 15, 18, 21 and 22. The operations
not supported include the SQL HAVING clause, outer j

86

PLAN q17
{

INPUT:
OUTPUT: stream answer

BODY
{
dbscan("lineitem" : lineitems)
dbindex(lineitems, "part", "l_partkey" : parts)
join(lineitems, parts, "l_partkey = p_partkey" : lp)
aggregate(lp, "avg(l_quantity) the_avg" : avg)
format(avg, "l_quantity < %s", "the_avg", "cri" : cri)
select(lp, cri : selected-lp)
aggregate(selected-lp, "sum(l_extendedprice) the_sum" : answer)

}
}

Figure 3.27: Theseus plan based on dataflow graph

I measured the impact of speculative execution on the 13 other queries under
several conditions. Specifically, the following parameters were varied:

• Database size: The TPC-H tool DBGEN allow databases of various
sizes to be generated. Sizes are based on a “scale” factor input to
DBGEN. A scale factor of 1 corresponds to about 1 GB of data. The
experiments used databases with scale sizes of 0.2 and 0.6, to
demonstrate how speculative execution performance was impacted by
an increased amount of data.

• Maximum source concurrency: In a distributed federated database
(such as the Web), there are often limits on how concurrently a source
can be queried (i.e., maximum number of simultaneous connections
allowed). To measure the impact of source concurrency on speculative
execution, the maximum number of concurrent connections to a
particular source (i.e., table) was varied between 5 and 100.

• Average source latency: Source latencies can vary based on source
capability, current load, and the complexity of query being performed.
To measure its impact on speculative execution, source latencies of
2000ms, 4000ms, 6000ms, 8000ms, and 10000ms were tested.

• The details of the query: TPC-H tools allow the literals used in queries
(such as the details of a SQL WHERE clause) to be varied. Each test
used three customized versions of the same query, each version semi-
randomly generated by the tools.

The results are shown in Figures 3.28a, 3.28b, and 3.28c.

87

1

2

3

4

5

6

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q16 Q17 Q19 Q20

TPC-H query

A
ve

ra
ge

 s
pe

ed
up

2000ms

4000ms

6000ms

8000ms

10000ms

Figure 3.28a: Average speedup of TPC-H queries (database scale = 0.2, concurrency=5)

1

2

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q16 Q17 Q19 Q20

TPC-H query

3

4

5

6

A
ve

ra
ge

 s
pe

ed
up

2000ms

4000ms

6000ms

8000ms

10000ms

Figure 3.28b: Average speedup of TPC-H queries (database scale = 0.6, concurrency=5)

1

2

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q16 Q17 Q19 Q20

TPC-H query

A

3

4

5

6

ve
ra

ge
 s

pe
ed

up 2000ms

4000ms

6000ms

8000ms

10000ms

Figure 3.28c: Average speedup of TPC-H queries (database scale = 0.2, concurrency=100)

Figure 3.28a shows the average speedups of all queries for a variety of latencies
when the scale of the data was set to 0.2 and the maximum number of concurrent
connections to each source was limited to 5. Figure 3.28b shows the same type of

88
data for a scenario where the scale of the data was 0.6 and the max concurrency
remained at 5. Finally, Figure 3.28c shows the same type of data for the case where
the scale was 0.2 and the max concurrency was 100.

Discussion
Just as was the case for Web information gathering plans, speculative execution also
appears useful for traditional distributed database query plans, such as those
generated by TPC-H queries. In two dramatic cases (queries 8 and 20), the
technique yielded speedups above 3 (at both data scales). For many other cases,
speedups above 1.5 were attained, most at the lower data scales. In addition,
speedups were greater in some cases (queries 7 and 8) when constrained on the
number of concurrent connections, because operators were blocked more often,
leading to greater CPU idle time and thus more speculative opportunities.

As the graphs in Figures 3.28a-c illustrate, the entire set of speedups observed
ranged from just over 1 to nearly 6. This is because, as was the case for Web
information gathering, the maximum speedup possible for each of the queries was
different. For example, a query that involved a scan of one table with a (pipelined)
join of data indexed from another has a maximum speedup of 2 (i.e., the best we can
do is to query the second based on what we predict will be returned from the first).
Thus, to better understand the impact speculative execution had on the TPC-H
queries, it is useful to compare the speedups measured with the maximum speedups
possible. Figure 3.29 shows the theoretical maximum speedups for each plan
alongside the results from Figure 3.28a.

It should be noted that the theoretical maximum speedups for all queries is an
upper bound. This is because the nature of the types of retrieval vary during the
execution of a query. Typically, the plan generated from a SQL query consists of
scanning a first source (reading in an entire table) and then using that source as a
“driving table” for index queries (binding pattern-style queries) to all other sources
in the plan. In the experiments, scan latencies are assumed to be a one time
occurrence (there is a delay and then all of the data is available) while index latencies
are per tuple. When speculating about data returned from a scanned source, it is

1
2
3
4
5
6
7
8

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q16 Q17 Q19 Q20

TPC-H query

A
ve

ra
ge

 s
pe

ed
up

2000ms

4000ms

6000ms

8000ms

10000ms

Theoretical
max

Figure 3.29: Speedups obtained for TPC-H queries vs. theoretical maximums

89
necessary to be able to process the subsequent index retrievals in parallel in order to
obtain the maximum speedup of 2. For example, consider a simple plan that scans
source A and uses the data scanned to index source B. If all sources have a latency
of 1000ms, and scanning A returns 50 tuples, obtaining a speedup of 2 for
speculative transformation of that plan will require that the corresponding 50 index
retrievals will need to be performed from B in parallel with the scan of A. If that
source has limitations on the number of concurrent connections, or if the source is
affected by the load, or if the number of threads/processes available for parallel
querying are limited, speedups of 2 will not be possible because the 50 index
retrievals will take longer that the scan. Thus, for plans that scan large amounts of
data, the benefits of speculative parallelism can be inhibited by local or remote
concurrency constraints.

With this fact in mind, we now turn to further analysis of the results. In
considering Figure 3.29 in conjunction with the results from Figures 3.28a-c, we see
that speculative execution of about half of the queries (8, 12, 16, 17, 19, and 20)
approached the theoretical maximum speedups for those queries. In other cases (2,
7, 9, and 10), significant speedups were obtained, but appeared to approach their
theoretical maximum more slowly. Finally, in other cases (3, 4, and 5) speedups
were moderate to minimal, ranging from just over 1 to about 1.3.

Generally, the variance in the differences between speedups due to speculative
execution and the theoretical max speedup is due to the difference in the number of
speculative tuples generated during execution – thus, the overhead of speculation.
This is best demonstrated by the differences between the speculative execution of
queries 20 and 5. Speculative execution of query 20 yielded speedups that were very
close to the theoretical maximum. The query involved first scanning a table called
PART and then using that as the driving table for indexing other sources. The PART
table is small, containing just over 2% of the total number of rows in the aggregate
set of tables. Thus, speculation about that scan involves prediction of only a few
tuples and thus a lower overhead of speculation. In contrast, query 5 involved an
initial scan of the LINEITEM table, which contained 67% of the total number of
rows in the aggregate set of tables. Thus, speculation about that scan required a
much higher overhead, which worked against any gains speculative execution
provided.

Another important result to note was that speedup generally increased as source
latencies increased. The main reason for this is that greater latencies compensate for
the overhead of speculation (both prediction generation and confirmation). Recall
that the SPEC-REWRITE algorithm produces a transformed plan if there is any
improvement, not just if the improvement will completely compensate for the
overhead required. However, as latencies increase, the effect of the overhead (which
is a fixed amount, unaffected by the latencies) is lessened.

A final result worth noting is the effect of database scale. In considering Figures
3.28a-c, we see that the utility of speculative execution for the TPC-H queries
generally decreases as the size of the database increases. The only queries that
seemed relatively impervious to this were queries 9, 16, and 20. Despite being
affected by increased database size, queries 2, 7, and 8 still yielded significant

90
speedups; for example, for a latency of 2000ms and a scale of 0.6, speculative
execution of query 8 yielded average speedups of over 2.5 (down from a speedup of
4 for a database scale of 0.2).

In summary, the experiments indicate that speculative execution can have a
significant impact on several TPC-H queries, with a few caveats. Generally, the
utility of speculative execution is associated with database scale, intermediate data
size, the number of sources queried, and the average latency of those sources. The
most important factor is the number of sources joined together: the more sources, the
greater the theoretical max speedup. The second most important factor is the size of
the intermediate data – when it is small to modest, significant speedups can be
obtained and the theoretical max can be within reach. Finally, the utility of
speculative execution generally improves with longer latencies (which compensate
for speculative overhead) and small databases (less speculative overhead for scans,
etc). Overall, speculative execution can have a modest to significant impact for
TPC-H queries, suggesting that it is a technique applicable to improving the
performance of distributed database query processing.

3.6 Summary
In this chapter, I have introduced an approach to the speculative execution of
information agent plans. I have shown how this approach represents a new form of
run-time parallelism that allows plan execution to exceed its normal dataflow limit,
leading to significant execution speedups without sacrificing fairness or safety
during execution. In addition, I have presented algorithms that enables any pre-
existing plan to be automatically transformed into one capable of speculative
execution.

Overall, the results indicate that speculative execution is an effective technique
for improving the performance of Web information gathering plans as well as more
traditional type of query plans for distributed database systems. In analyzing the
effects of speculative execution in the latter scenario, it is clear that its impact is tied
closely to the total number of distinct sources queried, the amount of data needed for
speculation, the size of the database, and the latency of the individual sources.
Because the method of speculative execution proposed ensures fairness, transformed
plans are usually just as fast or faster than without speculation, with speedups at least
in the 1.20-1.50 range. However, when the number of sources being speculated
about is large and the amount of data to be speculated is modest, very large speedups
(4 and greater) can be obtained.

91

Chapter 4

Value Prediction for Speculative Execution

Thus far, I have described how speculative execution can lead to better parallelism
and subsequently better average plan speedups. However, the utility of speculative
execution is fundamentally linked with the ability to issue accurate value predictions.
The more accurate the predictions, the closer the average speedup of a plan
approaches its maximum theoretical performance. Thus, a good value prediction
strategy is important.

The basic problem of value prediction involves being able to leverage
knowledge about the set of past hints when making a prediction about a new hint.
More specifically, the goal is to use some source tuple h as hint for issuing a
predicted target tuple v. One approach to value prediction is simple caching: we can
note that particular hint hx corresponds to a particular target vy so that future receipt
of hx can lead to prediction of vy. Caching is one simple and safe solution to the
problem of value prediction. It requires no new algorithms and can be applied to any
opportunity for value predictions.

However, since the type of speculative execution that I have described occurs at
the agent level, where the values being predicted are related tuples of data, there are
often opportunities where it is possible to do better. For example, in the CarInfo
plan, the full review URL is simply just a transformation of the summary URL. If
possible, it would be more desirable to learn this transformation function because
such a predictor would be useful towards never-before-seen hints (that would not
have otherwise been cached). In addition, this type of function-style predictor would
also be smaller and bounded in the space it demands.

In this chapter, I introduce a technique for value prediction that combines
caching with two machine learning techniques, classification and transduction. The
resulting predictors learned are not only capable of both predicting values based on
recurring past hints, but are also capable of making predictions for never-before-seen
hints and synthesizing new predictions if necessary. As a result, the predictors
learned can make predictions more often and thus increase the average accuracy of
prediction. This, in turn, leads to better average plan speedups due to speculative
execution.

4.1 Value prediction strategies
There are several potential methods that can be used to predict values for speculative
plan execution. These strategies differ in terms of their design complexity, space
efficiency, and predictive capabilities. The last metric is especially important

92
because better predictions at runtime translate into better speedups. To better
compare methods of prediction, there are three scenarios to consider:

• Predictions of past values based on recurring hints: Given the past
association of an input with an output, future receipt of that prior input
can be treated as a hint hxi justifying prediction of that prior output value
vyi. More compactly, this can be described as the case where (vyi | hxi).

• Predictions of past values based on new hints: In cases where a
many-to-one or many-to-many relationship exists between hints and
predictions, receipt of a new hint hxq ∈ H, where H={hx1..hxm} and q >
m can lead to a prediction vyi ∈ V, a previously collected set of
predictions V={vy1...vyn}, where 1 ≤ i ≤ n. Equivalently, this is the case
(vyi | hxq).

• Predictions of novel values based on new hints: In cases where it can
be observed that (vyi | hxi) and that vyi = F(hxi), it is desirable to be able
to infer function F and therefore be able to compute a prediction for
some new hxj ∉ H, specifically to compute F(hxj) = vyj. Thus, this is the
case (F(hxj) | hxj).

In this section, I discuss three strategies for value prediction – caching,
classification, and transduction – and evaluate their accuracies with respect to these
three categories.

4.1.1 Caching
The most basic strategy for value prediction involves caching input and output
values for the operator to be predicted, and using future instances of input to predict
output. A cache is simply a table that associates hint with predicted value(s). In
cases where multiple hints can map to the same prediction, a slightly more efficient
cache would associate a list of hints with one or more predictions. After it is built,
the table is consulted during future executions. In general, over time, the accuracy of
the cache increases (as does its size).

For example, consider using a cache in the CarInfo example to predict the output
of (Oldsmobile Alero, Dodge Stratus, Pontiac Grand Am, Mercury Cougar) from
the Edmunds wrapper based on the input (Midsize coupe/hatchback, 2002, $4000,
$12000). Based on this input, the cache would simply consist of a one row, two
column table that paired these two values:

Hint Prediction

Midsize coupe/hatchback,
2002, $4000, $12000

Oldsmobile Alero, Dodge Stratus,
Pontiac Grand Am, Mercury Cougar

Table 4.1: Cache for the Edmunds wrapper in CarInfo after one example

Future observations that did not already exist in the cache would be added. For
example, the input (Midsize coupe/hatchback, 2002, $16000, $18000) that returns
(Honda Accord, Pontiac Grand Prix, Toyota Camry, Chevrolet Camaro) would be
appended. Note that this process also applies to cases where a similar (but not

93
exactly identical) hint leads to the same predicted value. For example, it is also true
that the input (Midsize coupe/hatchback, 2002, $5000, $12000) – which differs from
the first hint only on the minimum price – returns the same result as the first hint. If
we now take all three instances and store them in the cache, the result is Table 4.2.

Hint Predictions

Midsize coupe/hatchback,
2002, $4000, $12000

Oldsmobile Alero, Dodge Stratus,
Pontiac Grand Am, Mercury Cougar

Midsize coupe/hatchback,
2002, $16000, $18000

Honda Accord, Pontiac Grand Prix,
Toyota Camry, Chevrolet Camaro

Midsize coupe/hatchback,
2002, $5000, $12000

Oldsmobile Alero, Dodge Stratus,
Pontiac Grand Am, Mercury Cougar

Table 4.2: Cache for Edmunds based on three examples

From these examples, it should be clear that caching is limited in that it can only
respond to past hints. Furthermore, the minimum size of the cache required to store
Table 2 is 184 bytes (counting only the unique data values needing storage) plus the
data required to store information about the structure of the cache. However, from
the examples seen, storing all of this data is not necessary – the same predictions can
be made if we store only the key parts of information that distinguish one prediction
from the others. I now describe alternative techniques to caching that can also be
used for value prediction.

4.1.2 Classification
Classification involves extracting knowledge from a set of data (instances) that
describes how the attributes of those instances are associated with a set of target
classes. Given a set of instances, classification rules can be learned so that recurring
instances can be classified correctly. Once learned, a classifier can also make
reasonable predictions about new instances, even instances that are a combination of
attribute values which had not previously been seen. The ability for classification to
accommodate new instances makes it an intriguing technology for the speculative
execution of information gathering plans because, unlike caching, classification rules
allow predictions to be made about novel hints.

As an example, consider again the prediction of the make and model of a car in
the CarInfo plan. It turns out that Edmunds returns the same answer (Oldsmobile
Alero, Dodge Stratus, Pontiac Grand Am, Mercury Cougar) for the criteria (Midsize
coupe/hatchback, 2002) that also includes any minimum price of $9912 or less and
any maximum price of $11944 or more. This explains why the third hint in the
example above, which had a minimum price of $5000, returned the same answer as
the first. Thus, we see that in the case of the Edmunds wrapper, multiple search
criteria can be associated with the same result.

Intuitively, we know that certain features of the hint will always lead a different
result than previous hints. For example, if we had altered the type or class of car, we
know that we would not get the same set of results returned (and, in fact, we do not).
However, intuition also suggests that there are ranges of prices that will return the

94
same result of (Oldsmobile Alero, Dodge Stratus, Pontiac Grand Am, Mercury
Cougar), but we do not know exactly what those ranges are. More important is the
issue of encoding this knowledge into a predictor. A cache does not support any way
to express rules under which hints can map to certain predictions – in contrast, this is
exactly how classifiers work.

Given a set of examples, a classifier can be used to learn rules for prediction that
are based on features of the hint. The basic idea involves calculating the information
gain hint attributes provide in terms of determining an association to a particular
target class (the prediction). The more closely associated a particular feature of a set
of training instances is with the target classes for each of those instances, the better
that feature is at classifying the instances. For example, when considering the
examples described in the caching section above, a classifier like Id3 (Quinlan 1986)
could induce the following decision rules:

min ≤ 5000: Oldsmobile Alero, Dodge Stratus, Pontiac Grand Am, Mercury
Cougar

min>5000: Honda Accord, Pontiac Grand Prix, Toyota Camry, Chevrolet
Camaro

When presented with an instance previously seen, such as (Midsize
coupe/hatchback, 2002, $4000, $12000), both the cache and the classifier would
result in the same prediction. However, when presented with a new instance, such as
(Midsize coupe/hatchback, 2002, $4500, $12000), the cache would be unable to
make a prediction whereas the classifier would issue the correct prediction. Note
that even when classification leads to an errant prediction, the Confirm operator
would prevent errant data from leaving the plan.

The decision tree above is also more space efficient than a cache for the same
data. Recall that the cache requires storing at least 184 bytes. The decision tree
above requires storing only 132 bytes (nearly a 30% improvement) plus the
information required to describe tree structure and attribute value conditions (i.e.,
price < 18000). In short, classifiers such as decision trees can potentially function as
better, more space-efficient predictors. And in the worst case, where the source tuple
consists of only a single non-continuous attribute and corresponds to a unique target
class, a classifier roughly emulates a cache.

4.1.3 Transduction
Transducers are finite state machines that transform input to output by using the
former to iteratively proceed through a series of states that progressively produce the
latter. One type of transducer is a string-to-string sequential transducer, defined by
(Mohri 1997) as T = (Q, i, F, Σ, ∆, δ, σ), where Q is the set of states, i∈Q is the
initial state, F⊆Q is the set of final states, Σ and ∆ are finite sets corresponding to
input and output alphabets, δ is the state-transition function that maps Q x Σ to Q,
and σ is the output function that maps Q x Σ to ∆*.
A more general type of subsequential transducer is the p-subsequential transducer
which extends the definition of a sequential transducer by allowing the final state to

95
include p additional output arcs. This simply allows the transducer to append on
additional characters (i.e., a suffix). Transducers are used in many sub-disciplines of
computer science, including natural language processing, where they have been
applied to the problem of automatically translating a source string to a target string.

Value prediction by transduction makes sense for Web information gathering
plans primarily because of how Web sources organize information and how Web
requests (i.e., HTTP queries) are standardized. In the case of the former, Web
sources often use predictable hierarchies to catalog information. For example, in the
CarInfo example, the summary URL for the Dodge Stratus was
http://cg.com/summ/20812.htm and the full review was at
http://cg.com/full/20812.htm. Notice that the second URL uses the key piece of
dynamic information (20812) in the first URL. More specifically, it extracts that
information from the first URL and combines it with other static data, as shown in
Figure 4.1. By learning the full review URL transduction, we can then predict
future full review URLs for corresponding summary URLs we have never previously
seen.

http://cg.com/summ/20812.htm

http://cg.com/full/20812.htm

To create full review URL:

1. Start with "http://cg.com/full/"
2. Append the dynamic part of the

summary URL (e.g., 20812)
3. Append ".htm"

1 2 3

Figure 4.1: Full review URL transduction is part extraction, part

In addition to URLs, transducers can also be used to predict HTTP queries. For
example, an HTTP GET query for the IBM stock chart is http://finance.yahoo.
com/q?s=ibm&d=c. By exploiting the regularity of this URL structure, the system
can predict the URL for the Cisco Systems (CSCO) chart.

In this chapter, I define two new types of transducers that extend the traditional
definition of p-subsequential transducers. The first is a high-level transducer, called
a value transducer that constructs the a predicted value based on the regularity and
transformations observed in a set of examples of past hints and values. Value
transducers build the predicted value through substring-level operations {Insert,
Cache, Classify, Transduce}. Insert constructs the static parts of predicted values.
Cache recalls past values associated with the hint key. Classify categorizes hint
information into part of a predicted value. Finally, Transduce transforms hint
information into part of a predicted value. Transduce uses a second type of special

96
transducer, called a hint transducer, in which the operations {Accept, Copy,
Replace, Upper, Lower} all function on individual characters of the hint and
perform the same transformation as their name implies, with respect to the predicted
value.

To illustrate, consider the process shown in Figure 4.2, which can be applied to
predicting the full-review URL in the CarInfo example. The figure shows two
transducers. The upper one, the value transducer, performs high-level operations
including the insertion of substrings and the call to a lower-level transduction
process. The second transducer (in abbreviated form) is a hint transducer. The
example shown uses the Accept and Copy operations to transform the part of the
hint value into its proper point in the predicted value. In summary, the value
transducer builds the “http://cg.com/full/” part, the hint transducer fills in the
dynamic part “20812” via copying it from the hint value, and finally the third value
transducer operation appends the “.htm” suffix.

The key idea this example shows is that synthesis of a prediction can consist of
several sub-operations. Some of these sub-operations, such as Insert, are
independent of the hint value. Others, such as transduction, classification, or caching
are a function of the hint value. Together, both types of sub-operations enable values
to be generated, even from never-before-seen hints.

Transducers lend themselves to value prediction because of the way information
is stored by and queried from Web sources. They are a natural fit because URLs are
strings that are often the result of simple transformations based on earlier input.
Thus, for sources that provide content that cannot be queried directly (instead
requiring an initial query and then further navigation), transducers serve as predictors
that capitalize on the regularity of Web queries and source structure.

In terms of space efficiency, a learned transducer is generally very compact
because what is learned is a set of transformation rules for the hint. For example,
once the value transducer shown in Figure 4.2 is learned, it can be applied to all new
hints. It should be noted that transducers in other areas of computer science, such as
natural language processing, are not always compact and do grow as more examples
are seen. In contrast, the types of transducers common to Web information gathering

1 2
INSERT("http://cg.com/full/")

TRANSDUCE(hint)

3
INSERT(".htm")

2a 2e
h:ACCEPT

2b
u:ACCEPT

2c
/:ACCEPT

ε:ACCEPT

2d
/:COPY

ε:COPY

/:ACCEPT

ε:ACCEPTε:ACCEPT

Figure 4.2: Value transducer for the full-review URL in CarInfo

97
plans, in particular those useful for URL prediction, tend to be more like small
functions. Thus, the space demands for a transducer stay fixed over time.

4.1.4 Comparison of techniques
In this section, I have discussed three value prediction techniques, caching,
classification, and transduction. Each has it advantages and disadvantages. Caching
is simple, always works when given a recurring hint, but is unable to deal with new
hints nor generate novel predictions and has the worst space efficiency of the three.
Nevertheless, it is a good alternative when no other learning algorithm can be
applied.
Classification has better space efficiency, can deal with new hints, and – if necessary
– can roughly emulate a cache for cases where all hint features are equally good/bad
in terms of prediction. One minor disadvantage is that it is possible for a classifier to
generate an errant prediction on a recurring hint, but usually only if that hint contains
one or more continuous attributes.
Finally, transduction is the most space efficient of the three, is capable of dealing
with new hints as well as making novel predictions, and is especially relevant for
Web agent plans because of its applicability at predicting URLs. The only
disadvantage to transduction is that it is not always relevant for all speculative
opportunities (i.e., some predictions are associated with hints, not computed based
on hints). Table 4.3 compares all techniques along the categories specified earlier
including space efficiency.

Strategy
Predicts past
values from
past hints

Predicts past
values from
new hints

Predicts novel
values from new

hints

Space
efficiency:
growth rate

Caching Yes No No Linear
Classification Yes Yes No Sublinear
Transduction Yes Yes Yes Constant

Table 4.3: Comparing value prediction strategies

4.2 A Unifying Learning Algorithm
In this section, I present a set of algorithms that describe how to combine caching,
classification, and transduction in order to generate efficient and accurate predictors.
By combining all three strategies, there is an increase in the flexibility for prediction
synthesis. For example, with the algorithms I present, it is possible to learn a
predictor that synthesizes a new prediction through a combination of caching,
classification, and transduction of the hint received.

4.2.1 Value Transducers
My overall approach to value prediction involves inducing a value transducer (VT)
that describes how to generate a prediction from a hint, using sub-operations that
include classification, transduction, and caching. To learn a VT for the speculative
execution of information gathering plans, the following is required:

98
1. For each attribute of the answer tuple, identify a Static/Dynamic (SD)

Template that distinguishes the static parts from dynamic parts of the target
string by analyzing the regularity between values of this attribute for all
answers.

2. For each static part, add an Insert arc to the VT.
3. For each dynamic part, determine if transduction can be used; if so, add a

Transduce arc to VT.
4. If no transducer can be found, classify the dynamic part based on the relevant

attributes of the hint and learn a classifier.
5. If the classifier accuracy is 100%, add a Classify arc to the VT.
6. If the classifier accuracy is below 100% (possible when one or more hint

features are continuous), build a cache of the data and add a Cache arc to the
VT.

These steps are implemented in the algorithm LEARN-VALUE-TRANSDUCER, shown
in Figure 4.3. The algorithm takes a set of hints, a set of corresponding answers, and
returns a VT that fits the data.

01 Function LEARN-VALUE-TRANSDUCER returns ValueTransducer
02 Input: set of hints H, corresponding set of answers A
03 VT ← ∅
04 tmpl ← LEARN-SD-TEMPLATE (A);
05 Foreach element e in tmpl
06 If e is a static element
07 Add Insert (e.value) arc to VT
08 Else if e is a dynamic element
09 DA ← the set of dynamic strings in A for this tmpl element
10 HT ← LEARN-HINT-TRANSDUCER (H, DA)
11 If HT != ∅
12 Add Transduce (HT) arc to VT
13 else
14 CL ← LEARN-CLASSIFIER (H, DA)
15 acc = TEST-CLASSIFIER (CL, H, A)
16 If acc < 100%
17 CH ← BUILD-CACHE (H, DA)
17 Add Cache (CH) arc to VT
18 Else
18 Add Classify (CL) arc to VT
19 Return VT
20 End /* LEARN-VT */

Figure 4.3: The LEARN-VALUE-TRANSDUCER algorithm
In this algorithm, learning a classifier can be achieved by decision tree induction

algorithms such as Id3 (Quinlan 1986). Learning the SD template and the hint
transducer, however, require unique algorithms.

4.2.2 Learning templates of string sets
Learning a VT requires first identifying a template for the target value that describes
what parts of the target are static and what parts are dynamic. After that, each static
part of the template is replaced with Insert operations and a each dynamic part
becomes a candidate for either transduction, classification, or caching.

99
To identify a static/dynamic template, I first locate the static parts by comparing

the target values to each other. Subsequences of characters that all target values
share are considered static parts. The dynamic parts of the template are then simply
the varying characters between two static parts (or the start and end of the template).
Thus, each SD template will consist of an alternating sequence of static and dynamic
parts.

To identify the static parts of a template, I first locate the longest common
subsequence (LCS) of a set of target values. To do this, I apply an LCS
identification algorithm similar to the one described by (Hirschberg 1975) to the first
two target values. If there is an LCS, I then find the next LCS between the current
LCS and the next target value. This process continues until the LCS is empty or all
target values have been tested and the LCS is not empty. If the LCS is not empty, its
strictly consecutive subsequences are annotated. Strictly consecutive subsequences
are characters of the LCS that appear consecutively (without any intervening
characters) in all target strings. For example, while the LCS in the set of strings
{hello, hall, hill} = {hll}, this is composed of two strictly consecutive subsequences,
{h} and {ll}, as these subsequences always appear one after another in all examples.
In contrast, there is at least one example (in fact, all three examples) where a
character exists in between the LCS {hll}.

Once the annotated LCS is identified, we can then iterate through the set of
answer values to determine the set of possible SD templates that fit the general form
of the answer. Only those templates common to all are kept – from this, one of the
set is returned (though all are valid). The algorithm that implements this, LEARN-
SD-TEMPLATE, is shown in Figure 4.4.

01 Function LEARN-SD-TEMPLATE returns Template
02 Input: set of strings S
03 tmpl ← ∅
04 lcs ← GET-ANNOTATED-LCS(S)
05 If lcs != ∅
06 tmplSet ← ∅
07 Foreach string s in S
08 curTmplSet ← EXTRACT-TEMPLATES (s, lcs)
09 tmplSet ← tmplSet ∩ curTmplSet
10 If tmplSet != ∅
11 tmpl ← choose any member of tmplSet /* all are valid */
12 Endif
13 Endif
14 Return tmpl
15 End /* LEARN-SD-TEMPLATE */

Figure 4.4: The LEARN-SD-TEMPLATE algorithm

4.2.3 Learning hint transducers
To learn a hint transducer, I also make use of template identification. However,
instead of identifying a template that fits all answers, the algorithm I propose
identifies templates that fit all hints. Based on one of these templates, the algorithm
constructs a lower-level hint transducer that accepts the static parts of the hint string
and performs character-level transformations (Accept, Copy, Replace, Upper, or

100
Lower) on the dynamic parts. A sketch of the algorithm that implements this,
LEARN-HINT-TRANSDUCER, is shown in Figure 4.5.

01 Function LEARN-HINT-TRANSDUCER returns HintTransducer
02 Input: the set of hints H, the set of resulting strings S
03 Use LCS to identify static parts between all H
04 Foreach H,S pair (h, s)
05 h′ ← extraction of h replacing static chars with the token ‘A’
06 A ← Align (h′, s) based on string edit distance
07 Annotate A with character level operations
08 End
09 RE ← Build a reg expr that fits all annotations (using LCS)
10 If RE == ∅
11 ht ← ∅
12 Else
13 ht ← transducer based on RE that accepts static subsequences of H and transduces dynamic subsequences.
14 Endif
15 Return ht
16 End /* LEARN-HINT-TRANSDUCER */

Figure 4.5: The LEARN-HINT-TRANSDUCER algorithm
For example, suppose prior hints {Dr. Joe Smith, Dr. Jane Thomas} had

corresponding observed values {joe_s, jane_t}. The algorithm would first identify
the static part of the hints and rewrite the hints using the Accept operation, i.e.,
{AAAAJoe Smith, AAAAJane Thomas} where A refers to the operation Accept. It
would then align each hint and value based on string edit distance and annotate with
character level operations that reflect the transformation to the observed values,
resulting in {AAAAALCCRLDDDD, AAAAALCCCRLDDDDD}. Next, it would
use the LCS to build the regular expression {A*LC*RLD*} fitting these examples
and ensure that intermediate operations of indeterminate length (such as the A* and
C*) shared a common character upon which they stopped. From this, a general
predictive transducer can be constructed (partial form shown in Figure 4.6).

For purposes of describing this transducer in text form, we can abbreviate Figure
4.6 as {Athrough=[], L, Cupto=[], A, L} which means “accept through the first space,
lowercase the next character, copy successive characters until the next space, accept
the space and then lowercase the next character.”

4.2.4 Detailed example of predictor learning
To better illustrate how a predictor is learned with the LEARN-VALUE-TRANSDUCER
algorithm, I describe how the second predictor in the CarInfo plan, which generates
the ConsumerGuide summary URL, is learned. In this example, the source value is a

1 2

[]:ACCEPT

ε:ACCEPT

ε:ACCEPT

3

ε:LOWER

4

ε:COPY

ε:COPY

5

[]:ACCEPT

6

ε:LOWER

Figure 4.6: Sample hint transducer for the names example

101
tuple consisting of the make, model, and year of a car (from a list of cars returned by
Edmunds). The target value to be predicted is the summary URL that is normally
discovered by querying ConsumerGuide.com with the make, model, and year of the
car.

It is important to note that the target value also includes the input attribute
values - make, model, and year. That is, the target tuple has four attributes. The
reason for this is that the Wrapper operator that queries ConsumerGuide.com
normally performs a dependent join on the output from the source with the input
data. However, this means that the LEARN-VALUE-TRANSDUCER algorithm will be
used four times – once for each attribute – so that a hint results in four different value
transductions in creating the predicted tuple.

Learning is continuous in the sense that it can be re-applied offline after each
run. The reason that the learning is continuous is (1) to allow predictions to be made
as soon as possible and (2) to allow the predictors to be refined over time, as more
examples have been collected. For purposes of example, let us suppose that the
source and target examples shown in Tables 4.4a and 4.4b are observed by the
system over successive runs and that learning/re-learning occurs after every run.

Make Model Year
Honda Accord 1999
Honda Accord 2000
GMC Sonoma 1997
Acura NSX 2000

Table 4.4a: The sequence of source examples
(inputs to the ConsumerGuide search operator)

Make Model Year Summary URL
Honda Accord 1999 http://cg.com/summ/2289.html
Honda Accord 2000 http://cg.com/summ/2289.html
GMC Sonoma 1997 http://cg.com/summ/2247.html
Acura NSX 2000 http://cg.com/summ/1997.html

Table 4.4b: The sequence of target examples
(outputs from the ConsumerGuide search operator)

I now describe the learning as it would occur tuple by tuple. After the second
run of the speculative CarInfo plan, only the first two tuples ((Honda, Accord, 1999),
(Honda, Accord, 1999, http://cg.com/summ/2289.htm)) and ((Honda, Accord, 2000),
(Honda, Accord, 2000, http://cg.com/summ/2289.htm)) would have been observed by
the system. LEARN-VALUE-TRANSDUCER was then used to identify a VT for each
attribute of the target tuple. As the algorithm specifies, the first step is to define a
template and then, based on that template, possibly learn additional transducers or
classifiers as necessary. Since two very similar examples are seen initially, the
template for the target “make”, “model”, and “summary URL” attributes consists of
only a single static element, the template abbreviated here as {Static}. As a result,

102
the resulting VTs for make, model, and summary URL consist of only a single Insert
operation.

However, since there is no LCS between the two target year examples, the
template for that attribute is {Dynamic}. Next, the source tuple attribute values are
compared against the target attribute values in order to possibly identify a valid hint
transducer. The first target attribute value is the year “1999”. The smallest edit
distance between any of the corresponding source attributes (Honda, Accord, 1999)
and this year value is the source “year” attribute (also “1999”), which has a distance
of zero. Next, a case-independent alignment is done between the two strings, the
transducer {CCCC} is learned, and then the generalized form Transduce(year: C*)
is retained. This transducer is then verified for the remaining examples: since it
correctly produces “2000” from the corresponding source tuple (Honda, Accord,
2000) of the remaining example, the transducer is deemed valid and incorporated
into the VT for the year attribute. Details about the complete set of VTs after the first
run are shown in Table 4.5:

Attribute Value Transducer
Make INSERT("HONDA")
Model INSERT("ACCORD")
Year TRANSDUCE(year: C*)

Summary URL INSERT("http://cg.com/summ/2289.htm")

Table 4.5: VTs for the ConsumerGuide search predictor after two examples

After the next run, the system receives a third example: ((GMC, Sonoma, 1997),
(GMC, Sonoma, 1997, http://cg.com/summ/2247.htm)). The predictors are once
again re-learned, but this time the target “make”, “model”, and “year” attributes are
refined. Because the LCS for the strings (Honda, Honda, GMC) = ∅, a dynamic
template is identified and a VT consisting of Transduce(make: C*) is learned. The
templates for “model” and “year”, however, are a bit more complicated.

Because the LCS for (Accord, Accord, Sonoma) = “o”, the template for the
“model” attribute is {Dynamic, Static, Dynamic}. Even though we intuitively
realize that the correct VT for this attribute should be to simply copy all of the
characters of the source “model” attribute, the limited number of examples seen
temporarily suggest otherwise. Two hint transducers are learned. The first copies all
characters from the source model attribute up to the first ‘o’. Next, an Insert
operation inserts an “o” and then a second hint transducer accepts all of the source
model characters through the “o” before copying the rest. In short, the fact that an
“o” existed in all three examples temporarily made the transducer more complex
than it needed to be. The same is somewhat true of the Summary URL attribute –
since all examples thus far included a “22”, the system assumed that this substring
should be present in all predictions. Table 4.6 shows the state of the VTs after three
examples.

103
Attribute Value Transducer

Make TRANSDUCE(make: C*)

Model
TRANSDUCE(model: Cupto=[o]),
INSERT("o"),
TRANSDUCE(model: Athrough=[o], C*)

Year TRANSDUCE(year: C*)

Summary
URL

INSERT("http://cg.com/summ/22"),
CLASSIFY(make, model, year),
INSERT(".htm")

Table 4.6: VTs for the ConsumerGuide search predictor after three examples

Finally, the ((Acura, NSX, 1997), (Acura, NSX, 1997,
http://cg.com/summ/1997.htm) example irons out the static artifacts that affected
both the “model” and “year” attribute and causes the VTs to settle into their final,
correct state. Table 4.7 shows the final set of VTs for this predictor.

Attribute Value Transducer

Make TRANSDUCE(make: C*)
Model TRANSDUCE(model: C*)
Year TRANSDUCE(year: C*)

Summary URL
INSERT("http://cg.com/summ/"),
CLASSIFY(make, model, year),
INSERT(".htm")

Table 4.7: VTs for the ConsumerGuide search predictor after four examples

As this detailed example has shown, the value predictors learned rely on a
hybrid of techniques to predict likely target tuple values. Each predictor consists of
VTs that may combine Insert, Transduce, and Classify operations as necessary.
Predictors can be learned after only two examples, although as our example predictor
has revealed, the final form of the value transducers for a predictor may require a
few more examples in order to identify what parts of the predicted value are truly
regular (i.e., static) and what parts are not.

4.3 Experimental results
To measure the effectiveness of the approach, I conducted experiments on a set of
typical Web agent plans modified for speculative execution. The goal was to
compare the benefits of strictly caching versus the benefits of the learning the hybrid
predictors I have introduced. Specifically, the goal was to verify that my approach to
learning value predictors resulted in:

• Improved accuracy: Predictions based on classification and/or
transduction make it possible to speculate on recurring as well as new
hints, and support the issuing of recurring or novel predictions.

• Improved space-efficiency: Since the predictors we learn are more
like functions that describe a general process for producing a prediction
from a hint, their storage does not necessarily increase linearly as the

104
number of examples seen increases. In contrast, strictly caching
predictors do grow linearly since they capture the association of past
source tuples with past target tuples.

• Faster average agent performance: Learning hybrid predictors that
combine classification, transduction, and caching allow us to obtain
faster agent performance, on average, even when dealing with new hints
or when needing to issue novel predictions.

I now describe the details of the experimental setup and the results found, using
the CarInfo and RepInfo agent plans described in earlier chapters. I also add a new
example, the PhoneInfo agent.

The PhoneInfo agent returns demographic information for the geographic
location of a particular phone number. The agent takes any phone number and first
does a reverse lookup of that number using the Verizon SuperPages
(http://www.superpages.com) service. The returned state is then used to query a U.S.
Census site (http://quickfacts.census.gov) in order to obtain demographic data (e.g.,
population trends, average income) for that location. During the gathering of
demographic data, navigation is required from a link on the initial “state summary”
page to a subsequent “demographic details” page. The original plan for PhoneInfo is
shown in Figure 4.7 and the same plan transformed for speculative execution is
shown in Figure 4.8. The PhoneInfo agent is added to the set of plans tested because
it demonstrates classification with continuous hint attributes, specifically, the
determination of state based on area code.

4.3.1 The learning cycle
After each agent plan was modified for speculative execution, successive runs of the
transformed plan predicted data when possible and always gathered more examples
so that the predictors learned could be improved. Thus, for the second and future
runs, prediction became possible more often, as more examples had been observed
and processed by the system.

All learning was done offline. Generally, learning was possible every k runs,
where k was customizable by the administrator or user. Prior to each interval of k,

WRAPPER
Census.gov

Demographic info

phone
number

WRAPPER
SuperPages.com

Search

Demographic
information for

geographic location of
phone number

WRAPPER
Census.gov
State search

WRAPPER
Census.gov
State info

Figure 4.7: The Phone Info agent plan

WW SPEC CONFIRMWSPECWSPEC

Figure 4.8: Speculative version of PhoneInfo

105
data would be collected by the system. These represent the set of training examples
which would be later fed to the learning algorithm. After every kth run, the system
would use the training data to re-learn all of the predictors.

The LEARN-VALUE-TRANSDUCER algorithm was successfully applied to each
opportunity in each plan, yielding value transducers that predicted values based on
hint transduction or classification. Table 4.8 gives names to each predictor and
summarizes the primary technique used in generating predictions from hints:

Predictor Agent Hint
(source value)

Prediction
(target value)

Primary learning
method identified

by LVT for new
attribute

Car-List CarInfo User car preferences List of matching cars
from Edmunds.com Classification

Car-Summary CarInfo Car make, model,
and year

ConsumerGuide.com
summary page Classification

Car-Full CarInfo ConsumerGuide.com
summary page

ConsumerGuide.com full
review page Transduction

Rep-List RepInfo User 9-digit zip code
List of federal
representatives from
Congress.org

Classification

Rep-Cand RepInfo URL to federal
representative bio

Representative name
and title Caching

Rep-Summary RepInfo Representative name
and title

Open Secrets summary
page URL Caching

Rep-Graph RepInfo Open Secrets
summary page URL

Open Secrets funding
graph URL Transduction

Phone-State PhoneInfo User phone number
State of origin, as
identified by
Superpages.com

Classification

Phone-Summary PhoneInfo State
Census summary page
URL located at
QuickFacts.census.gov

Caching

Phone-Detail PhoneInfo Census summary
page URL

Census demographic
details page URL Transduction

Table 4.8: Summary of predictors learned

Overall, Table 4.8 shows three important things. It shows that the learning
algorithms successfully learned a predictor for each speculative opportunity (i.e.,
there was never a time that the algorithm could not learn a predictor). Second, the
table shows that the algorithms resulted in value transducers based on different
primary methods of prediction, as a function of past hint/value relationships
observed. Third, even when transduction was impossible and classification was not
relevant (i.e., hint consisted of only a single, non-continuous feature), caching could
still be used. In short, the table shows how my approach to learning value predictors
allows either transduction, classification, or caching to be applied to a given

106
speculative opportunity, based on the nature of relationship between the source and
target data.

I now present results having to do with the accuracy and space efficiency of the
predictors shown in Table 4.8.

4.3.2 Measurements of predictor accuracy
One of the overall goals is to compare the accuracy of predictors learned via the
algorithms presented in section 4 versus predictors that operate strictly by cached
data. In doing so, it is important to assess the accuracies with respect to the three
prediction scenarios described in Section 3: the cases of the (I) recurring hint /
recurring prediction, (II) novel hint / recurring prediction, and (III) novel hint / novel
prediction.

Note that not all of these scenarios are relevant to each speculative opportunity.
For example, there is no case (II) for the Carfull predictor because each unique
summary page corresponds to a unique full review URL. Similarly, there is no case
(III) for the Carsummary predictor because more than one car could correspond with the
same summary page. We now describe the accuracy of the predictors in Table 4.8
for each of the prediction scenarios. When learning each predictor, instances were
drawn from typical distributions for that domain; for example, instances for RepInfo
were drawn from a list of addresses of individuals that contributed to presidential
campaigns (obtained from the FEC) – a distribution that closely approximates the
U.S. geographic population distribution. Similarly, the phone numbers used in
PhoneInfo came from a distribution of numbers for common last names.

Case I: Recurring hints, recurring predictions
In terms of issuing correct predictions for recurring hints, caching generally yields
accuracies of 100%. The only cases under which this would not be true would be
when the operator/source producing the target values was not deterministic or if
there were limits on the maximum cache size (e.g., memory constraints).

Likewise, the algorithms I have presented yield accuracies of 100% for any case
where the recurring hint mapped to the same prediction it did when the association
was learned. This is because, in each case, the predictor learned was validated on its
own training data. If this validation revealed an accuracy of less than 100%, then the
next alternative predictor was learned instead (either classification or caching,
depending on what failed). Note that it is also possible to have less than 100%
accuracy when validating a learned classifier on its training data if any feature of the
source (hint) value contained a continuous attribute.

Case II: New hints, recurring predictions
When presented with new hints, simple caches cannot issue predictions, even if they
map to recurring hints. This is because caches associate distinct source values with
target values and are not designed to infer anything about a new source value.

In contrast, classifiers can handle situations where there is a many-to-one
mapping between hints and predictions and thus allow reasonable predictions to be
made from a new hint. In Table 4.8, Carsummary, Replist, and Phonestate involve

107
prediction of target values where there is a many-to-one relationship between source
and target. I measured the predictive accuracy of each of these predictors on
previously unseen hints, as the number of training examples increased. The results
were based on averaging a 10-fold cross-validation sample of the data in each case
(where no data in the test fold was in any of the training folds). Figure 4.9 shows the
results for each of the classifiers Carsummary, Replist, and Phonestate.

The figure shows that, generally, as the number of training examples increased,
the predictive accuracy on unseen examples also increased for each of the predictors.
In addition to better accuracy, more examples allow more opportunities for
prediction. This is most noticeable in prediction scenarios that do not strictly involve
continuous features, such as in the Carsummary predictor. Figure 4.10 shows the
number of times that predictions were not possible by the Carsummary predictor as a
function of the number of examples seen.

Note that the Phonestate classifier performance improves significantly just after
600 examples. This is due to the fact that the accuracy of the classifier on some of
the larger states (like California, Florida, New York, and Texas) is much higher
around this point. Since testing instances from larger states also appear more often
then file, performance correspondingly improves.

Case III: New hints, novel predictions
The approach described in this paper also allows certain predictors to issue novel
predictions for new hints. Such opportunities occur when the cardinality between
source and target value is one-to-one and when the target value can be produced

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

200 400 600 800 1000

Number of new examples

Ac
cu

ra
cy

Car-sum m ary accuracy

Rep-lis t accuracy

Phone-s tate accuracy

Figu iers re 4.9: Predictive accuracy of Carsummary, Replist, and Phonestate classif

108

through some type of hint attribute value transduction. In Table 4.8, only the Carfull,
Repgraph, and Phonedetail predictors rely purely on transduction of a hint tuple.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

200 400 600 800 1000

Number of examples seen

P
er

ce
nt

ag
e

of
 c

as
es

 w
he

re
 n

o
pr

ed
ic

tio
ns

 w
er

e
po

ss
ib

le

Figure 4.10: Frequency of “no predictions possible” by Carsummary
based on number of examples seen

Once learned, these transducers have accuracies of 100%. They essentially
capture a function and then perform that function on all new hints. The only time
when these transducers make mistakes are when too few examples have been seen
and LEARN-VALUE-TRANSDUCER identifies an incorrect template. For example, as
described earlier, learning that the first three attributes of the Phonestate predictor
were direct copies of input attribute values (i.e., the definition of a dependent join)
required more than two examples for some of the attributes because an LCS
“artifact” was caused by learning based on a fewer number of examples.

To understand the difficulty of identifying the correct transducer, we
investigated how many examples were required (on average) to learn the transducers
Carfull, Repgraph, and Phonedetail. In doing so, we first identified the correct transducer
for each case. Then, using 10 different randomized orderings of sample
source/target values, we averaged the number of examples required before the
correct transducer was learned. Table 4.9 shows these results.

Predictor Average number of
examples required

Car-Full 3
Rep-Graph 8

Phone-Detail 3

Table 4.9: Average number of examples required to learn Carfull, Repgraph, and Phonedetail

4.3.3 Measurements of predictor space-efficiency
In addition to comparing the approach described in this paper to caching in terms of
accuracy, I also compared the space efficiency of the two techniques. Specifically, I

109
measured the space efficiency of three classification-based predictors (Carsummary,
Replist, and Phonestate) and three transduction-based predictors (Carfull, Repgraph, and
Phonedetail) as well as the space required by strictly caching predictors for the same
data. The process involved forming the predictor based on a set of training data and
then exporting the structure to the file system for future runs. The space measured
was the total number of bytes required by the data structure.

Table 4.10a shows the results for each classification-based predictor, its cache
counterpart, and the number of training instances seem by each prior to the exporting
of the data structure. In addition to a bytes-to-bytes comparison, the table also shows
the resulting space-efficiency “savings” provided. Table 4.10b shows the same
information for the transduction-based predictors.

Classifier
name

Number of
examples

seen

Cache
size

(bytes)

Classifier
size

(bytes)
Space

savings

Car-summary 200 24817 16399 33.92%
Car-summary 400 48577 29675 38.91%
Car-summary 600 72563 42521 41.40%
Car-summary 800 95923 54840 42.83%
Car-summary 1000 119420 67005 43.89%

Rep-list 200 20791 13725 33.99%
Rep-list 400 40654 25867 36.37%
Rep-list 600 60531 37277 38.42%
Rep-list 800 80312 48272 39.89%
Rep-list 1000 100177 58892 41.21%

Phone-state 200 21729 13638 37.24%
Phone-state 400 42729 25883 39.43%
Phone-state 600 63729 38088 40.23%
Phone-state 800 84729 52482 38.06%
Phone-state 1000 105729 64939 38.58%

Table 4.10a: Space efficiency of classification-based predictors vs. caches

110

Transducer
name

Number of
examples

seen

Cache
size

(bytes)

Transducer
size

(bytes)
Space

savings

Car-full 2 310 58 81.29%
Car-full 10 1550 58 96.26%
Car-full 100 15500 58 99.63%

Rep-graph 2 202 58 1.00%
Rep-graph 10 1010 58 94.26%
Rep-graph 100 10100 58 99.43%

Phone-detail 2 192 58 69.79%
Phone-detail 10 960 58 93.96%
Phone-detail 100 9600 58 99.40%

Table 4.10b: Space efficiency of transduction-based predictors vs. caches

4.3.4 Effects on average runtime performance
In addition to comparing a hybrid and strict caching approaches in terms of accuracy
and space efficiency, I also conducted experiments that demonstrate the resulting
performance benefits from a hybrid approach. Specifically, I now describe the
results of using a hybrid predictor vs. one based strictly on caching to improve the
performance of the CarInfo, RepInfo, and PhoneInfo agents.

For each of the agents tested, I used a smaller subset of the possible inputs that
each agent could receive. I did this to limit the number of examples I would need to
run to show the resulting effect, and also to avoid disrupting the site with (tens of)
thousands of requests. For each agent, I chose well-defined subsets: for example, in
the CarInfo agent, I looked only at queries involving compact cars produced in 2000-
2002 for various price ranges occurring between $4000 and $18000. For the
RepInfo and PhoneInfo agents, I looked at randomly ordered lists of valid 9-digit zip
codes and valid phone numbers, respectively, in the states of Arizona and Colorado.

The results obtained from CarInfo agent execution are shown in Figure 4.11.
The figure is broken up into a set of “performance groups”. Each group contains
three bars, each one corresponding to the average time-to-emit the first, average, and
last tuple. The “time to emit the average tuple” means the average time at which a
tuple was available (different inputs resulted in varying numbers of cars found). For
example, if three tuples were produced at the times (3s, 5s, 19s), the time to average
tuple would be (27/3 =) 9ms. The first performance group shows the first, average,
and last tuple performance for CarInfo with no speculative execution. The groups
succeeding to the right show the same information with speculative execution for
inputs 1-25, 26-50, and so on. The figure is composed in this manner to show the
progressive performance improvement due to learning. For example, one would
reasonably expect predictive accuracy to gradually improve for performance groups

111
to the right, since more examples have been seen to that point. Interpretation of
these results is continued in the discussion section (4.3.5) that follows.

The results from the RepInfo agent are shown in Figure 4.12. Recall that these
runs describe the performance given a randomly ordered list of valid nine digit U.S.
zip codes for the states of Arizona and Colorado. The performance results shown in
Figure 4.12 are also broken up into the same set of performance groups as was the
CarInfo agent performance in Figure 4.11. The only difference is that the
speculative execution runs are grouped for every 20 inputs.

Finally, Figure 4.13 shows the results from the PhoneInfo agent. Similar to the
RepInfo agent, these runs were conducted using a randomly ordered list of valid
phone numbers for businesses in Arizona and Colorado. One important difference
between PhoneInfo and the other two plans is that the former only outputs a single
tuple – thus, there is no need to measure the time to output the average tuple or last
tuple.

4.3.5 Discussion
The results related to accuracy and space-efficiency generally show that, when
possible, the approach I have introduced produces smaller, more intelligent
predictors than a predictor based strictly on caching. On one hand, the LEARN-
VALUE-TRANSDUCER algorithm makes 100% accuracy possible for recurring hints,
identical to what would be obtained from an approach based solely on caching.
However, the real value of the approach is shown when it comes to dealing with new
hints and making novel predictions. A prediction system based only on caching
cannot deal with new hints, even if there is an obvious relationship between hint and
prediction, a caching system that has not seen a particular new input cannot
manufacture a prediction. In contrast, learning a generalized transducer affords this
opportunity. In addition, when there is a many-to-one relationship between source
and target values (target values apply to various combinations of source values),

0

1000

2000

3000

4000

5000

6000

7000

No spec
(0)

Spec
(1-25)

Spec
(26-50)

Spec
(51-75)

Spec
(76-100)

Spec
(101-125)

Number of tuples seen

Av
er

ag
e

ag
en

t e
xe

cu
tio

n
tim

e
(m

s)

First tuple

Average tuple

Last tuple

Figure 4.11: Impact of learning on CarInfo agent execution performance

112

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

No spec
(0)

Spec
(1-20)

Spec
(21-40)

Spec
(41-60)

Spec
(61-80)

Number of tuples seen

Av
er

ag
e

ag
en

t e
xe

cu
tio

n
tim

e
(m

s)

First tuple
Average tuple
Last tuple

Figure 4.9 shows that classification can be an effective technique for reasoning about
certain features of that new hint which can be used to justify a prediction. Further,
Figure 4.10 shows that, as more examples are seen, the predictive accuracy of these
classifiers continues to improve.

When there is a one-to-one relationship between source and target values, and
when target value is simply an manipulated form of one or more source attribute
values, the results show that transduction can be an effective solution. By capturing
the functional relationship between the source and target, Table 4.9 shows that
transducers allow novel predictions to be made on new hints. After only a few

Figure 4.13: Impact of learning on PhoneInfo agent execution performance

0

1000

2000

3000

4000

5000

6000

No spec
(0)

Spec
(1-5)

Spec
(6-10)

Spec
(11-15)

Spec
(16-20)

Spec
(21-25)

Number of tuples seen

A
ve

ra
ge

 a
ge

nt
 e

xe
cu

tio
n

tim
e

(m
s)

First tuple

Figure 4.12: Impact of learning on RepInfo agent execution performance

113
examples, transduction accuracy can be 100%. Although it is a technique
particularly well-suited to prediction of URL strings, interleaved navigation occurs
so frequently in online information gathering that many types of agents can benefit
from this type of learning.

The results also show that the predictors learned through the approach I have
introduced increase the utility of speculative agent execution. Given a mix of
recurring and new hints, prediction is generally more accurate with a hybrid
approach that adds classification and transduction. As a result higher average plan
speedups are possible.

In addition to being more accurate, the predictors learned through the algorithms
described in this paper are more space efficient. Because they encode rules or
functions – and not associations of data – these predictors require much less storage
than caches for the same set of source/target values. For example, Table 4.10b
shows that value transducers that involve Insert or hint Transduce operations
require only a fraction of the space of a cache – more importantly, once learned, its
accuracy is 100% and their size thus remains bounded (i.e., it does not continue to
increase with the presence of more examples).

Finally, Figures 4.11, 4.12, and 4.13 show that learning predictors that combine
classification, transduction, and caching is effective at significantly improving the
performance of agents – even when the input to those agents is almost 100% unique.
In particular, the benefits of classification (able to predict a past value with a new
hint) and transduction (able to predict a new value given a new hint) play an
important role in making this possible. Each of Figure 4.11, 4.12, and 4.13 shows a
similar trend: an initial performance improvement due to quickly-learned transducers
and then gradually better performance as the classifiers involved in each agent see
more examples. A good example of this is the RepInfo agent, which shows sharp
improvement initially because the senators from each state are relatively easy to
learn with only a few examples – thus, the time to first tuple improves dramatically
within having seen only a few examples. However, the representatives from each are
not quickly learnable, since they vary per zip code Figure 4.12 shows that over
time, however, rules can be learned that allow this prediction to be made even for
nine-digit zip codes not previously seen.

4.4 Summary
Profitable speculative execution of agent plans that gather information is
fundamentally linked with the ability to make good predictions. The more accurate
the predictor, the better the average speedup of execution. While caching is one
simple technique that can be used as a basis for prediction, it does not scale well and
is not able to handle new hints, even if the new hint corresponds to a prediction that
has been previously made.

Classic machine learning techniques, however, can vastly improve the accuracy
and space-efficiency of simple cache-like predictors and act as a powerful
complement to caching. In particular, I have described how two techniques –
classification and transduction – can be combined and applied to the problem.
Classification and transduction allow more opportunities for prediction because they

114
can often respond correctly to new hints and are capable of generating novel
predictions. Experimental results confirm this improved accuracy and also show that
the space required to store such value predictors is much less that the space required
by caches. Overall, this approach represents a successful compromise and
hybridization of classification, transduction, and caching that can generate smaller
but more intelligent predictors.

115

Chapter 5

Related Work

In this section, I survey previous work related to the core contributions of this
dissertation. First, I consider other approaches to the efficient execution of
information gathering plans, including work that spans the AI and database
communities. Next, I focus on research specifically related to speculative execution
and, more generally, the pre-processing of anticipated operations. Finally, I discuss
a variety of other work related to value prediction, including the relationship of value
prediction to speedup learning and other approaches to inducing transducers.

5.1 Expressive and efficient plan execution
My approach to efficient agent execution has two key components: a streaming
dataflow executor and an expressive language for efficient information gathering. In
relating this approach to existing and ongoing research by others, I first address
recent work on network query engines as well as more general plan execution
systems, to illustrate how the architecture I have introduced leverages aspects of
both. Next, I compare the dataflow-style language I have introduced with existing
dataflow-style languages used by other scientific computing and signal processing
systems.

5.1.1 Network query engines
As discussed earlier, network query engines such as Tukwila (Ives et al. 1999),
Telegraph (Hellerstein et al. 2000) and Niagara (Naughton et al. 2001) have focused
primarily on efficient and adaptive execution (Avnur and Hellerstein 2000; Ives et al.
2000; Shanmugasundaram et al. 2000; Raman and Hellerstein 2002), the processing
of XML data (Ives et al. 2001), and continuous queries (Chen et al. 2000;
Chandrasekaran et al. 2003). All of these systems take queries from users, form
query plans, and execute those plans on a set of remote data sources or incoming
streams. Like the system described here, network query engines rely on streaming
dataflow for the efficient, parallel processing of remote data.

The work described here differs from network query engines in two ways. The
first, and most important difference, has to do with the plan language. Plans in
network query engines consist of relational-style operators and additional operators
for adaptive or XML-style processing. For example, Tukwila includes a double
pipelined hash join and dynamic collector operators for adaptive execution (Ives et
al. 1999), as well as X-scan and Web-join operators for streaming XML data in the
form of binding tuples. Telegraph contains the Eddy operator (Avnur and

116
Hellerstein 2000) for dynamic tuple routing and the SteMs operator to leverage the
benefits of competing sources and access methods. Niagara contains the Nest
operator for XML processing and other operators for managing partial results
(Shanmugasundaram et al. 2000). Outside of these special operators for adaptive
execution and XML processing, plans in network query engines look very similar to
database style query plans. These plans are typically inaccessible – users can only
alter the queries that generate plans, not the plans themselves. This makes any kind
of information gathering task beyond basic querying difficult, if not impossible.

In contrast, the plan language I have described is more expressive and the plans
are accessible. Like network query engines, the language includes relational-style
operators and those for processing XML data. However, it also includes operators
that support conditional execution, interaction with local databases, asynchronous
notification, and user-defined single-row and aggregate functions. The plan
language I have introduced also supports the capability of referencing subplans, a
feature that increases opportunities for modularity, re-use, and enables looping-style
information gathering tasks to be easily accomplished through recursion. In contrast,
languages supported by network query engines do not support such capabilities. As
a result, they cannot address the looping and monitoring requirements of plans such
as Homeseekers.

In addition, there is the issue of plan accessibility. Although plans in the
language I have described can be generated by query processors – just as plans
produced by network query engines – they can also be constructed and modified
using a text editor. This provides the ability for users to specify more complicated
tasks that could not otherwise be expressed in a query. NiagaraCQ (Chen et al.
2000) provides similar accessibility in the sense that it does allow for more flexibility
in terms of what kind of processing (action) can be performed per continuous query
through use of a stored procedure language. However, it is not necessarily the case
that streaming data can cross the boundary into the stored procedure and be
executing just as efficiently (streaming dataflow style) as it was in the plan formed
by the continuous query. The key advantage of accessibility in the language I have
introduced is that the benefits of streaming dataflow are available to all aspects of a
plan – the user can use the existing operator set or the apply/aggregate operators to
build more functionality into the language and still reap the benefits of streaming
dataflow execution between all of the operators. As shown in the experimental
results, this can lead to significant performance improvements.

Finally, in this dissertation, I have presented a new thread-pool model for
dataflow-style execution of information agent plans. This model relies on
communication of work (execution events) via an asynchronous FIFO queue
implemented as a circular buffer. Through this architecture, it is possible to realize
(within the selected bounds) all of the horizontal and vertical parallelism demanded
by a plan at runtime. Throttling the level of parallelism (if necessary) is easy –
through an external configuration file, users simply change the number of threads in
the thread pool or the size of the work queue. Use of a thread pool also prevents
exhaustion of system resources.

117
5.1.2 General purpose plan execution systems
The language and execution system described here is partially inspired by past work
on agent execution systems. In particular, two features commonly found in these
systems were influential: support for execution of more generic agent plans, and
support for the execution of concurrent actions. Several functioning plan executors
exist, including the RAP system (Firby 1994) and PRS-Lite (Myers 1996), as well as
other designs (Williamson et al. 1996) that have been proposed but not implemented.

Both RAP and PRS-Lite are well known systems that have placed an emphasis
on highly parallel plan execution. The expressivity they support has been influenced
by past work in expressive plan languages, such as RPL (McDermott 1991).
However, plan executors like the RAP system and PRS-Lite typically do not route
information between operators. Instead, the process of execution consists of the
operator pre-conditions being fulfilled and their resulting post-conditions being
generated. This is an important difference that explains why the execution
architecture described here supports some forms of parallelism not found in these
other systems. For example, the vertical parallelism of pipelining data between
operators has no analog in these general plan executors. In short, a distinction
between the system described here and other generic plan executors is that the
former is specifically tuned for efficient plan execution when remote, relation-like
information is routed between operators, whereas the latter are not.

There are other higher-level differences that should be noted. Unlike generic
plan executors, the plan language described here supports the notion of subplans and
recursion. However, unlike these generic executors, the system here does not
automatically generate plans from a set of initial and goal conditions, nor does it
interleave planning and execution. Instead, the plans discussed here are either
written by an end-user or are generated from another tool, such as an information
mediator, much like a database query processor prepares a plan for execution.

5.1.3 Other dataflow computing languages
There exist a large number of dataflow-related languages that are related to the work
described here. Some, such as Id (Arvind et al. 1978) and Val (McGraw 1982) are
meant to be compiled for execution on traditional dataflow machines. There are
some similarities to the language described here: for example, VAL is single-
assignment and Id operates on streams and supports looping as well as re-entrancy.
However, there are also several differences, from the type of functionality that the
operators provide to the way parallelism is achieved. For example, in the language I
have described, parallelism is implicit (i.e., the programmer does not need to worry
about denoting parallel code) yet can be translated into a dataflow graph without a
special compiler. In contrast, while parallelism is also implicit in VAL and Id, a
special compiler is required to translate the serially specified program into a dataflow
graph.

In addition to VAL and Id, there are also purely functional languages that are
related to dataflow computing only in that they simplify the declaration of data
parallel execution. Yet, these languages do not necessary assume execution occurs
on a dataflow machine. Included in this group of languages are SISAL (Feo and

118
Cann 1990), Haskell (Jones and Hughes 1998), and pH (Nikhil and Arvind 2001).
Like the language described here, these other functional languages provide implicit,
horizontal parallelism. They are modular and support recursive calls. However, they
differ from the language here in that their operators perform lower-level functions on
typically scalar values or numerical arrays. Thus, they are not meant to operate on
incoming streams of remote data, so they have no need for an iterative style of
execution and thus no need for streaming. In contrast, streaming is a useful
technique in the system described here and for network query engines because it
compensates for the significant latencies of network I/O and the large data sets that
can be returned from remote queries.

Finally, embedded systems (Lee 2002) also rely on dataflow-style languages for
execution. For example, two popular commercial languages are Verilog HDL
(Thomas and Moorby 1998) and VHDL. These languages provide dataflow-style
constructs for use on digital signal processing tasks, often on systems that exist
within consumer devices such as cell phones and cameras.

To better illustrate the similarity between these languages and the one I have
presented, let us consider a simple Verilog example. Verilog consists of modules that
have sets of input and output variables. It supports conditional logic, loops, and
special constructs (the “initial” and “always” constructs) for indicating what parts of
a module require continual execution. For example, Figure 5.1 shows the logic gate
design for a basic multiplexer. This multiplexer routes input line in0 to out0 when
the value of in0 is zero and otherwise routes in1.

Figure 5.2 shows the corresponding Verilog module that can be developed to
describe this multiplexer.

There are some important similarities to note about the module above in relation
to the language described here. First, both Verilog and the language I have presented
support textual representations of dataflow style graphs. Second, both languages are
modular, with Verilog modules also consisting of input and output variables.
Finally, the logical operations in Verilog consume a set of input variables and
produce a set of output variables, just as operators do in the agent language I
described.

Figure 5.1: Basic multiplexer logic

119
module multiplexer (in0, in1, select, out);
input in0,in1,select;
output out;

wire s0,w0,w1;

not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or (out, w0, w1);

endmodule

Figure 5.2: Verilog module that represents the multiplexer logic in Figure

In terms of differences, dataflow computing for embedded systems is generally
distinct from Web information gathering systems in its focus on more low-level
system challenges. For example, power usage and real-time processing are very
important issues during the execution of embedded systems – these issues are of less
concern with respect to information agents. Also, embedded systems engage in
lower-level types of data processing (e.g., signal processing), working with streams
of bits, not streams of tuples as do information agents. Nevertheless, embedded
systems share the same desire for concurrent execution as information agents, and
are frequently used to process streams of data. Thus, they require languages that
allow programmers the ability to specify concurrent, stream-oriented processing.

5.2 Speculative execution
Historically, speculative execution is a technique that has been associated with lower
level execution. It is a strategy addressed frequently in the context of processor
architecture and compiler design. However, far less attention has been given to the
use of speculative execution at higher levels of execution, such as at the operating
system or database level, although the work on continual computation is certainly
relevant and motivating to the work here. In this next subsection, I survey the use of
speculative execution at various levels of computation, but focus more on how my
approach compares to other strategies for reducing I/O penalties during the execution
of information gathering plans, such as prefetching and execution based on
approximate or partial results.

5.2.1 Execution based on partial and approximate results
The goals and approach described in this paper are perhaps most closely related to
those embodied in current research on the use of partial or approximate results by
network query engines. The use of approximation has been shown to be an effective
tool for communicating the likely result of queries that involve online aggregation of
data-intensive sources (Hellerstein et al. 1997). The general idea is to communicate
estimations (and estimation confidences) of otherwise expensive aggregate queries to
the user through an interface.

120
Inspired by this work, some network query engine research has focused on the

use of partial results to speed up query plan processing. In Niagara (Naughton et al.
2001), for example, a partial results approach is used to better parallelize the
execution of a query plan (Shanmugasundaram et al. 2000) – this is exactly the same
as the motivation described in this thesis. The Niagara approach involves
communicating approximations of aggregate operators to downstream operators as
execution proceeds. Later, upstream operators update their predictions as necessary
by routing differentials or re-evaluations to downstream operators. The goal of
Niagara’s approach to partial results is to extend approximation techniques to
arbitrary blocking operators. For example, while traditional database query
languages support blocking operators like Average or Max, newer languages have
different types of blocking operators (such as those for nesting XML), motivating the
need for a more general strategy in terms of approximation.

There are two major differences between my speculative execution approach
described here and Niagara’s partial result strategy. One is that the latter is meant to
be applied to operators that block on input tuples, not remote I/O. For example,
partial results can be obtained from a Sort or Nest operator, which require all of their
inputs before generating output. However, partial results cannot be obtained from a
Wrapper operator because it fails to meet the requirements for partial-results capable
operators, as listed in (Shanmugasundaram et al. 2000). For example, the “Anytime”
output property does not make sense for the Wrapper operator because it is not
possible for this operator an produce a partial answer before its remote request is
filled. In contrast, the speculative execution approach here can be applied to nearly
any operator in a plan (as long as the operator does not affect the external world in
unrecoverable ways). Thus, it can be used to optimize plans that suffer from a slow
Wrapper operator or a slow aggregate function, like Sort. A second difference
between speculative plan execution and use of partial results in the Niagara query
engine is that the former advocates only optimizing the most expensive data flow,
whereas the latter approach does not specify on which flows partial results
optimization should take place. Thus, it could potentially be used to optimize flows
that are not part of the main bottleneck in a plan, thus creating unnecessary overhead
during execution.

Telegraph (Hellerstein et al. 2000) is another network query engine that uses a
partial results strategy to increase the performance of the processing of its queries to
online sources. (Raman and Hellerstein 2002) describe an approach that allows
partial tuples (tuples with some values “deferred”) to be emitted so that they can be
displayed to the user as soon as possible. The idea behind the strategy is to limit the
set of deferred information to only those cells of result tuples that remain to be
gathered. Overall execution time remains the same with this approach; the key gain
is the improved performance for those parts of query answer tuples that have already
been computed. Emitting sub-tuples as soon as possible depends to some extent on
Telegraph’s use of eddies (Avnur and Hellerstein 2000) which bear some
relationship to speculative execution in that operators are allowed process
intermediate query results out of order.

121
The Telegraph approach is different from both speculative execution and

Niagara’s partial results strategy in that it is targeted, like online aggregation, at
returning as many correct results to the caller as soon as possible. There is no
approximation in this approach, so there is no chance of suffering from the
processing of errant data. At the same time, the approach cannot return entire
answers any earlier than normal. In contrast, speculative plan execution can
potentially return entirely correct answers much faster than the original plan and is
also guaranteed not to return errant answers. While it requires a small degree of
overhead, the resulting plan speedups can significantly outweigh these costs.

5.2.2 Executing anticipated actions in advance
Speculative plan execution shares the same motivation as the more general notions
of continual computation(Horvitz 2001) and time-critical decision making
(Greenwald and Dean 1994) – specifically, the desire to leverage idle computer
resources to execute anticipated actions. In the case of time-critical decision making,
the challenge is to manage a finite amount of computational cycles in a dynamic
planning environment. For example, the work describes the challenge of managing
air traffic control for a busy airport where there are busy periods and slow periods.
By exploiting the regularity of these periods, on-line deliberation time can be better
scheduled. The use of available cycles for online deliberation about future problems
is somewhat analogous to the use of idle cycles in our approach to speculative plan
execution.

(Horvitz 2001) presents continual computation principles and strategies that
apply to speculative plan execution and can be found in this work. For example,
calculating the expected value of precomputation and ranking the most productive
use of idle time are general proactive computation principles that can be found in the
SPEC-REWRITE strategy for identifying the MEP and evaluating costs of various
speculative transformations. (Horvitz 2001) also identifies general issues of
precomputation that encapsulate some challenges raised in this work. For example,
the overhead of speculation discussed here is an example of the cost of “shifting
attention” in the landscape of continual computation. Overall, speculative plan
execution is best characterized as an example of continual computation.

Finally, past work on predicting user actions in advance is also relevant.
(Motoda and Yoshida 1997) and (Davison and Hirsh 1998) describe approaches to
predicting the next command a user will issue. In the case of the latter, the work
describes an approach that analyzes the regularity in sequences of UNIX commands
in order to predict the next command that the user will issue. Predicting user actions
can be used for speculative execution, but an important difference is that user idle
time is being exploited instead of system idle time, as is the case in this work.
Another subtle difference is the overall goal of command line prediction is to create
a more helpful command shell that anticipates what future actions will be needed, a
goal similar to that of other intelligent interfaces like Letizia (Lieberman 1995). In
contrast, the use of speculative execution here is strictly for improving average
performance.

122
5.2.3 Prefetching data
In a narrow sense, speculative execution can be thought of as a mechanism for
prefetching, the gathering of data in advance of its request. There are many uses of
prefetching in information systems research, from the construction of materialized
views (Chaudhuri et al. 1995; Levy et al. 1995; Ashish 2000) in databases to remote
Web site page prefetching (Padmanabhan and Mogul 1996; Horvitz 1998; Jiang and
Kleinrock 1998).

As a whole, the purpose of all prefetching systems is to gather data that will
likely be needed before it is requested, as a means for reducing the I/O-penalties
involved during the execution of the actual request. Prefetching can be viewed as an
indirect method of speculation in the sense that it does not involve the pre-execution
of inevitable plan operations ahead of schedule, but instead increases the locality of
remote (or expensive to access) data likely to be requested (but not necessarily
requested).

My approach to speculative execution differs from other types of prefetching
systems in three major respects. One is that it is a run-time activity which involves
pre-executing costly plan operators. While that set of operators may indeed be those
used for data retrieval, this is not necessarily the case. That is, speculative execution
offers a general means to pre-execute any kind of plan operator in advance, provided
that (a) there are sufficient resources, (b) there is potentially a significant profit from
the eager execution, and (c) that there is some way to “un-do” speculated actions,
should the speculation turn out to have been incorrect. Thus, speculative execution
is a more general approach to performance improvement in plans (and programs).

A second difference between prefetching and speculative execution has to do
with the quality of data that has been gathered through pre-execution. Throughout
the literature in prefetching systems and materialized views there exists the issue of
“staleness” – when is pre-fetched data too old to be used? A number of techniques
have been suggested regarding how to ensure that the correct version of data is used
(Gupta and Mumick 1995), thus avoiding the incorrectness that results from stale
data. Still, most of these techniques are useless when a data is updated unexpectedly,
even in violation of assumptions that the prefetching has about the freshness of the
data. With speculative execution, there is no question of stale data. Pre-execution of
information retrieval operators such as Wrapper does not occur until execution
begins. Thus, the data cannot be regarded as stale because it is fetched at a time after
it was requested.

Related to the staleness issue is the third difference between prefetching and
speculative execution: the relevance of gathering data ahead of schedule. In
prefetching systems, data is gathered because it is likely to be accessed. The
determination of this likelihood is usually done through statistics on past requests
(Horvitz 1998). However, there is never a guarantee that pre-fetched data will
actually be needed. For example, a materialized view that is updated every day may,
for a particular period of time, only be queried after 10 days have passed from the
last query. In this sense, the other 9 prefetches could be considered wasteful because
their content was never used.

123
In contrast, it is guaranteed that all correctly predicted values through

speculative execution will eventually be used. Since speculation occurs only after
execution is initiated it is guaranteed that correct predictions will be needed by
downstream plan operators. Arguably, the only case in which data gathered through
speculative execution would not be used would be if there existed some other type of
conditional operator that re-routed the flow of data based on its content at a given
point in time. Even for such cases, an approach such as ours could be modified to
speculate only before conditionals or, more interestingly, to extend such an approach
to deal with the branch prediction opportunity of conditional dataflow execution.

5.2.4 Speculative execution at the operating system and database level
The upside potential of speculative execution at the software level for this paper was,
in part, inspired by (Chang and Gibson 1999) who describe a successful system-level
use of speculative execution for informed file prefetching. Their approach
automatically modifies existing computer programs with a speculative thread that
executes “safe” instructions ahead of their normal schedule in order to generate
useful hints to a prefetching file buffer called TIP (Patterson et al. 1995). By
executing the safe instructions in advance, their approach provides better hints to TIP
about the file access patterns future execution would demand. While there are many
differences between the approach of (Chang and Gibson 1999) and our approach as
far as the purpose of speculative execution and its actual mechanics, there are also
some similarities. For example, both use threads as a vehicle for speculation and
both ensure safe execution. In the case of the latter, (Chang and Gibson 1999)
designed their system so that the speculative thread added to programs only executed
“safe” instructions designed to inform TIP and thus did not execute instructions that
affected the external environment in unrecoverable ways.

Prefetching in data-intensive applications was addressed recently by (Hull et al.
2000), in their work on optimizing business logic for e-commerce applications.
They characterized application design in terms of “decision flows” – essentially
workflow-driven data retrievals. Execution plans for such workflows are essentially
dataflow graphs that include synchronization points triggered by workflow states.
Speculative execution was used to prefetch relevant data from databases ahead of
when it was scheduled. This was essentially a form of control speculation in a
dataflow environment that included value-less synchronization dependencies. This
research was primarily motivated by the fact that the queries to the databases were
often known in advance – it was simply a matter of workflow that determined
when/if they were actually necessary. As with many applications of speculative
execution, the goal was to improve the ILP of the execution plan and to reduce the
latencies caused by database access.

5.2.5 Speculative execution at the hardware level
As discussed earlier, speculative execution is a major topic in computer architecture
research. Initially, the motivation was to make use of idle cycles in processor
pipelines. The terms “super scalar” and “out-of-order execution” were coined to
describe the notion of execution proceeding faster than would be achieved by

124
linearly executing the instructions under von-Neumann style architecture. Today,
speculative execution continues to be a core competency of computer architecture
and plays a critical role in optimizing the performance of modern microprocessors.

Compiler research has more recently begun to investigate how speculation can
be statically scheduled in generated program code. One focus of interest has been on
predicated execution (August et al. 1998), which has been used to reduce code size,
improve upon branch prediction, and thus improve execution time. There has also
been considerable attention given to the area of thread-level speculation (TLS)
(Oplinger et al. 1997; Steffan and Mowry 1998), motivated by similar interests as
ours: to use threads as a mechanism for exploiting idle computation resources. Much
of the interest by the compiler community in TLS has been generated by research on
hardware architectures that have direct support for speculative threads (Roth & Sohi
2000) and by the improvement in scheduling threads even on a single chip, such as is
envisioned by SMT research (Tullsen et al. 1995).

Overall, there are understandably many differences between the speculative
execution techniques used by processors and compilers for computer programs and
the approach described here for information gathering plans. For example, most
speculation at the hardware level is about control in the execution of von Neumann
style programs; speculative execution for dataflow-style computation has not yet
been addressed (Silc and Robic 1999). To a great extent, this is understandable –
dataflow computing has traditionally suffered from problems throttling the natural
degree of parallelism of a program and was not concerned with trying to increase this
level. In contrast to past work on speculative execution at the architecture level, my
approach involves speculation during dataflow execution, requires value prediction,
and obviously works at a much higher level of execution.

5.3 Value prediction
The contributions of this dissertation in terms of value prediction are (a) the
hybridization of caching, classification, and transduction for value prediction, (b) the
algorithms for learning two types of transducer, value transducers and hint
transducers. Thus, in this section I discuss other techniques for value prediction, at
various levels of execution. I also focus specifically on other approaches for
learning transducers. However, I start by first considering the broader relationship of
value prediction for speculative execution to previous work on speedup learning.

5.3.1 Value prediction as speedup learning
To predict values for speculative execution, I combine machine learning techniques
and caching to learn hybrid predictors that are usually more accurate and more space
efficient than simply caching alone. The overall goal of my approach to value
prediction is to improve the utility of speculative execution. More specifically,
better accuracy leads to better speedups.

Thus, to some extent, my approach can be considered a form of speedup
learning. In speedup learning, the goal is to improve problem solving performance
through experience. Past research has focused on a number of areas, including
learning “macro operators” for future problem solving (Fikes et al. 1972), learning

125

heuristics for determining which operators to apply to a given subproblem (Mitchell
1983), and learning control knowledge to aid in choosing what operators to execute
next (Minton 1988).

My approach to learning value predictors is similar to much of this past work.
For example, the learning of classifiers and hint transducers allows the results of past
executions to be leveraged for “new” executions (i.e., previously unseen plan inputs
or intermediate data). For example, I described how new “full review” URLs in
CarInfo could be accurately predicted based on previously unseen summary review
URLs. This kind of function learning is similar to, for example, the application of
learned macro-operators to new problems. It should also be noted that strictly
caching for value prediction is less related to speedup learning in this sense, because
its knowledge cannot be applied to new executions.

The utility problem (Minton 1990) is another interesting point of comparison.
In past work on speedup learning, the utility problem describes the case where the
matching costs of a concept outweigh its savings when applied. Matching costs
generally increase as the number of rules learned increases. While the utility
problem is not relevant in my approach with respect to caching5 and hint
transduction because both have constant matching costs, it can be a factor with
respect to classification. For example, as a decision tree grows, the costs to make a
prediction may increase (more branches may need to be taken). In turn, this leads to
greater speculative overhead and subsequently less applicability of a transformation.

Overall, value prediction for speculative execution can be seen as very similar
to, or even a form of speedup learning. While the process of agent plan execution
does not involve “problem solving” in the traditional sense, learning can be applied
to past executions to improve the performance of future executions.

5.3.2 Other techniques for value prediction
Another related, yet different topic, has to do with how my approach to value
prediction differs from other specific techniques proposed in past research.
Historically, computer architecture research has largely focused on a type of
speculative execution known as branch prediction, which involves predicting
control, not data. (Hennessey and Patterson 1996) provides a concise summary of
the state of the art, describing how instructions are fetched and executed ahead of
schedule based on branch prediction results.
There has been recent work on hardware-level value prediction, such as that
described by (Gabbay 1996; Lipasti et al. 1996), although the techniques employed
are much different than those I have described. For example, both works discuss last
value prediction and stride value prediction. These types of predictors are used to
determine numeric predictions. For example, stride value prediction involves
predicting loop increments. While the types of value prediction done at the hardware
level are limited, approaches such as stride prediction are inspiring. I address the
potential applicability of stride prediction later, in Chapter 6 in terms future work.

5 Assuming caching works by hashing a hint tuple to determine a set of predicted tuples.

126
At the operating system level, I have earlier described that (Chang and Gibson

1999) proposed an technique which automatically modifies existing computer
programs for speculative execution. The technique adds a “speculative thread” to the
existing program and allows that thread to execute “safe instructions”, such as those
that open files and read data. In this work, the values being predicted in this case
required no synthesis: the speculative thread execute the same instructions as the
more latent main thread(s), and thus request the same files from the file system.

As I also discussed in the last subsection, there has not been any previous work
on value prediction for information gathering systems. (Hull et al. 2000) proposed
speculation in a decision flow framework, but one in which only control predictions
were necessary. There has also been past work on information gathering with partial
results (Hellerstein et al. 1997; Shanmugasundaram et al. 2000), but these systems do
not predict data values and instead use approximate values from intermediate
aggregate operators in order to obtain approximate final results.

5.3.3 Other approaches to learning transducers
In this subsection, I focus specifically on induction of transducers. As stated earlier,
my hybrid approach to value prediction is novel in its design. However, some of the
techniques that my approach relies on, such as classification and caching, are already
well-understood. Still, much of my approach to value prediction involves learning
transducers that can both (a) synthesize predictions and (b) as part of (a), translate
the hint string through character level transduction.

Surprisingly, there has been little work on the learning of subsequential
transducers. One existing algorithm is OSTIA (Oncina et al. 1993), which is able to
induce traditional subsequential transducers capable of, for example, automating
translations of decimal to Roman numbers or English word spellings of numbers to
their decimal equivalents. For instance, with the proper examples, OSTIA can learn
that the Roman “XXII” is equivalent to the Arabic “20”.

 My approach differs from OSTIA mainly in that the transducers learned with
LEARN-VALUE-TRANSDUCER capture the general process of a particular type of
string transformation. After learning from only a few examples, the algorithm can
achieve a high degree of accuracy on such cases. The algorithm is also well suited to
URL prediction, since URLs (and more generally, HTTP GET and POST requests)
required to query dependent sources often contain manipulations of structured data
extracted from earlier sources (or from plan input). In contrast, while OSTIA can
learn more complex types of subsequential transducers, it can require a very large
number of examples before it can learn the proper rule (Gildea and Jurafsky 1996).

The transducer learning algorithm suggested by (Hsu and Chang 1999) viewed
transduction as a means for information extraction. Our use is similar in that one
part of our approach involves extracting dynamic values from hints. However, the
type of transducers I have introduced describe go beyond extraction – they transform
the source string so that it can be integrated into a predicted value. In doing so, our
transduction process is two level: the first level makes use of classification and the
second level focuses on the character-level transformations of substrings.

127
Finally, while the use of classification applies to predicting any type of data

value in an information gathering plan, our typical use of transduction is for the
prediction of URLs. Other approaches have explored point-based (Zukerman et al.
1999) or path-based (Su et al. 2000) methods of URL prediction, attempting to
understand request models based on either time, the order of requests, or the
associations between requests. However, unlike our approach, these techniques do
not try to understand very general patterns in request content and thus cannot predict
previously un-requested URLs

128

Chapter 6

Conclusion and Future Work

Agent performance can be slow for a number of reasons. For information agents,
one of the more frequent reasons involves the aggregation of latencies associated
with querying remote data sources. The problem can be especially bad when an
agent must query dependent sources – those that are queried based on the answer to
an earlier query to a remote source. The sluggish speed of some agents stands in
stark contrast to the wealth of resources available on most personal computers today,
which contain CPUs that can execute billions of instructions per second.

To address this problem, I have introduced an approach to agent execution that
is highly parallel, exceeding the natural dataflow limit of the agent plan. The first
element of my approach consists of a streaming, dataflow-style agent plan language
and execution system. The language supports the expression of efficient agent plans
that engage in traditional information gathering operations, as well as more complex
tasks, such as monitoring, integration with local databases, and asynchronous
notification. The streaming dataflow nature of the execution model allows a plan to
realize the maximum possible degrees of natural horizontal and vertical parallelism
possible.

The second part of my approach, speculative plan execution, adds another form
of concurrency – speculative parallelism – to plan execution. The process works by
leveraging Amdahl’s Law: it first detects the most expensive path in a plan and then
augments that path with new operators that facilitate speculative execution. The
algorithm is applied repeatedly to a plan, until the most expensive path cannot be
modified to any greater efficiency. This iterative style of plan refinement gives the
algorithm an anytime property. At the same time, the algorithm is also simple,
evaluating only the parts of the plan that can possibly improve overall execution time
and ignoring those parts that are not relevant. Speculative execution is guaranteed to
be safe in that each speculative tuple (and the results born from the operators that
consume that tuple) is blocked from leaving the plan or triggering an unrecoverable
action, until speculation about that tuple has been confirmed. Speculative execution
is also fair: thread prioritization and bandwidth reservation can be used to prevent
speculation from subsuming resources needed by normal execution. The resulting
speculative execution of a plan yields a degree of concurrency beyond the normal
dataflow limit of that plan. Through cascading speculation, resulting speedups can
be greater, approaching a degree that is directly proportional to the length of the
longest flow in the plan.

129
Finally, to ensure high average speedups, I have also introduced an approach to

value prediction that is both accurate and space efficient. Value predictors are
learned by algorithms that first identify the template of a predicted values and then
select a computation strategy that fills in the missing parts of those templates as a
function of the hint. The strategy, for each dynamic part of the prediction template,
may be either caching, classification, or transduction. To produce a prediction based
on the template, the value predictors learned can thus require one or more of these
techniques. The advantage of classification and transduction is that both methods
can respond to new hints, whereas caching cannot. Furthermore, hint transduction
allows entirely new predictions to be synthesized from new hints. Both techniques
are more space efficient than caching; hint transducers are especially small, since
they represent a learned function, not an endlessly growing table of source/target
values. In addition, caching remains useful as an alternative to be applied when no
learning is possible. It is a simple technique that does well when predicting data it
has seen before.

I have demonstrated the validity of my approach through a series of experiments
that focused on the streaming dataflow system, speculative execution, and value
prediction. Specifically, the experiments have shown that:

• The streaming dataflow language and execution system supports the
execution of agent plans not supported by other network query engines
and agent executors.

• On simpler, more traditional information integration plans, the system
performs just as well or better than a basic network query engine.

• Speculative execution can be applied to a variety of agent plans and
result in significant speedups.

• Speculative execution can also be applied to plans generated from
queries contained in a well-known database benchmark. When sources
from a common schema are assumed to be distributed with varying
latencies between them, speculative execution of these plans is faster
than traditional execution techniques.

• A value prediction strategy that combines caching, classification, and
transduction can make more frequent predictions with greater accuracy
than one that relies on only caching. In addition, the resulting value
predictors are more space efficient.

6.1 Limitations
While my approach to speculative plan execution can significantly improve the
performance of information agent plans, it does have some limitations and
disadvantages:

1. Execution that can be slower than normal. While this is not the average case,
this can occur when average latency of a source suddenly improves. For
example, if a source to be speculated about has an average latency of 1s, and
on average it is necessary to speculate about 100 tuples per hint received (e.g.,
a search criteria hint that leads to 100 results), an overhead of less than 10ms
per predicted tuple would make this a profitable activity. However, if the

130
source happened to be faster than 1s on one particular occasion, then the
overhead per tuple multiplied by the number of tuples predicted would lead to
an execution time worse than having not speculated. For example, if the
source latency improved to 500ms and the overhead was 9ms per tuple,
predicting 100 tuples would cost 900ms of overhead, 400ms more than the
cost of the source without speculation. One way to remedy this limitation
would be to periodically re-evaluate the speculative transformation of the
original plan and give greater weight to recent latency calculations in
determining future transformation.

2. Execution that may not be fair. While thread priorities and bandwidth
reservation are two well-known ways to partition groups of activities at
disparate levels of priority, not all resources can be partitioned so easily. For
example, although we might partition connections to a local database into a
speculative pool and a normal pool, the database itself does not distinguish
between the two types of connections and its own processing will be equally
affected by both. Thus, speculative database query processing will compete
against database query processing initiated through normal execution. To
some extent, this is also true when that resource is a Web site – however, most
Web application technology is designed to support fairly high levels of
concurrent connections.

3. Computation of speculative overhead may be inaccurate. The current design
for the system assumes that an administrator choose a reasonable value for
speculative overhead. Through experimentation, I have found that this can
range from 5ms to 15ms per tuple for the information agent plans and TPC-H
queries tested. However, the process of selecting an overhead index is likely
more complicated than simply choosing a reasonable value and may require a
detailed calculation. Overhead is not merely the sum of the time it takes for
Speculate and Confirm to execute their individual instructions on a given
tuple. In fact, the number of speculative threads likely has some effect: even
through they are prioritized lower, more threads mean more context switching
for the CPU. Furthermore, more speculation translates into greater memory
and bandwidth crowding – all of this has an impact on the time it takes to
process a given tuple. In my discussion of future work, below, I suggest one
possible solution that might help in a more precise determination of
speculative overhead.

6.2 Future Work
There are several opportunities for future work on speculative plan execution. In this
section, I focus on three promising avenues: learning to calculate speculative
overhead, classifier compression, and SMT benchmarking.

6.2.1 Learning to choose good values for speculative overhead
As described above, one limitation of the approach I have specified is that a value for
speculative overhead must be chosen manually. This is unfortunate for two reasons:
(a) it necessitates human intervention in order for speculative execution to be

131
integrated into an existing agent execution system and (b) it may be hard to manually
determine this value because overhead is likely not a constant.

One way to address this problem is to use machine learning techniques to
leverage empirical results from past plan executions to identify good choices for
overhead in future executions. A relatively easy way to do this would be to
determine the true overhead from past speculative executions and associate this with
features of the plan. For example, speculative execution of a plan with four
speculate operators might be found to have a true overhead of 15ms/tuple whereas
speculative execution of a plan with three speculate operators might be found to have
an overhead of 10ms/tuple. A variety of machine learning algorithms can be used to
learn what overhead to use when considering transformation of a new plan for
speculative execution.

6.2.2 Classifier compression / probabilistic classification
One of the claims I make in this thesis is that, for value prediction, classifiers are
more space efficient than caches. The difference is most noticeable when hints
contain continuous values because classifiers create rules based on a discretization of
these values (thus, storing every single value is not necessary). Nevertheless,
classifiers are less space efficient than hint transducers, because they do store values
and do continue growing as more examples are seen. For hint domains that have a
large number of nominal values, classifiers can be quite large. This raises a
scalability issue.

To address this problem, one approach is to investigate methods of classifier
compression. (Quinlan and Rivest 1989) proposed the idea of minimum encoding as
one possible technique. In addition to these methods, an interesting approach would
be to explore the integration of Bloom filters into decision trees. Bloom filters are a
mechanism that tests set membership: a candidate key is submitted to series of hash
functions and then a True or False value is returned as to whether than candidate is in
the set. Bloom filters have been successfully used in the Web caching community
(Fan et al. 2000) for efficient object lookup.

My intuition is that Bloom filters could be used to test whether a particular
feature value matches a choice (branch) from a decision node. Thus, a decision tree
would become a tree of filters that would lead to more compressed rules. In short,
the overall footprint of a classifier could be substantially reduced – at the cost of
occasional false positives. However, since the speculative execution approach I have
described handles mispredictions, this is not a major issue. Integrating Bloom filters
into decision trees for probabilistic classification may also be an interesting avenue
for machine learning research in general.

6.2.3 SMT Benchmarking
One of the claims of my thesis is that speculative parallelism leads to increased
usage of local resources, such as CPU. Assigning more threads to speculative work
fits neatly into a current trend in microprocessor architecture: the trading of
instruction-level parallelism (ILP) for thread-level parallelism (TLP). In recent
years, work on simultaneous multithreading (SMT) has spawned a new push towards

132
the reorganization of processor architectures that trade longer instruction pipelines
for multiple instruction pipelines. For example, the most recent CPUs mass-
marketed by Intel Corporation contain “hyperthreading” technology, an
implementation of SMT. The beneficiary of SMT implementations like
hyperthreading is software that performs multiple tasks in parallel using multiple
threads.

My intuition is that speculative execution of information agent plans will be
more effective on SMT architectures than on non-SMT architectures. This is
because the former encourages better TLP. Because of this, speculative overhead is
likely to be less on SMT platforms (speculative threads are not taking away all
computational resources during their time slice). Past studies of database (Redstone
et al. 2000) and Web servers (Lo et al. 1998), application-level software that often
involves concurrent I/O-bound threads, have also confirmed that SMT is a more
thread-friendly architecture and leads to better performance as well as better overall
CPU utilization. I believe that speculative execution of information agent plans will
yield similar results and that validating this hypothesis would be a useful
contribution.

6.2.4 Integrating additional value prediction techniques
While the hybrid predictors described in Chapter 4 are an evolution beyond strictly
caching, I believe that additional techniques could be integrated to improve the
utility of speculative execution. Given that value prediction is occurring at a high
level of execution, with a significant amount of local resources, there may be more
machine learning techniques that can be applied. To some extent, it may be useful to
spend more time considering what can be leveraged from past research, for example
from the computer architecture literature.

One promising example is stride value prediction. In computer architecture
research, stride predictors are generally used to model loop increments. For
example, a stride predictor could learn the stride of a loop which started at 0 and
incremented by 2 each time (i.e., 0, 2, 4, 6, etc.). The idea of learning this type of
sequence is a simple type of function learning that also has relevance for Web
agents.

Consider gathering result pages from any source that outputs a list over a series
of pages, such as a search engine. As I described earlier in this dissertation, this is a
classic example where interleaved navigation and gathering are necessary. Each
page must be gathered and processed, including the Next Page link (if any), before
the subsequent results page can be gathered.

However, in many cases, the URLs of each result page contain the current
results page number or the index of the next set of results. For example, the second
page of search engine results in a Google query has a URL that is always similar to
http://www.google.com/search?...&start=25, while the third page of results has a
URL of http://www.google.com/search?...&start=50 and so on. This was also the
case in the Homeseekers example discussed in Chapter 2. If some kind of stride
value predictor was learned for this case, it may be possible to learn to issue requests
for the second and third page of results concurrently with gathering the first page.

133
Of course, care must be taken not to generate too many predictions at once (i.e., issue
requests for hundreds of result pages before we know that they exist for a particular
search). Nevertheless, this appears at first glance to be a promising avenue of future
work. More generally, the continued integration of addition value prediction
techniques, such as stride value prediction, can enhance the utility of speculative
execution and thus increase the average speedups for many types of Web agent
plans.

134

Bibliography

Abiteboul, Serge, Richard Hull and Victor Vianu. 1995. Foundations of databases,
Addison-Wesley Publishing.

Ambite, Jose Luis, Greg Barish, Craig A. Knoblock, Maria Muslea, Jean Oh and
Steven Minton. 2002. Getting from here to there: interactive planning and agent
execution for optimizing travel. Proceedings of the 14th Innovative Applications
of Artificial Intelligence (IAAI-2002). Edmonton, Alberta, Canada.

Arens, Yigal, Craig A. Knoblock and Wei-Min Shen. 1996. Query reformulation for
dynamic information integration. Journal of Intelligent Information Systems -
Special Issue on Intelligent Information Integration 6(2/3): 99-130.

Arvind, K.P. Gostelow and W. Plouffe. 1978. The ID report: An asynchronous
programming language and computing machine. Technical Report 114,
University of California at Irvine.

Arvind and Rishiyur S. Nikhil90). Executing a program on the MIT tagged-token
dataflow architecture. IEEE Transactions on Computers 39(3): 300-318.

Ashish, Naveen. 2000. Optimizing information mediators by selectively
materializing data. PhD thesis, Department of Computer Science, University of
Southern California.

August, David I., Daniel A. Connors, Scott A. Mahlke, John W. Sias, Kevin M.
Crozier, Ben-Chung Cheng, Patrick R. Eaton, Qudus B. Olaniran, et al. 1998.
Integrated predicated and speculative execution in the IMPACT EPIC
architecture. Proceedings of the 25th Annual International Symposium on
Computer architecture. Silver Spring, MD, IEEE Computer Society Press.

Avnur, Ron and Joseph M. Hellerstein. 2000. Eddies: continuously adaptive query
processing. Proceedings of the ACM SIGMOD International Conference on
Management of Data. Dallas, TX: 261-272.

Barish, Greg, Yi-Shin Chen, Craig A. Knoblock, Steven Minton and Cyrus Shahabi.
2000. The TheaterLoc virtual application. Proceedings of the 12th Innovative
Applications of Artificial Intelligence (IAAI-2000). Austin, TX.

Barish, Greg and Craig A. Knoblock. 2002. An efficient and expressive language for
information gathering on the web. Proceedings of the Sixth International
Conference on AI Planning and Scheduling (AIPS 2002) workshop: Is there life
after operator sequencing? - Exploring real world planning. Tolouse, France.

Barish, Greg and Craig A. Knoblock. 2003. Learning value predictors for the
speculative execution of information gathering plans. Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI 2003).
Acapulco, Mexico.

Barish, Greg and Craig A. Knoblock. 2002. Speculative execution for information
gathering plans. Proceedings of the Sixth International Conference on AI
Planning and Scheduling (AIPS 2002). Tolouse, France.

135
Boag, Scott, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie

and Jerome Simeon. 2002. XQuery 1.0: An XML query language. Available
from http://www.w3c.org

Chalupsky, Hans, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh, David
Pynadath, Thomas A. Russ and Milind Tambe. 2001. Electric elves: applying
agent technology to support human organizations. Proceedings of the 13th
Innovative Applications of Artificial Intelligence (IAAI-2001). Seattle, WA.

Chandrasekaran, Sirish, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Sam Madden, et al.
2003. TelegraphCQ: continuous dataflow processing for an uncertain world.
Proceedings of the First Biennial Conference on Innovative Data Systems
Research. Monterey, CA.

Chang, Fay W. and Garth A. Gibson. 1999. Automatic I/O Hint Generation Through
Speculative Execution. Proceedings of the Third Symposium on Operating
Systems Design and Implementation. New Orleans, LA: 1-14.

Chaudhuri, Surajit, Ravi Krishnamurthy, Spyros Potamianos and Kyuseak Shim.
1995. Optimizing queries with materialized views. Proceedings of the 11th
International Conference on Data Engineering. Los Alamitos, CA, IEEE
Computer Society Press: 190-200.

Chawathe, Sudarshan, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland,
Yannis Papakonstantinou, Jeffrey Ullman and Jennifer Widom. 1994. The
Tsimmis project: integration of heterogenous information sources. Proceedings
of the 16th Meeting of the Information Processing Society of Japan. Tokyo,
Japan: 7-18.

Chen, Jianjun, David J. Dewitt, Feng Tian and Yuan Wang. 2000. NiagaraCQ: a
scalable continuous query system for internet databases. Proceedings of the
ACM SIGMOD International Conference on Management of Data. Dallas, TX:
379-390.

Davison, Brian D. and Haym Hirsh. 1998. Probabilistic online action prediction.
Proceedings of the AAAI Spring Symposium on Intelligent Environments.

Dennis, Jack B. 1974. First version of a data flow procedure language. Lecture Notes
in Computer Science 19: 362-376.

Dewitt, David and Jim Gray. 1992. Parallel database systems: the future of high
performance database systems. Communications of the ACM 35(6): 85-98.

Evripidou, Paraskevas and Jean-Luc Gaudiot. 1991. Input/output operations for
hybrid data-flow/control-flow systems. The Fifth International Parallel
Processing Symposium. Anaheim, California: 318-323.

Fan, Li, Pei Cao, Jussara Almeida and Andrei Z. Broder. 2000. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE-ACM Transactions on
Networking 8(3): 281-293.

Feo, John T. and David C. Cann. 1990. A report on the SISAL language project.
Journal of Parallel and Distributed Computing 10: 349-366.

Fikes, Richard E., Peter E. Hart and Nils J. Nisson. 1972. Learning and executing
generalized robot plans. Artificial Intelligence 3(4): 251-288.

136
Firby, R. James. 1994. Task networks for controlling continuous processes.

Proceedings of the Second International Conference on Artificial Intelligence
Planning Systems. Chicago, IL: 49-54.

Friedman, Marc, Alon Y. Levy and Todd D. Millstein. 1999. Navigational plans for
data integration. Proceedings of the 16th National Conference on Artificial
Intelligence. Orlando, FL: 67-73.

Gabbay, Freddy. 1996. Speculative execution based on value prediction. Technical
Report #1080, Electrical Engineering Department, Technion-Israel Institute of
Technology.

Gao, G. R. 1993. An efficient hybrid dataflow architecture model. International
Journal of Parallel and Distributed Computing 19(4): 293-307.

Genesereth, Michael R., Arthur M. Keller and Oliver M. Duschka. 1997. Infomaster:
an information integration system. Proceedings of the ACM SIGMOD
International Conference on Management of Data. Tuscon, AZ: 539-542.

Gildea, Daniel and Daniel Jurafsky 1996. Learning bias and phonological-rule
induction. Computational Linguistics 22(4): 497-530.

Greenwald, Lloyd and Thomas Dean. 1994. Solving time-critical decision-making
problems with predictable computational demands. Proceedings of the Second
International Conference on AI Planning Systems. Chicago, IL: 25-30.

Gupta, Ashish and Inderpal Singh Mumick 1995. Maintenance of materialized
views: problems, techniques and applications. IEEE Quarterly Bulletin on Data
Engineering: Special Issue on Materialized Views and Data Warehousing 18(2):
3-18.

Gurd, J. R. and D. F. Snelling. 1992. Manchester data-flow: a progress report.
Proceedings of the Sixth International Conference on Supercomputing.
Washington, D.C., United States, ACM Press: 216-225.

Hellerstein, Joseph M., Michael J. Franklin, Sirish Chandrasekaran, Amol
Deshpande, Kris Hildrum, Sam Madden, Vijayshankar Raman and Mehul A.
Shah. 2000. Adaptive query processing: technology in evolution. IEEE Data
Engineering Bulletin 23(2): 7-18.

Hellerstein, Joseph M., Peter J. Haas and Helen J. Wang. 1997. Online aggregation.
Proceedings of the ACM SIGMOD International Conference on the
Management of Data. Tuscon, AZ: 171-182.

Hennessey, John and David Patterson. 1996. Computer Architecture: A Quantitative
Approach, Second Edition, Morgan Kaufmann Publishers Inc.

Hirschberg, Daniel S. 1975. A linear space algorithm for computing maximal
common subsequences. Communications of the ACM 18(6): 341-343.

Hoare, C.A.R. 1978. Communicating sequential processes. Communications of the
ACM 21(8): 666-677.

Horvitz, Eric. 1998. Continual computation policies for utility-directed prefetching.
Proceedings of the Seventh ACM Conference on Information and Knowledge
Management: 175-184.

Horvitz, Eric. 2001. Principles and applications of continual computation. Artificial
Intelligence 126(1-2): 159-196.

137
Hsu, Chu-Nan and Chien-Chi Chang. 1999. Finite-state transducers for semi-

structured text mining. Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI) Workshop on Text Mining: Foundations,
Tecchniques, and Applications.

Hull, Richard, Francois Llirbat, Bharat Kumar, Gang Zhou, Guozhu Dong and
Jianwen Su. 2000. Optimization techniques for data-intensive decision flows.
Proceedings of the 16th International Conference on Data Engineering. San
Diego, CA: 281-292.

Iannucci, R. A. 1988. Toward a dataflow/von Neumann hybrid architecture. The 15th
Annual International Symposium on Computer Architecture. Honolulu, Hawaii,
IEEE Computer Society Press: 131-140.

Ives, Zachary G., Daniela Florescu, Marc Friedman, Alon Levy and Daniel S. Weld.
1999. An adaptive query execution system for data integration. Proceedings of
the ACM SIGMOD International Conference on Management of Data.
Philadelphia, PA: 299-310.

Ives, Zachary G., Alon Y. Halevy and Daniel S. Weld. 2002. An XML query engine
for network-bound data. VLDB Journal 11(4): 380-402.

Ives, Zachary G., Alon Y. Levy, Daniel S. Weld, Daniela Florescu and Marc
Friedman. 2000. Adaptive query processing for internet applications. IEEE Data
Engineering Bulletin 23(2): 19-26.

Jiang, Zhimei and Leonard Kleinrock 1998. An adaptive network prefetch scheme.
IEEE Journal on Selected Areas in Communications 16(3): 358-368.

Jones, Simon L. Peyton and John Hughes. 1998. A report on the programming
language Haskell, a non-strict purely functional language, Technical report
DCS/RR-1106, Computer Science Department, Yale University.

Kahn, Gilles 1974. The semantics of a simple language for parallel programming.
Information Processing Letters 74: 471-475.

Karp, Richard. M. and R. E. Miller 1955. Properties of a model for parallel
computations: determinancy, termination, queuing. SIAM Journal on Applied
Mathematics 14: 1390-1411.

Knoblock, Craig A. 2003. Deploying information agents on the web. Proceedings of
the 18th International Joint Conference on Artificial Intelligence. Acapulco,
Mexico.

Knoblock, Craig A., Kristina Lerman, Steven Minton and Ion Muslea. 2002.
Accurately and reliably extracting data from the web: a machine learning
approach. IEEE Data Engineering Bulletin 23(4): 33-41.

Knoblock, Craig A., Steven Minton, Jose Luis Ambite, Naveen Ashish, Ion Muslea,
Andrew Philpot and Sheila Tejada. 2001. The Ariadne approach to web-based
information integration. International Journal of Cooperative Information
Systems 10(1-2): 145-169.

Kushmerick, Nicholas. 2000. Wrapper induction: efficiency and expressiveness.
Artificial Intelligence 118(1-2): 15-68.

Lee, Edward A. 2002. Embedded software. In M. Zelkowitz (ed.), Advances in
Computers 56, Academic Press, London.

138
Lee, Edward Ashford and David G. Messerschmitt. 1987. Static scheduling of

synchronous data flow programs for digital signal processing. IEEE
Transactions on Computers 36(1): 24-35.

Levy, Alon Y., Alberto O. Mendelzon, Yehoshua Sagiv and Divesh Srivastava.
1995. Answering queries using views. Proceedings of the 14th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. San Jose,
Calif.: 95-104.

Levy, Alon Y., Anand Rajaraman and Joann J. Ordille. 1996. Querying
heterogeneous information sources using source descriptions. Proceedings of the
22nd International Conference on Very Large Databases. Bombay, India: 251-
262.

Lieberman, Henry. 1995. Letizia: an agent that assists web browsing. Proceedings of
the 14th International Joint Conference on Artificial Intelligence. Chris S.
Mellish. Montreal, Quebec, Canada, Morgan Kaufmann Inc: 924-929.

Lipasti, Mikko H., Christopher B. Wilkerson and John P. Shen. 1996. Value locality
and load value prediction. Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems.
Cambridge, MA: 138-147.

Lo, Jack L., Luiz Andr Barroso, Susan J. Eggers, Kourosh Gharachorloo, Henry M.
Levy and Sujay S. Parekh. 1998. An analysis of database workload performance
on simultaneous multithreaded processors. Proceedings of the 25th Annual
International Symposium on Computer Architecture. Barcelona, Spain, IEEE
Press: 39-50.

McDermott, Drew. 1991. A reactive plan language. Technical Report CSD-RR-864,
Computer Science Department, Yale University.

McGraw, James R. 1982. The VAL language: description and analysis. ACM
Transactions on Programming Languages and Systems 4(1): 44-82.

Minton, Steven. 1988. Learning search control knowledge. Boston, MA, Kluwer
Academic Publishers.

Minton, Steven. 1990. Quantitative results concerning the utility of explanation-
based learning. Artificial Intelligence 42: 363-392.

Mohri, Mehryar. 1997. Finite-state transducers in language and speech processing.
Computational Linguistics 23(2): 269-311.

Moore, Gordon. 2003. Speech at the International Solid-States Circuits Conference.
San Francisco, California.

Muslea, Ion. 2002. Active learning with multiple views. PhD thesis, Department of
Computer Science, University of Southern California.

Myers, Karen L. 1996. A procedural knowledge approach to task-level control.
Proceedings of the Third International Conference on AI Planning and
Scheduling. Edinburgh, UK: 158-165.

Naughton, Jeffrey F., David J. Dewitt, David Maier, Ashraf Aboulnaga, Jianjun
Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy, et al. 2001.
The niagara internet query system. IEEE Data Engineering Bulletin 24(2): 27-
33.

139
Nikhil, Rishiyur and Arvind. 2001. Implicit parallel programming in pH, Morgan

Kaufmann Publishers Inc.
Oncina, Jose, Pedro Garcia and Enrique Vidal 1993. Learning subsequential

transducers for pattern recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 15(5): 448-458.

Oplinger, Jeffrey, David Heine, Shih-Wei Liao, Basem A. Nayfeh, Monica S. Lam
and Kunle Olukotun. 1997. Software and hardware for exploiting speculative
parallelism with a multiprocessor. Technical Report CSL-TR-97-715, Computer
Systems Laboratory, Stanford University.

Padmanabhan, Venkata N. and Jeffrey C. Mogul. 1996. Using predictive prefetching
to improve world-wide web latency. Proceedings of the ACM SIGCOMM 1996
Conference. Stanford, CA: 25-35.

Papadopoulos, Gregory M. and Kenneth R. Traub. 1991. Multithreading: a
revisionist view of dataflow architectures. Proceedings of the 18th International
Symposium on Computer Architecture. New York, NY: 342-351.

Patterson, R. Hugo, Garth A. Gibson, Eka Ginting, Daniel Stodolsky and Jim
Zelenka. 1995. Informed prefetching and caching. In Hai Jin, Toni Cortes and
Rajkumar Buyya (ed.), High Performance Mass Storage and Parallel I/O:
Technologies and Applications. New York, NY, IEEE Computer Society Press
and Wiley: 224-244.

Quinlan, J.R. 1986. Induction of decision trees. Machine Learning 1(1): 81-106.
Quinlan, J.R. and Ronald L. Rivest. 1989. Inferring decision trees using the

minimum description length principle. Information and Computation 80: 227-
248.

Raman, Vijayshankar. 2002. Personal communication.
Raman, Vijayshankar and Joseph M. Hellerstein. 2002. Partial results for online

query processing. Proceedings of the ACM SIGMOD International Conference
on Management of Data. Madison, Wisconsin, ACM Press: 275-286.

Redstone, Joshua A., Susan J. Eggers and Henry M. Levy. 2000. An analysis of
operating system behavior on a simultaneous multithreaded architecture.
Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems. Cambridge, Massachusetts,
ACM Press: 245-256.

Schek, H.J. and M.H. Scholl. 1986. The relational model with relation-valued
attributes. Information Systems 11(2): 137-147.

Shanmugasundaram, Jayavel, Kristin Tufte, David J. Dewitt, Jeffrey F. Naughton
and David Maier. 2000. Architecting a network query engine for producing
partial results. Proceedings of the ACM SIGMOD Third International Workshop
on Web and Databases. Dallas, TX: 17-22.

Silc, Juirj and Borut Robic. 1999. Processor architecture: from dataflow to
superscalar and beyond, Springer-Verlag Publishers.

Steffan, J. Gregory and Todd C. Mowry. 1998. The potential for using thread-level
data speculation to facilitate automatic parallelization. Proceeedings of the
Fourth International Symposium on High Performance Computer Architecture:
2-13.

140
Su, Zhong, Qiang Yang, Ye Lu and Hong-Jiang Zhang. 2000. WhatNext: a

prediction system for web request using n-gram sequence models. First
International Conference on Web Information Systems Engineering: 214-221.

Thomas, Donald E. and Philip R. Moorby. 1998. The Verilog hardware description
language (4th edition), Kluwer Academic Publishers.

Thompson, Craig, Tom Bannon, Paul Pazandak and Venu Vasudevan. 1999. Agents
for the masses. Third International Conference on Autonomous Agents,
Workshop on Agent-based High-performance Computing: Problem Solving
Applications and Practical Deployment. Seattle, WA.

Tullsen, Dean M., Susan Eggers and Henry M. Levy. 1995. Simultaneous
multithreading: maximizing on-chip parallelism. Proceedings of the 22nd
Annual ACM International Symposium on Computer Architecture. Santa
Magherita Ligure, Italy: 392-403.

Wiederhold, Gio. 1996. Intelligent integration of information. Journal of Intelligent
Information Systems 6(2): 281-291.

Williamson, Mike, Keith Decker and Katia Sycara. 1996. Unified information and
control flow in hierarchical task networks. Theories of Action, Planning, and
Robot Control: Bridging the Gap: Proceedings of the 1996 AAAI Workshop.
Menlo Park, California, AAAI Press: 142-150.

Wilschut, Annita N. and Peter M. G. Apers. 1993. Dataflow query execution in a
parallel main-memory environment. Distributed and Parallel Databases 1(1):
103-128.

Zhang, Lixia, Stephen Deering and Deborah Estrin. 1993. RSVP: a new resource
ReSerVation protocol. IEEE Network 7(5): 8-18.

Zukerman, Ingrid, David W. Albrecht and Ann E. Nicholson. 1999. Predicting user's
requests on the WWW. Proceedings of the Seventh International Conference on
User Modeling. Banff, Canada, Springer-Verlag: 275-284.

	Schedule

