
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DIT - University of Trento

Learning Semantic Definitions

of Information Sources on the Internet

Mark James Carman

Advisor:

Prof. Paolo Traverso

Università degli Studi di Trento

Co-Advisor:

Prof. Craig A. Knoblock

University of Southern California

July 2006





Abstract

The Internet is full of information sources providing many types of data

from weather forecasts to travel deals and financial information. These

sources can be accessed via web-forms, Web Services, RSS feeds and so

on. In order to make automated use of these sources, we need to model

them semantically. Writing semantic descriptions for web services is both

tedious and error prone. In this thesis I investigate the problem of au-

tomatically generating such models. I introduce a framework for learning

Datalog definitions for web sources. In order to learn these definitions, the

system actively invokes sources and compares the data they produce with

that of known sources of information. It then performs an inductive logic

search through the space of plausible source definitions in order to learn the

best possible semantic model for each new source. In the thesis I perform

an empirical evaluation of the system to demonstrate the effectiveness of

the approach to learning models of real-world web sources. I also compare

the system experimentally with another system capable of learning similar

information.

Keywords

Semantic Modeling, Inductive Learning, Information Integration





Acknowledgements

There are many people I would like to thank for their help, support and

encouragement over the last few years. First and foremost my wife Daniela,

who has looked after me through the journey that has culminated in the

writing of this thesis. I’d also like to thank Craig Knoblock for taking me

under his wing at a time when I was struggling to find motivation, and

giving me the confidence to improve my research. I thank Paolo Traverso

for his unlimited enthusiasm and for allowing me the scope to pursue my

interests.

I have been fortunate to work with many talented people at the Univer-

sity of Trento, the Center for Scientific and Technological Research (ITC-

irst) and the Information Sciences Institute (USC-ISI). There are a number

of colleagues to whom I owe my gratitude. In particular, Luciano Serafini

for teaching me to be rigorous in my research. José Luis Ambite for endless

conversations, encouragement and useful ideas regarding different facets of

this work. Yao-Yi Chiang for his patience and willingness to help. Snehal

Thakkar for listening to a perpetual stream of ideas that I just needed to

tell somebody. Kristina Lerman for her interest in my work. Matt Michel-

son for many useful discussions1. I would like to mention also Martin

Michalowski, Dan Goldberg, Rattapoom Tuchinda and Anon Plangrasop-

chok.

1and for his googling prowess.



This research is based upon work supported in part by the Defense

Advanced Research Projects Agency (DARPA), through the Department

of the Interior, NBC, Acquisition Services Division, under Contract No.

NBCHD030010. The U.S.Government is authorized to reproduce and dis-

tribute reports for Governmental purposes notwithstanding any copyright

annotation thereon. The views and conclusions contained herein are those

of the author and should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or implied, of any of the

above organizations or any person connected with them.

6



Contents

1 Introduction 1

1.1 Abundance of Information . . . . . . . . . . . . . . . . . . 1

1.1.1 Emergence of Semi-structured Data Formats . . . . 1

1.1.2 Web Services, Web APIs . . . . . . . . . . . . . . . 2

1.2 Structured Querying . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Some Examples . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Mediators . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Describing Sources as Views . . . . . . . . . . . . . 6

1.3 Discovering New Services . . . . . . . . . . . . . . . . . . . 7

1.3.1 Finding Services . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Labeling Service Inputs and Outputs . . . . . . . . 8

1.3.3 Generating a Definition . . . . . . . . . . . . . . . . 9

2 Problem 11

2.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . 11

2.2 Limiting the Problem . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Services with Internal State . . . . . . . . . . . . . 13

2.2.2 Services with Real-World Effects . . . . . . . . . . 15

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Implicit Assumptions . . . . . . . . . . . . . . . . . . . . . 18

i



2.4.1 Type Signature is Known . . . . . . . . . . . . . . 18

2.4.2 Relational Flattening . . . . . . . . . . . . . . . . . 19

2.4.3 Domain Model Sufficiency . . . . . . . . . . . . . . 20

2.5 Problem Discussion . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Domain Model . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Semantic Type Specificity . . . . . . . . . . . . . . 21

2.5.3 Known Sources . . . . . . . . . . . . . . . . . . . . 21

2.5.4 Example Values . . . . . . . . . . . . . . . . . . . . 22

2.5.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . 22

3 Approach 23

3.1 Modeling Language . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Select-Project Queries . . . . . . . . . . . . . . . . 24

3.1.2 Conjunctive Queries . . . . . . . . . . . . . . . . . 25

3.1.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . 26

3.1.4 Disjunction & Negation . . . . . . . . . . . . . . . 28

3.1.5 Completeness . . . . . . . . . . . . . . . . . . . . . 29

3.2 Leveraging Known Sources . . . . . . . . . . . . . . . . . . 30

3.2.1 Redundancy . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Binding Constraints . . . . . . . . . . . . . . . . . 31

3.2.4 Composed Functionality . . . . . . . . . . . . . . . 32

3.2.5 Access Time . . . . . . . . . . . . . . . . . . . . . . 33

3.2.6 Modeling Aid . . . . . . . . . . . . . . . . . . . . . 33

4 Inducing Definitions 35

4.1 Inductive Logic Programming . . . . . . . . . . . . . . . . 35

4.1.1 FOIL and Similar Top Down Systems . . . . . . . . 36

4.1.2 Applicability of Such Systems . . . . . . . . . . . . 37

4.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



4.2.1 Basic Algorithm . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Generating Candidates . . . . . . . . . . . . . . . . 41

4.2.3 Domain Predicates vs. Source Predicates . . . . . . 43

4.3 Limiting the Search . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Clause Length . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Predicate Repetition . . . . . . . . . . . . . . . . . 47

4.3.3 Existential Quantification Level . . . . . . . . . . . 47

4.3.4 Executability . . . . . . . . . . . . . . . . . . . . . 48

4.3.5 Variable Repetition . . . . . . . . . . . . . . . . . . 49

4.4 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 High Arity Predicates . . . . . . . . . . . . . . . . 50

4.4.2 Favouring Shorter Definitions . . . . . . . . . . . . 51

5 Scoring Definitions 53

5.1 Comparing Candidates . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Evaluation Function . . . . . . . . . . . . . . . . . 53

5.1.2 An Example . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Partial Definitions . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Using the Projection . . . . . . . . . . . . . . . . . 57

5.2.2 Penalising Partial Definitions . . . . . . . . . . . . 58

5.3 Binding Constraints . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Distortion . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Approximating Equality . . . . . . . . . . . . . . . . . . . 64

5.4.1 Error Bounds . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 String Distance Metrics . . . . . . . . . . . . . . . 65

5.4.3 Specialized Procedures . . . . . . . . . . . . . . . . 65

5.4.4 Relation Dependent Equality . . . . . . . . . . . . 66

5.4.5 Non-Logical Equality . . . . . . . . . . . . . . . . . 67

iii



6 Optimisations & Extensions 69

6.1 Logical Optimisations . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . 69

6.1.2 Preventing Redundant Definitions . . . . . . . . . . 70

6.1.3 Inspecting the Unfolding . . . . . . . . . . . . . . . 73

6.1.4 Functional Sources . . . . . . . . . . . . . . . . . . 75

6.2 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Tightening by Removing Redundancies . . . . . . . 79

6.3.2 Tightening based on Functional Dependencies . . . 80

6.3.3 Loosening Definitions . . . . . . . . . . . . . . . . . 81

6.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.1 Type-based Predicate Ordering . . . . . . . . . . . 83

6.4.2 Look-ahead Predicate Ordering . . . . . . . . . . . 84

7 Implementation Issues 87

7.1 Generating Inputs . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Selecting Constants . . . . . . . . . . . . . . . . . . 87

7.1.2 Assembling Tuples . . . . . . . . . . . . . . . . . . 88

7.2 Dealing with Sources . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 Caching . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.2 Source Idiosyncrasies . . . . . . . . . . . . . . . . . 90

7.3 Problem Specification . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 Semantic Types, Relations & Comparison Predicates 92

7.3.2 Sources, Functions & Target Predicates . . . . . . . 93

8 Related Work 95

8.1 An Early Approach . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Machine Learning Approaches . . . . . . . . . . . . . . . . 97

8.2.1 Classifying Service Inputs and Outputs . . . . . . . 97

iv



8.2.2 Classifying Service Operations . . . . . . . . . . . . 97

8.2.3 Unsupervised Clustering of Services . . . . . . . . . 98

8.3 Database Approaches . . . . . . . . . . . . . . . . . . . . . 99

8.3.1 Multi-Relational Schema Mapping . . . . . . . . . . 99

8.3.2 Schema Matching with Complex Types . . . . . . . 100

8.4 Semantic Web Approach . . . . . . . . . . . . . . . . . . . 101

8.4.1 Semantic Web Services . . . . . . . . . . . . . . . . 101

9 Evaluation 105

9.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 105

9.1.1 Implementation . . . . . . . . . . . . . . . . . . . . 105

9.1.2 Domains and Sources Used . . . . . . . . . . . . . . 106

9.1.3 System Settings . . . . . . . . . . . . . . . . . . . . 106

9.1.4 Evaluation Criteria . . . . . . . . . . . . . . . . . . 108

9.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.2.1 Geospatial Sources . . . . . . . . . . . . . . . . . . 109

9.2.2 Financial Sources . . . . . . . . . . . . . . . . . . . 113

9.2.3 Weather Sources . . . . . . . . . . . . . . . . . . . 114

9.2.4 Hotel Sources . . . . . . . . . . . . . . . . . . . . . 116

9.2.5 Cars and Traffic Sources . . . . . . . . . . . . . . . 117

9.2.6 Overall Results . . . . . . . . . . . . . . . . . . . . 118

9.3 Empirical Comparison . . . . . . . . . . . . . . . . . . . . 119

9.3.1 iMAP: Schema Matching with Complex Types . . . 119

9.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . 119

10 Discussion 123

10.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.1.1 Key Benefits . . . . . . . . . . . . . . . . . . . . . . 123

10.2 Application Scenarios . . . . . . . . . . . . . . . . . . . . . 124

10.2.1 Mining the Web . . . . . . . . . . . . . . . . . . . . 124

v



10.2.2 Real-time Source Discovery . . . . . . . . . . . . . 125

10.2.3 User Assisted Source Discovery . . . . . . . . . . . 126

10.3 Opportunities for Further Research . . . . . . . . . . . . . 126

10.3.1 Improving the Search . . . . . . . . . . . . . . . . . 126

10.3.2 Enriching the Domain Model . . . . . . . . . . . . 127

10.3.3 Extending the Query Language . . . . . . . . . . . 128

Bibliography 131

A Definitions & Derivations 137

A.1 Relational Operators . . . . . . . . . . . . . . . . . . . . . 137

A.2 Search space size . . . . . . . . . . . . . . . . . . . . . . . 137

B Experiment Data 141

B.1 Example Problem Specification . . . . . . . . . . . . . . . 141

B.2 Target Predicates . . . . . . . . . . . . . . . . . . . . . . . 141

B.3 Unfolding the Definitions . . . . . . . . . . . . . . . . . . . 143

vi



List of Tables

5.1 Examples of the Jaccard Similarity score . . . . . . . . . . 55

9.1 Inductive bias used in the experiments . . . . . . . . . . . 107

9.2 Equality procedures used in the experiments . . . . . . . . 107

9.3 Search details for geospatial problems . . . . . . . . . . . . 112

9.4 Search details for financial problems . . . . . . . . . . . . . 113

9.5 Search details for weather problems . . . . . . . . . . . . . 116

9.6 Search details for hotel problems . . . . . . . . . . . . . . 117

9.7 Search details for car and traffic problems . . . . . . . . . 118

9.8 Search details for cricket problems . . . . . . . . . . . . . . 121

vii





Chapter 1

Introduction

1.1 Abundance of Information

Recent years have seen an explosion in the quantity and variety of informa-

tion available online. One can find shopping data (prices and availability of

goods), geospatial data (such as weather forecasts, housing information),

travel data (such as flight pricing and status), financial data (exchange

rates and stock quotes), and that’s just scratching the surface of what is

available. The aim of this thesis is to make as much of that vast amount

of information available for structured querying as possible.

1.1.1 Emergence of Semi-structured Data Formats

As the amount of information has increased, so too has its reuse across

web portals and applications. Web developers and publishers soon realised

the need to manage the content of the information separately from the

presentational aspects (such as the font being used to render it). That

realisation lead to the development of XML1 and XML Schema (XML’s

type definition language) as a standard way for formatting data in a self-

1XML stands for eXtensible Markup Language.

1



1.1. ABUNDANCE OF INFORMATION CHAPTER 1. INTRODUCTION

describing manner2. In XML, metadata tags describe the data at each node

of a (semi-structured) document tree. Data structured in this manner is far

easier to manipulate than the same data hidden inside an HTML document.

Thus making it easy to integrate data from different sources, without first

needing to extract the data from the web pages containing it. Providing

the consumer of the data understands the schema (metadata tags) used in

the XML document, they can integrate the data directly into their portal

or application.

Given that the data is now available in a self describing data format, it

may even be possible to discover it in some automated fashion and integrate

it as required into an existing application. Following that path one soon

runs into the schema matching problem [25], where heterogeneity in the

metadata tags and the node structure used to describe the data must be

resolved. (Underlying semantic differences in the data itself such as the

precision of the data may also need to be reconciled.) Schema matching is

an open problem and an active area of research in the Database community.

1.1.2 Web Services, Web APIs

Building on methods for formatting data, a number of standards have

been developed for describing interfaces and providing access to that data.

These efforts are commonly referred to as Web Service standards. The

two most common protocols used for accessing web services are SOAP3,

where both the input and output of the service is encoded in an XML

message, and REST4, where the input attributes are encoded in the URL

and the output is an XML document, (RSS5 feeds often follow this pattern).

2Alternative methods for formatting data in a self describing manner in widespread use are JSON

(JavaScript Object Notation) and CSV (comma-separated values).
3SOAP was originally an acronym for Simple Object Access Protocol
4REST stands for Representational State Transfer
5RSS is sometimes referred to as Really Simple Syndication

2



CHAPTER 1. INTRODUCTION 1.2. STRUCTURED QUERYING

Due to their simplicity, REST-based services have become very common,

especially among large portals such as Amazon, Ebay and Yahoo, which

provide programming level access to the functionality available on their

sites. Web developers for their part, have been taking advantage of these

APIs to create all sorts of Mash-Ups6 by combining content from different

sites. In general the Web is becoming programmable and web sites are

providing access to the information they contain.

Standards also exist for the definition of service interfaces7. For SOAP-

based services the interface definition language is called WSDL8, while

for REST-based services a number of competing standards for interface

definition are currently under development9. Whatever the standard, these

languages allow service providers to describe syntactically the operations

they provide in terms of what input each operation expects and what

output it will produce.

1.2 Structured Querying

Given all of the services furnishing structured data out there, one would

like to access and combine this information to provide useful information to

users. Moreover, one would like to do that not in a static/once-off fashion

as is the case for the Mash-Ups being developed, but rather in a dynamic

way as and when the specific data is being requested by the user.

6On the Internet, a Mash-Up is a website which combines the functionality of other websites, e.g. by

placing the house listings from one site on top of maps from another site.
7Other Web Service standards exist that deal with authentication, non-repudiation, workflow, etc.
8Web Service Description Language
9See for instance WRDL, WADL and WDL.

3



1.2. STRUCTURED QUERYING CHAPTER 1. INTRODUCTION

1.2.1 Some Examples

Dynamic data requests from a user can be expressed as queries over the

data sources. Such queries may combine information from sources in ways

that were not envisaged by the producers of the original information, yet

are extremely useful to the users of it. Some simple example queries that

users might come up with are shown below. We note that the data required

to answer these queries is all publicly available and online, albeit disperse

in various data formats across multiple sources. The aim of this thesis is

to make that sort of information more readily available.

1. Tourism:

Get prices and availability for all 3* hotels within 100 miles of Trento,

Italy that lie within 1 mile of a ski resort that has over 3ft of snow.

2. Transportation:

What time do I need to leave work to catch a bus to the airport to

pick up my brother who is arriving on Qantas flight 205?

3. Disaster Prevention:

Find phone numbers for all people living within one kilometer of the

coast and below 100 meters of elevation.

4. Public Health:

Get the location of all buildings constructed before 1970 that have

more than 2 storeys and lie within 2 miles of any earthquake of mag-

nitude greater than 5.0 that occurred last week.

All of these queries require accesses to multiple data sources. It should

be clear even from this small set of examples just how useful and powerful

the ability to automatically combine data from disparate sources can be.

The queries expressed in natural language above cannot be used by an

automated system until they are expressed more formally using a query

4



CHAPTER 1. INTRODUCTION 1.2. STRUCTURED QUERYING

language such as SQL or Datalog. In Datalog the first query might be

written as follows:

q(hotel, price) :-

accommodation(hotel, 3*, address), available(hotel, today, price),

distance(address, 〈Trento,Italy〉, dist1), dist1 < 100mi,

skiResort(resort, loc1), distance(address, loc1, dist2),

dist2 < 1mi, snowCondiditions(resort, today, height),

height > 3ft.

The above expression states that hotel and price pairs are generated by

first looking up 3* hotels in a relational table called accommodation, then

checking the price for tomorrow night in a table called available. The

address of the hotel is then input to a function which calculates the distance

from Trento. The query restricts this distance to be less than 100 miles.

The query then checks that there exists a resort in the table skiResort that

lies within 1 mile of the hotel. Finally it checks the snowConditions for

today, requiring that the height of snow be greater than 3 feet.

1.2.2 Mediators

A system capable of generating a plan to answer such a query is called

an Information Mediator [2]. Mediators take queries and look for relevant

sources of information in order to answer them. A plan for answering

the first query described above might involve accesses to three different

information sources:

1. Call the Italian tourism website to find all hotels near ‘Trento, Italy’

2. Calls to a ski search engine which returns ski resorts near each hotel

3. Calls to a weather information provider to find out how much snow

has fallen at each ski resort

5



1.2. STRUCTURED QUERYING CHAPTER 1. INTRODUCTION

1.2.3 Describing Sources as Views

In order for an Information Mediator to know whether a source is relevant

for a given query, it needs to know what sort of information each source

provides. While XML defines the syntax (formatting) of the information

provided provided by a source, the semantics (intended meaning) of that

information needs to be defined separately. One way to do that is by using

a view definition in Datalog. When the view definitions have the same

form as the query shown previously, they are referred to as Local-as-View

(LAV) source definitions [13]. In effect, the source definitions describe

queries that would return the same data as the source provides. Below

are a few examples of LAV source definitions. The first definition states

that the source hotelSearch requires four values as input (input attributes

are prefixed by the $-symbol), namely a location, distance, star rating and

date. The source then produces a list of hotels which lie within the given

distance of the given location. For each hotel it returns the address of

the hotel as well as the price for a room on the given date. Note that

the relation country states that the source provides information only for

locations in Italy.

hotelSearch($location, $distance, $rating, $date, hotel, address, price) :-

country(location, Italy), accommodation(hotel, rating, address),

available(hotel, date, price), distance(address, location, dist1),

dist1 < distance.

findSkiResorts($address, $distance, resort, location) :-

skiResort(resort, location), distance(address, location, dist1),

dist1 < distance.

getSkiConditions($resort, $date, height) :-

snowCondiditions(resort, date, height).

In order to generate a plan to answer a query such as the one shown

6



CHAPTER 1. INTRODUCTION 1.3. DISCOVERING NEW SERVICES

previously, a mediator performs a process called query reformulation [13],

whereby it searches through the definitions of the available sources to see

which ones are relevant for answering the query. A source is relevant if it

refers to the same relational tables as the query. It then transforms the

query from a query over those tables to a query over the relevant sources.

For our example, the plan generated by the mediator is shown below. The

complexity of query reformulation is known to be exponential in the length

of the query and the number of sources, although efficient algorithms for

performing query reformulation do exist [23].

q(hotel, price) :-

hotelSearch(〈Trento,Italy〉, 100mi, 3*, today, hotel, address, price),

findSkiResorts(address, 1mi, resort, location),

getSkiConditions(resort, today, height), height > 3ft.

The question we are interested with in this thesis is where did all the

definitions for these information sources come from and more precisely,

what happens when we want to add new sources to the system? Is it

possible to generate some of these source definitions automatically?

1.3 Discovering New Services

In the previous example, the system knew of a sufficient number of sources

with the desired scope to be able to successfully answer the query. What

would have happened if one of the services didn’t have the desired scope,

say for example that the getSkiConditions source didn’t cover that area of

Europe? Before being able to answer the query the system would of course

need to discover a source capable of providing that kind of information. In

this section we discuss the problem of discovering new sources.

7



1.3. DISCOVERING NEW SERVICES CHAPTER 1. INTRODUCTION

1.3.1 Finding Services

As the number and variety of information sources on the Internet increases,

we will rely on automated methods for discovering them and annotating

them with semantic definitions such as those in section 1.2.3.

In order to discover relevant services, a system might search the listings

of a service registry, such as those defined in UDDI10, or perhaps more

likely, the system might search via keyword over web indices such as Google

or del.icio.us.

The research community have looked at the problem of discovering rel-

evant services. There has been some work on using service meta-data to

classify web services into different domains [11] such as weather and flights.

There has also been work on clustering similar services together [9], and

then using these clusters to improve keyword based search.

Using these techniques one can state that a new service is probably a

weather service and is similar to other weather services, which helps, but

is not sufficient for automating service integration.

1.3.2 Labeling Service Inputs and Outputs

Once a relevant service has been discovered, the problem shifts to that of

modeling it semantically, or in other words to generate a source definition

for it. Modeling sources by hand is a laborious process, so automating

the process as much as possible makes sense. Since different services often

provide similar or overlapping data, it should be possible to use knowledge

of previously modeled services to learn descriptions for newly discovered

services.

The first step in the process of modeling a particular source is to de-

termine what type of data it requires as input and what type of data it

10Universal Description, Discovery and Integration

8



CHAPTER 1. INTRODUCTION 1.3. DISCOVERING NEW SERVICES

produces as output. The research community has investigated this prob-

lem, which can essentially be viewed as a classification problem. In [11],

the authors proposed a system for classifying the attributes of a service

into semantic types, such as zipcode, (as apposed to syntactic types like

integer) based on the meta-data present in a WSDL document or the la-

bels used on a web form. Their system used a combination of Naive Bayes

and SVM11 based classifiers. More recently, the authors of [12] devel-

oped a comprehensive system in which a logistic regression based classifier

was first used to assign semantic types to input parameters of operations

in WSDL documents. Following this initial classification, the system at-

tempts to execute the operations using input values taken from examples

of the assigned semantic types. If the operation invokes correctly, then the

assignment of semantic types to the input parameters is verified. At that

point, the system takes the output values produced by the invocations, and

uses a pattern language based classifier to assign the output parameters to

certain semantic types. The authors argue that performing classification

based on both data and metadata is far more accurate that performing

classification based on the metadata alone.

For the purposes of this thesis, I assume that the problem of determining

the semantic types of the inputs and outputs of a source has been solved.

1.3.3 Generating a Definition

Once we know the semantic types for the inputs, we can invoke the service,

but we will still not be able to make use of the data it returns. To do

that, we need also to know how the output attributes relate to the input,

i.e. a view definition for the source. For example, a weather service may

return a temperature value when queried with a zipcode. The service is not

useful until we know whether the temperature being returned is the current

11SVM stands for Support Vector Machine.

9



1.3. DISCOVERING NEW SERVICES CHAPTER 1. INTRODUCTION

temperature, the predicted high temperature for tomorrow, or the average

temperature for this time of year. These different relationships between

input and output might be described by the following view definitions:

source($zip, temperature) :- currentTemp(zip, temperature).

source($zip, temperature) :- forecast(zip, tomorrow, temperature).

source($zip, temperature) :- averageTemp(zip, today, temperature).

The semantic relationships or domain relations currentTemp, forecast

and averageTemp would be defined in a domain ontology or schema. In

this thesis I describe a system capable of learning which if any of these

definitions is the correct. The system leverages what it knows about the

domain, i.e. the domain ontology and a set of known information sources,

to learn what it doesn’t know, namely the relationship between the inputs

and outputs of a newly discovered source.

So to summarise, in this thesis I investigate the problem of automatically

generating semantic descriptions for newly discovered information sources.

10



Chapter 2

Problem

In this chapter, I describe more formally the problem that is the focus of

this thesis, namely that of inducing source definition for newly discovered

services. In order to give the reader some intuition, I first give a concrete

example of the problem. I then describe some limitations on the scope of

this work. Finally I present a formal definition of the Source Definition

Induction Problem, and argue why the problem as posed is both realistic

and interesting.

2.1 A Motivating Example

As outlined in the introduction, I am interested in learning definitions

for sources by invoking them and comparing the output they produce with

that of other known sources of information. In this section I give a concrete

example of what is meant by learning a source definition.

In the example there are four types of data, namely: zipcodes, distances,

latitudes and longitudes, each of which represents its own semantic type.

There are three known sources of information. Each of the sources has

a definition in Datalog as shown below. The first service, aptly named

source1, takes in a zipcode and returns the latitude and longitude coordi-

11



2.1. A MOTIVATING EXAMPLE CHAPTER 2. PROBLEM

nates of its centroid. The second service calculates the great circle distance1

between two pairs of coordinates, while the third service converts a distance

from kilometres into miles by multiplying the input by the constant 1.6093.

source1($zip, lat, long) :- centroid(zip, lat, long).

source2($lat1, $long1, $lat2, $long2, dist) :-

greatCircleDist(lat1, long1, lat2, long2, dist).

source3($dist1, dist2) :- multiply(dist1, 1.6093, dist2).

The goal in this example is to learn a definition for a new service, called

source4, which has just been discovered on the Internet. This new service

takes in two zipcodes as input and returns a distance value:

source4($zip, $zip, dist)

The system described in this thesis, takes this type signature and searches

for appropriate definitions for the source. The definition discovered in this

case might be the following conjunction of calls to the individual sources:

source4($zip1, $zip2, dist):-

source1(zip1, lat1, long1), source1(zip2, lat2, long2),

source2(lat1, long1, lat2, long2, dist2), source3(dist2, dist).

The definition states that source’s output distance can be calculated from

the input zipcodes, by first feeding those zipcodes into source1, taking

the resulting coordinates and calculating the distance between them using

source2, and then converting that distance into miles using source3.

To test whether this source definition is correct the system would have to

invoke both the new source and the definition to see if the values generated

agree with each other. The following table shows such a test:

$zip1 $zip2 dist (actual) dist (predicted)

80210 90266 842.37 843.65

60601 15201 410.31 410.83

10005 35555 899.50 899.21

1The great circle distance is the distance around the globe between two points on the earth’s surface.

12



CHAPTER 2. PROBLEM 2.2. LIMITING THE PROBLEM

In the table, the input zipcodes have been selected randomly from a set

of examples, and the output from the source and the definition are shown

side by side. Since the output values are quite similar, once the system has

seen a sufficient number of examples, it can be confident that it has found

the correct semantic definition for the new source.

While the definition given above was written in terms of the source

relations, it could just as easily have been rewritten in terms of the domain

relations (the relations used in the definitions for sources 1 to 3). To

convert the definition into that form, one simply needs to replace each

source relation by its definition as follows:

source4($zip1, $zip2, dist):-

centroid(zip1, lat1, long1), centroid(zip2, lat2, long2),

greatCircleDist(lat1, long1, lat2, long2, dist2),

multiply(dist1, 1.6093, dist2).

Written in this way, the newly discovered semantic definition for the source

makes sense at an intuitive level: The source is simply calculating the

distance in miles between the centroids of the two zipcodes.

2.2 Limiting the Problem

As the title suggests, in this thesis I only deal with information producing

services. Many services available on the Internet either maintain some sort

of internal state, or their invocation has some effect on the “real world”.

In the following I give examples of such services and describe why I do not

deal with them directly.

2.2.1 Services with Internal State

Some of the services available online change their behaviour based on an

internal state which can be controlled by the user. For example, an oper-

13



2.2. LIMITING THE PROBLEM CHAPTER 2. PROBLEM

ation of Amazon’s API allows you to add or delete items from a shopping

cart. Describing such an operation requires the ability to describe UP-

DATE semantics, which is beyond the expressive power of the Datalog

style source definitions shown previously.

Reasoning over more expressive languages than Datalog is not at all

trivial. The fact that the system querying the sources is then able to

change the set of tuples that each relation contains, (i.e. change the state

of the system), means that query reformulation algorithms cannot be used.

Instead, systems which can reason over individual tuples produced by the

sources must be employed. AI planning systems are capable of performing

such reasoning. Since knowledge of certain types of information (such

as the winning bid price on a particular Ebay auction) will necessarily

be incomplete in the initial state, Knowledge-Level Planning capabilities

[21] would be required. Moreover, the fact that the set of values may

not or cannot by known in advance (such as the name of every product

in the Amazon catalogue), means that the planner needs the ability to

reason about partial knowledge over sets of objects (the cardinality of which

is unknown). Such a capability is beyond the current state-of-the-art in

AI planning research, although some researchers are currently working on

systems (such as [22]) with the intention of one day handling such problems.

Thus learning such definitions in terms of these more expressive lan-

guages would not only be extremely difficult to do, but would also be of

little use until planners evolve to a point in which they can handle such

definitions directly. We ought note here that certain services which may

appear “stateful” (such as login operations), may indeed not be, because

the “state” of the service is made explicit in the invocation of operations

through the passing of state variables (such as authorisation tokens). Such

services can be modeled in datalog without needing to extend the repre-

sentation.

14



CHAPTER 2. PROBLEM 2.3. PROBLEM FORMULATION

2.2.2 Services with Real-World Effects

Even more difficult to deal with than services which change their behaviour

based on an internal state, are services whose invocation affects the real

world in some way. For example, a purchase operation at an online retailer

will result in a credit card account being debited and the product being

delivered. Another operation might print pdf documents for a fee. For ob-

vious reasons, I do not attempt to learn definitions for services which affect

the world. Moreover, services with real world effects will be (or should be)

password protected, thus the system described in this thesis ought not be

able to accidentally invoke them while trying to learn a definition!

2.3 Problem Formulation

Having limited the problem to that of information providing services, I

now describe the Source Definition Induction Problem more formally.

2.3.1 Preliminaries

Before defining the problem I need to introduce some concepts and nota-

tion:

• The domain of a semantic data-type t, denoted D[t], is the (possi-

bly infinite) set of constant values {c1, c2, ...}, which constitute the

set of values for variables of that type. For example D[zipcode] =

{90210, 90292, ...}

• An attribute is a pair 〈label, semantic data-type〉, e.g. 〈zip1, zipcode〉.

The type of an attribute a is denoted type(a) and the corresponding

domain D[type(a)] is abbreviated to D[a].

15



2.3. PROBLEM FORMULATION CHAPTER 2. PROBLEM

• A scheme is an ordered (finite) set of attributes 〈a1, ..., an〉 with unique

labels, where n is referred to as the arity of the scheme. An example

scheme might be 〈zip1 : zipcode, zip2 : zipcode, dist : distance〉.

The domain of a scheme A, denoted D[A], is the cross-product of the

domains of the attributes in the scheme {D[a1]× ...×D[an]}, ai ∈ A.

• A tuple over a scheme A is an element from the set D[A]. A tuple

can be represented by a set of name-value pairs, such as {zip1 =

90210, zip2 = 90292, dist = 8.15}

• A relation is a named scheme, such as airDistance(zip1, zip2, dist).

Multiple relations may share the same scheme.

• An extension of a relation r, denoted E [r], is a subset of the tuples2 in

D[r]. For example, E [airDistance] might be a table containing the

distance between all zipcodes in California.

• A database instance over a set of relations R, denoted I[R], is a set

of extensions {E [r1], ..., E [rn]}, one for each relation r ∈ R.

• A query language L is a formal language for constructing queries over

a set of relations. We denote the set of all queries that can be writ-

ten using the language L over the set of relations R returning tuples

conforming to a scheme A as LR,A.

• The result set produced by the execution of a query q ∈ LR,A on a

database instance I[R] is denoted EI [q].

• A source is a relation s, with a binding pattern βs ⊆ s, which distin-

guishes input attributes, and a view definition, denoted vs, which is a

query written in some language LR,s. The output attributes of a source

are denoted by the complement of the binding pattern3, βc
s = s\βs.

2Note that the extension of a relation may only contain distinct tuples.
3The ‘\’-symbol denotes set difference.

16



CHAPTER 2. PROBLEM 2.3. PROBLEM FORMULATION

2.3.2 Definition

The Source Definition Induction Problem is defined as a tuple:

〈T, R,L, S, s∗〉

where T is a set of semantic data-types, R is a set of relations, L is a query

language, S is a set of known sources, and s∗ is the target or unknown

source.

Each semantic type t ∈ T must be provided with a set of examples values

Et ⊆ D[t]. We do not require the entire set D[t], because the domain

of many types is too large to be enumerated in the problem definition.

(For example, the semantic type zipcode has over 40,000 possible values.)

In addition a predicate eqt(t, t) is available for checking equality between

values of a given type, (to handle the case where multiple serialisations of

a variable represent the same value). In general the set of semantic types

might be arranged in a hierarchy of supertype-subtype relationships.

Each relation r ∈ R is referred to as a global relation or domain predicate,

because its extension is virtual, meaning that this extension can only be

generated by inspecting every relevant data source. (The set of relations

R may include some interpreted predicates, such as ≤, whose extension is

defined and not virtual.)

The language L used for constructing queries could be any query lan-

guage including SQL or XQuery4, but in this thesis I will be using a form

of Datalog.

Each source s ∈ S has an extension E [s] which is the complete set of

tuples that can be produced by the source (at a given moment in time). We

require that the view definition vs ∈ LR,s is consistent with the source, such

that: E [s] ⊆ EI [vs], (where I[R] is the current virtual database instance

4XQuery is an XML Query Language.

17



2.4. IMPLICIT ASSUMPTIONS CHAPTER 2. PROBLEM

over the global relations). Note that we do not require equivalence, because

some sources may provide incomplete data.

The view definition for the source to be modeled s∗ is missing. The

solution to this Source Definition Induction Problem is a new view defini-

tion v∗ ∈ LR,s∗ for the new source s∗ such that E [s∗] ⊆ EI [v
∗], and there

does not exist any other view definition v′ ∈ LR,s∗, that better describes

(provides a tighter definition for) the source s∗, i.e.:

¬∃v′ ∈ LR,s∗ s.t. E [s∗] ⊆ EI [v
′] ∧ |EI [v

′]| < |EI [v
∗]|

I note that it may not be possible, given limitations on the computation

and bandwidth available, to guarantee that this optimality condition holds

for a particular solution found, thus in this thesis I will simply strive to

find the best solution possible, given the limitations.

2.4 Implicit Assumptions

There are a number of assumptions which are implicit in the problem for-

mulation given above. In this section I attempt to make those assumptions

explicit.

2.4.1 Type Signature is Known

The first assumption made in this work is that there exists a system capa-

ble of discovering new sources and more importantly classifying (to good

accuracy) the semantic types of their input and output. Systems capable of

performing this classification (such as [11] and [12]) were discussed briefly

in section 1.3.2.

18



CHAPTER 2. PROBLEM 2.4. IMPLICIT ASSUMPTIONS

2.4.2 Relational Flattening

The second assumption is a little less apparent and has to do with the

representation of each source as a relational view definition, i.e. as a set of

tuples conforming to given relation. Most sources on the Internet provide

tree structured data in XML. It may not always be obvious how best to

flatten that data into a set of relational tuples. (Indeed in some cases it

may not even be possible to do so and still preserve the intended meaning

of that data.)

Consider a travel booking site which returns a set of flight options each

with a ticket number, a price and a set of flight segments which constitute

the itinerary. The price of each option may vary with the number of con-

nections, as direct flights are often sold at a higher price. One possibility

for converting this data into a set of tuples would be to break each ticket up

into individual flight segment tuples. Doing this obscures the connection

between the price of the ticket and the set of flight segments comprising

it, possibly making it difficult for a learning system to discover a definition

for the source. Another possibility would be to create one tuple for each

ticket with room for a number of flight segments up to some maximum

value. This option would create a relation of very high arity and tuples

with many null values, again making life difficult for a learning system. It

is not obvious in this case, which if either of these options is to be preferred.

This problem is mitigated by the fact that most of the data available

online can be described quite “naturally” as a set of relational tuples.

Moreover, by first solving the simpler relational problem we can gain insight

and develop techniques that can later be applied to the more difficult semi-

structured case.

19



2.5. PROBLEM DISCUSSION CHAPTER 2. PROBLEM

2.4.3 Domain Model Sufficiency

A third implicit assumption in the problem formulation is that the set

of domain relations suffices for describing the source to be modeled. For

instance, consider the case where the domain model only contains relations

useful for describing financial data, and the new source provides weather

forecasts. Obviously, the system will not be able to learn a definition

for a source that cannot be described using the relations available. This

limitation does not really present a problem for the following reason: The

user can only write structured queries using the language of the domain

model, so any sources which cannot be described using that domain model

would not be useful for answering user queries anyway.

2.5 Problem Discussion

Before proceeding, there are a number of questions which arise from the

problem formulation and which I attempt to answer in this section. At

the end of the section I also give some motivation for tackling problem as

posed.

2.5.1 Domain Model

The first question that should be considered is where the domain model

comes from. In principle, the set of semantic types and relations could

come from many places. It could be taken from standard data models for

the different domains (although they may in some cases be too detailed for

the intended purpose of the source definitions). It could also come about

through consensus or it could just be the simplest model possible which

aptly describes the set of known sources. Note that the domain model may

need to evolve over time as the set of known sources expands and sources

20



CHAPTER 2. PROBLEM 2.5. PROBLEM DISCUSSION

are discovered for which no appropriate model can be found.

2.5.2 Semantic Type Specificity

The next somewhat related question is how specific the set of semantic

types ought to be. For example, is it sufficient to have one semantic type

distance or should one distinguish between distance in meters and dis-

tance in feet? Generally speaking, a semantic type should be created for

each attribute of a source which is syntactically dissimilar to the other at-

tributes of the source. For example, a phone number and a zipcode have

very different syntax, thus operations which accept one of the types as in-

put are unlikely to accept the other. The true yardstick that ought be used

to decide whether or not two attributes should be given different semantic

types is whether or not a trained classifier would be able to distinguish the

types based on their syntax alone.

In general the more semantic types there are the harder the job of the

system classifying the input and output types, and the easier the job of

the system tasked with learning a definition for the source.

2.5.3 Known Sources

Another question to be considered is where the definitions for the known

sources come from. Initially such definitions would have to be written by

hand. As the system progresses and learns definitions for different sources,

these source descriptions could be added to the set of known sources, mak-

ing it possible to learn ever more complicated definitions starting from

simple ones.

21



2.5. PROBLEM DISCUSSION CHAPTER 2. PROBLEM

2.5.4 Example Values

Finally, in order for the system to learn a definition for a new source it

needs to be able to invoke that source and possibly other sources as well.

In order to invoke the source, examples of the input types will be required.

The bigger and more representative the set of available examples of those

input types, the more efficient and accurate will be the learning process.

An initial set of examples can be provided by whoever writes the source

definitions for the known sources. As the system learns over time, it will

generate a large number of examples of different types (as output from

various sources), so generating example values should not be a problem.

Keeping the set of examples representative of the semantic type may be

challenging however.

2.5.5 Motivation

Information Integration research has reached a point where information

mediation systems are becoming mature and usable. The need to involve

a human in the writing of source definitions is, however, the Achilles Heel

of such systems. The gains in flexibility that come with the ability to

dynamically reformulate user queries are often at least in part offset by

the time and skill required to write new definitions when incorporating

new sources into the system. Thus a system capable of learning definitions

for new sources as they are discovered (or even better: when they are

required), could expand greatly the viability of mediator-based systems.

This motivation alone seems sufficient for pursuing the problem.

22



Chapter 3

Approach

The approach taken in this thesis to learning semantic models for informa-

tion sources on the web is twofold. Firstly, I choose to model sources using

the powerful query language of conjunctive queries. Secondly, I leverage

the set of known sources in order to learn a definition for the new one. In

this chapter I describe these aspects in more detail.

3.1 Modeling Language

In this section I discuss the view definition language, L, that is used for

modeling information sources on the Internet. Importantly, this is also the

hypothesis language in which new definitions will need to be learnt. As

is often the case in machine learning, we are faced with a trade-off with

regard to the expressivity (complexity) of this language. If the hypothesis

language lacks expressivity, then we may not be able to model real services

on the Internet using it. On the other hand, if the language is overly ex-

pressive, then the space of possible hypotheses will be so large that learning

will not be feasible.

The language I choose is that of conjunctive queries in Datalog, which

is a very expressive relational query language. In the next section I argue

why a less expressive language is not sufficient for our purposes. I then

23



3.1. MODELING LANGUAGE CHAPTER 3. APPROACH

describe conjunctive queries in detail, showing that they are sufficient for

modeling most online sources. For thoroughness, I then give examples of

sources which cannot be described without employing yet more expressive

languages. (I note that restrictions on the expressiveness apply only to

the definition learnt for online sources, and not to the queries that me-

diators can perform over those sources.) Finally I discuss the problem of

incomplete sources.

3.1.1 Select-Project Queries

Researchers interested in the problem of assigning semantics to web services

[11] have investigated the problem of using Machine Learning techniques

to classify WSDL-described services (based on metadata characteristics)

into different semantic domains, such as weather and flights, and the op-

erations they provide into different classes of operation, such as weather-

Forecast and flightStatus. From a relational perspective, we can consider

the different classes of operations as relations. We could then say that a

particular source simply provides values for attributes from these relations.

For instance, consider the source definition below:

source($zip, temp) :- weatherForecast(zip, tomorrow, temp).

The source provides weather data by selecting tuples from a relational table

called weatherForecast, which have the desired zipcode and date equal to

tomorrow. This query is referred to as a select-project query1 because its

evaluation can be performed using the relational operators selection and

projection. (See appendix A.1 for a formal description of these operators.)

So far so good, we have been able to use a simple classifier to learn a

definition for the source. The limitation imposed by this simple modeling

1In SQL, select-project queries correspond to the SELECT-FROM-WHERE statement, where the

FROM field contains only one relation, and the SELECT and WHERE fields contain no aggregate

operators. I discuss aggregate operators in section 3.1.3.

24



CHAPTER 3. APPROACH 3.1. MODELING LANGUAGE

language becomes obvious however, when we consider slightly more com-

plicated sources. Take for example a source that provides the temperature

in Fahrenheit as well as Celsius. In order to model such a source using a

project-select query, we would require that the weatherForecast relation be

extended with a new attribute, the source definition becoming something

like:

source($zip, tempC, tempF):-

weatherForecast(zip, tomorrow, tempC, tempF).

The more attributes that could conceivably be returned by a weather fore-

cast operation (such as sky conditions, air pressure, even latitude and lon-

gitude coordinates), the longer the relation will need to be, to cover them

all. Ideally, we would prefer in this case to add a conversion operation

convertCtoF that makes explicit the relationship between the temperature

values, and can be reused for defining other non forecast-related sources.

If in addition the source limits its output to zipcodes in California, a rea-

sonable definition for the source might be:

source($zip, tempC, tempF):-

weatherForecast(zip, tomorrow, tempC),

convertCtoF(tempC, tempF), state(zip,California).

This definition is no longer expressed in the language of select-project

queries, because it now involves multiple relations and joins between them.

Thus from this simple example, we see that modeling services using simple

select-project queries is not sufficient for our purposes. What we need are

select-project-join queries, also referred to as conjunctive queries.

3.1.2 Conjunctive Queries

The reader has already been introduced to a number of examples of con-

junctive queries throughout the previous chapters. Conjunctive queries

25



3.1. MODELING LANGUAGE CHAPTER 3. APPROACH

form a subset of the logical query language Datalog2. They are also termed

select-project-join queries because they can be evaluated using the rela-

tional operators select, project and join3. Conjunctive queries can be de-

scribed more formally as follows:

A conjunctive query over a set of relations R is an expression of

the form4:

q(X0) :- r1(X1), r2(X2), ..., rl(Xl).

where each ri ∈ R is a relation and Xi is an ordered set of variable

names of size arity(ri). Each conjunct ri(Xi) is referred to as a

literal. The set of variables in the query, denoted vars(q) =
⋃l

i=0 Xi, consist of distinguished variables X0 (from the head of the

query), and existential variables vars(q)\X0, (which only appear

in the body). A conjunctive query is said to be safe if all the

distinguished variables appear in the body, i.e. X0 ⊆
⋃l

i=1 Xi.

For the remainder of this thesis, I will denote the language of conjunctive

queries by L∧. Thus the set of conjunctive queries that can be written over

relations R, returning tuples of scheme A, will be denoted L∧
R,A.

3.1.3 Aggregation

Implicit in the decision to use conjunctive queries in Datalog as a modeling

language is the restriction that the source can be described without the

need for aggregate operators. Aggregate operators are any operators that

2In SQL, conjunctive queries correspond to SELECT-FROM-WHERE statements containing multiple

relations, but no aggregate operators.
3The join operator takes the extension of two relations and returns the subset of cross product of

those extensions for which the common attributes have the same value. A renaming operator is also

required to fully specify conjunctive queries in terms of relational operators.
4The term conjunctive comes from the fact that the comma in the body (right-hand side) of the rule

is interpreted in first order logic as a conjunction, i.e.:

∀X0 ∃Y s.t. r1(X1) ∧ r2(X2) ∧ ... ∧ rl(Xl) → q(X0) where X0 ∪ Y =
⋃l

i=1
Xi

26



CHAPTER 3. APPROACH 3.1. MODELING LANGUAGE

must be applied to a set of tuples at once, such as MAX (find the maximum

value from a set of values), MIN, AVG, ORDER (order the values in a set),

and so on. Datalog, being a first order language, lacks the expressive power

to describe such operators (which belong to second order logic).

Some sources on the Internet cannot be described without aggregate

operators. Consider for instance a source which takes in a set of points

(latitude and longitude coordinates) and returns the distance between each

point and the centroid of the set. If the number of points in the input is

not fixed (as is possible in XML), the definition for this source would

necessarily involve an average over the set of input tuples. In general the

system will not be able to learn definitions for any sources that produce

aggregate results (except when specific relations exist in the domain model

that implicitly denote aggregation such as the averageTemp relation from

section 1.3.3).

Similarly, one cannot express orderings over the data returned, which

becomes important when a source limits the size of the result set. For

example, consider a hotel search service which returns the 20 closest hotels

to a given location. A Datalog definition for this source might look as

follows:

hotelSearch($loc, hotel, dist) :-

accommodation(hotel, loc1), distance(loc, loc1, dist).

According to this definition, however, the source should return all of the

hotels that it knows about regardless of their distance. In Datalog one

cannot express the ordering and count limitations. Ideally, one would like

to learn an expression such as the following SQL query for describing the

source5:

SELECT d.location1, a.hotel, d.distance

5In some relational database implementations, the TOP keyword is used instead of LIMIT to get the

first set of tuples returned by a query.

27



3.1. MODELING LANGUAGE CHAPTER 3. APPROACH

FROM accommodation a, distance d

WHERE d.location1 = $loc AND a.location = d.location2

ORDER BY d.distance LIMIT 20.

The reason for not using more expressive view definition languages (such

as SQL) is that the search space associated with learning such definitions

is prohibitively large.

3.1.4 Disjunction & Negation

The second restriction placed on source descriptions is that they contain

no disjunction6. This simplifying assumption holds for most information

sources and greatly reduces the space of possible hypotheses. The restric-

tion means that one cannot learn definitions for sources whose data is best

described by a union query7, i.e. a query that combines the results from

two or more different sub-queries. For example, for a while it was com-

mon for weather services in the United States to provide forecasts for cities

in both the US and Iraq. The data provided by such a service could be

described by the union of two conjunctive source definitions as follows:

s($city,US, temp) :- forecast(city,US, tomorrow, temp).

s($city, Iraq, temp) :- forecast(city, Iraq, tomorrow, temp).

Since we do not allow disjunction in the source definition language, the

best definition that could be learnt by an induction system would be the

more general rule:

s($city, country, temp) :- forecast(city, country, tomorrow, temp).

This new rule does not restrict the domain of values for the variable coun-

try. Obviously, such a general rule is not as useful to a mediator system,

which when confronted with a request for the forecast in city in say Aus-

6Disjunction in the body (the right hand side) of a Datalog rule roughly corresponds to the use of the

UNION keyword in SQL.
7It should be noted that without union queries one cannot have recursive queries either.

28



CHAPTER 3. APPROACH 3.1. MODELING LANGUAGE

tralia, would proceed to call the service, oblivious to the restriction on the

country attribute.

Similar to queries containing disjunction are queries containing nega-

tion. Again the source description language L is restricted to not include

such queries, not so much because they cause the search space to explode

(including them only increases the branching factor by a factor of two),

but because view definitions requiring negation are so rare in practice,

that including them may well simply confuse the search.

A somewhat contrived example of a source definition requiring negation

is the following. Consider a source that provides a list of all movies which

have won the Venice Film Festival, but which are not being released in the

United States8. The description for such a source might look as follows:

source(film) :-

festivalWinner(film,Venice), ¬releaseDate(film,US, date).

While the above expression makes for a perfectly reasonable query to a

mediator, it is unlikely that a service provider would create such a source,

and for that reason I do not attempt to learn such definitions.

3.1.5 Completeness

One reason why definitions requiring negated literals9 are rare in practice

is that many of the sources available online are not complete with respect

to their own best definition, and providing the negation of an incomplete

table wouldn’t make much sense! The incompleteness of sources can stem

from the fact that the domain model (the set of global relations) is not

sufficiently detailed to be able to model all sources correctly. It can also

come about because the sources themselves are noisy and missing certain

8Note that this is a different set of films from those which have been scheduled for release in the US,

but with a release date in the future.
9A negated literal is a literal which is preceded by the negation symbol, e.g.:

¬releaseDate(film,US, date).

29



3.2. LEVERAGING KNOWN SOURCES CHAPTER 3. APPROACH

values. Whatever the reason, the fact that sources are modeled as incom-

plete view definitions creates two problems for a learning system. Firstly,

it cannot assume that the new source for which a definition is being learnt,

will itself be complete with respect to the best possible definition (denoted

v∗ in section 2.3.2) for it. Secondly, the other sources whose data is used

to check the generated definitions, may also be incomplete with respect to

their stated definitions.

Thus the learning system, when it discovers the best definition for a

source may not even be sure that it has found the best definition, because

the set of tuples returned by the source and the set of tuples returned by

the definition may not be exactly the same, and indeed may simply overlap

with each other. I discuss the problem of evaluating candidate definitions

given incomplete sources in section 5.

3.2 Leveraging Known Sources

The overall approach that I take to the problem of discovering semantic

definitions for new services, is to leverage as much as possible the set of

known sources, while learning a new definition. Broadly speaking, I do

this by invoking the known sources (in a methodological manner) to see if

any combination of the information they provide matches the information

provided by the new source. From a practical perspective, this means that

in order to model a newly discovered sources semantically, we require that

there be some overlap in the data being produced by the new source and

the set of known sources. One way to understand this is to consider a new

source producing weather data. If none of the known sources produce any

weather information, then there will be no way for the system to learn

whether the new source is producing historical weather data, weather fore-

casts, or even that it is describing weather at all. Given this overlapping

30



CHAPTER 3. APPROACH 3.2. LEVERAGING KNOWN SOURCES

data requirement, one might claim that there is little benefit in incorporat-

ing new sources. There are a number of reasons why this is not the case,

which I detail below.

3.2.1 Redundancy

The most obvious benefit of learning definitions for new sources is redun-

dancy. If the system is able to learn that one source provides exactly the

same information as a currently available source, then if the latter suddenly

becomes unavailable, the former can be used in its place. For example if

a mediator knows of one weather source providing current conditions, and

learns that a second source provides the same or similar data, then if the

first goes down for whatever reason (perhaps because an access quota has

been reached), weather data can still be accessed from the second.

3.2.2 Scope

The second and perhaps more interesting reason for wanting to learn a

definition for a new source is that the new source may provide data which

lies outside the scope of (or simply not present in) the data provided by

the other sources. For example, consider a weather service which provides

temperature values for zipcodes in the United States. Then consider a

second source that provides weather forecasts for cities worldwide. If the

system can use the first source to learn a definition for the second, the

amount of information available for querying suddenly increases greatly.

3.2.3 Binding Constraints

Binding constraints on a service can make accessing certain types of in-

formation difficult or inefficient. In this case, discovering a new source

providing the same or similar data but with a different binding pattern

31



3.2. LEVERAGING KNOWN SOURCES CHAPTER 3. APPROACH

may improve performance. For example, consider a hotel search web ser-

vice that accepts a zipcode and returns a set of hotels along with their star

rating and so on:

hotelSearch($zip, hotel, rating, street, city, state):-

accommodation(hotel, rating, street, city, state, zip).

Now consider a simple query for the names and addresses of all five star

hotels in California:

q(hotel, street, city, zip):-

accommodation(hotel, 5*, street, city,California, zip).

Answering this query would require thousands of calls to the known source

- one for every zipcode in California. And even then a mediator could only

answer the query if there exists another source capable of producing such a

set of zipcodes. In contrast, if the system had learnt a definition for a new

source which provides exactly the same data but with a different binding

pattern:

hotelsByState($state, $rating, hotel, street, city, zip):-

accommodation(hotel, rating, street, city, state, zip).

Then answering the same query would require only one call to this new

source!

3.2.4 Composed Functionality

Often the functionality of a complex source can be described in terms of

a composition of the functionality provided by other simpler services. For

instance, consider the motivating example from section 2.1, in which the

functionality provided by the new source was to calculate the distance in

miles between two zipcodes. The same functionality could be achieved

by performing four different calls to the available sources. In that case,

the definition learnt by the system meant that any query regarding the

distance between zipcodes could be handled more efficiently. In general,

32



CHAPTER 3. APPROACH 3.2. LEVERAGING KNOWN SOURCES

by learning definitions for more complicated sources in terms of simpler

ones, the system can benefit from computation, optimisation and caching

abilities of services providing complex functionality.

3.2.5 Access Time

Finally, the newly discovered service may be faster to access than the

known sources providing similar data. For instance, consider a geocoding

service which takes in an address and returns the latitude and longitude

coordinates of the location. Because of the variety in algorithms used

to calculate the coordinates, it’s not unreasonable for a geocoding source

to take a long time (upwards of one second) to return a result. If the

system were able to discover a new source providing the same geocoding

functionality, but with a delay of only 50 milliseconds, then the system

would be able to geocode a set of addresses 20 times faster.

3.2.6 Modeling Aid

There exist also application scenarios in which the overlapping data require-

ment discussed previously, does not pose much of a restriction. Consider

the case where a domain modeler is manually annotating the different op-

erations of a particular web service. Often the operations of a single service

simply provide different ways of accessing the same underlying data. If this

is the case, and the operations are sufficiently similar, a learning system

should be able to induce definitions for the other operations automatically,

based on the definition given for the first operation. Doing so may re-

duce the time required to model new sources and/or reduce the numbers

of errors and inconsistencies in the models produced.

33



3.2. LEVERAGING KNOWN SOURCES CHAPTER 3. APPROACH

34



Chapter 4

Inducing Definitions

In this chapter I describe an algorithm for generating candidate definitions

for a newly discovered source. The algorithm forms the first phase in

a generate and test methodology for learning source definitions. I defer

discussion of the testing phase to the next chapter.

4.1 Inductive Logic Programming

The language used to express definitions for information sources, Datalog,

is a type of first-order language. It is in fact, simply the function-free

subset of the commonly used first-order programming language Prolog. In

the Machine Learning community, systems capable of learning models us-

ing expressive first-order representations are referred to as Inductive Logic

Programming (ILP) systems or Relational Learners. Because of the expres-

sivity of the modeling language (specifically the ability to describe joins

across “hidden variables” such as the coordinates of a zipcode in the ex-

ample from section 2.1), the complexity of the relational learning problem

is much higher than for propositional rule learners (also called attribute-

value learners). The latter form the bulk of Machine Learning algorithms

including commonly used decision-tree learners, naive bayes learners and

Support Vector Machines.

35



4.1. ILP CHAPTER 4. INDUCING DEFINITIONS

Given that I model services using conjunctive Datalog queries, many of

the techniques developed for learning such first-order (relational) represen-

tations should also apply to the problem of inducing source definitions for

online sources. In the next section I introduce an ILP system and discuss

its applicability to the problem.

4.1.1 FOIL and Similar Top Down Systems

FOIL (First Order Inductive Learner) [5] is a well known ILP search algo-

rithm. It is capable of learning first-order rules to describe a target pred-

icate, which is represented by a set of positive examples (tuples over the

target relation, denoted E+) and optionally also a set of negative examples

(E−). The search for a viable definition in FOIL proceeds in a top down

manner, starting from an empty clause1 and iteratively adding literals to

the body (antecedent) of the rule, thereby making the rule more specific.

This process continues until the definition (denoted h) covers only posi-

tive examples and no negative examples. Using the notation introduced in

section 2.3.1 we could write this condition as follows:

E+ ∩ EI [h] 6= ∅ and E− ∩ EI [h] = ∅

Usually a set of rules are learnt in this manner by removing the positive

examples covered by the first rule and repeating the process. The set of

rules are interpreted as a union query which covers all the positive tuples

and none of the negative ones:

E+ ⊆
⋃

i EI [hi] and E− ∩
⋃

i EI [hi] = ∅

Search in FOIL is performed in a greedy best-first manner, guided by an

information-gain-based heuristic. Many extensions to the basic FOIL al-

gorithm exist, most notably those that combine declarative background
1I use the terms clause and query interchangeably to refer to a conjunctive query in Datalog. An

empty clause is a query without any literals in the body (right side) of the clause.

36



CHAPTER 4. INDUCING DEFINITIONS 4.1. ILP

knowledge into the search process such as FOCL (First Order Combined

Learner) [19]. Such systems are categorised as performing a top down

search because they start from an empty clause (the most general rule pos-

sible) and specialize the clause by adding literals one at a time. Bottom up

approaches on the other hand (such as GOLEM [17]), perform a specific to

general search starting from the positive examples of the target predicate.

4.1.2 Applicability of Such Systems

There are a number of issues which limit the direct applicability of Induc-

tive Logic Programming systems to the source definition induction prob-

lem:

• Extensions of the global relations are virtual.

• Sources may be incomplete with respect to their definitions.

• Explicit negative examples of the target are not available.

• Sources may serialise constants in different ways.

The first issue has to do with the fact that all ILP systems assume that

there are extensional (or in some cases intentional) definitions of both the

target predicate and the predicates that will be used in the definition for the

target. In other words, they assume that tables already exist in some rela-

tional database to represent both the new source and the known sources.

In our case we need to generate such tables by first invoking the services

with relevant inputs. One could envisage invoking each of the sources with

every possible input and using the resulting tables to perform induction.

Such a direct approach would not be feasible for two reasons. Firstly, a

complete set of possible input values may not be known to the system. Sec-

ondly, even if it is possible to generate a complete set of viable inputs to a

service, it may not be practical to query the source with such a large set

37



4.1. ILP CHAPTER 4. INDUCING DEFINITIONS

of tuples. Consider for example source4 from section 2.1, which calculates

the distance in miles between a pair of zipcodes. Given that there are over

40,000 zipcodes in the US, generating an extensional representation of this

source would require more than one billion invocations to be performed!

Obviously performing such a large number of invocations does not make

sense when a small number of example invocations would suffice for glean-

ing the desired information regarding the characteristics of a source. In

this thesis I develop an algorithm that only queries the sources as needed

in order to evaluate individual candidate definitions.

The second issue has to do with the incompleteness of the sources. This

lack of completeness causes a problem when a candidate (h) is to be eval-

uated. Since the set of tuples returned by a source will only be a subset

of those implied by its definition, so too will be the set of tuples returned

by the candidate hypothesis when executed (as the execution must be per-

formed over those incomplete sources). This means that when the system

tries to evaluate a hypothesis by comparing the tuples it produces with

those of the source, it cannot be sure that a tuple which is produced by

the new source but is not among the the tuples representing the hypothesis

is in fact not logically implied by the hypothesis. This fact must then be

taken into account when deciding on an evaluation function for assessing

the quality of a hypothesis. I will discuss such an evaluation function in

section 5.1.1.

The third issue regarding the lack of explicit negative examples for

the target predicate also effects the evaluation of candidate hypotheses.

The classic approach to handling a lack of explicit negative examples is to

make the closed world assumption, in which all tuples (over the head rela-

tion) which are not explicitly declared to be positive are assumed negative.

Given the fact that the new source may in fact be incomplete with respect

to the best possible definition for it, the assumption that all tuples which

38



CHAPTER 4. INDUCING DEFINITIONS 4.2. SEARCH

are not returned by the source are negative examples of its definition is not

necessarily correct. In other words, just because a particular tuple is pro-

duced when the candidate definition is executed and that same tuple is not

returned by the new source does not necessarily mean that the candidate

definition is incorrect.

The fourth issue has to do with the fact that the data which is provided

by the different sources has not been cleaned, in the sense that different

serialisations (strings) may be used by different sources to represent the

same value (such as “Monday” and “Mon”) for instance. Since ILP systems

have been designed to operate over a single database containing multiple

tables, this issue of heterogeneity in the data values is not handled by

current systems. I defer discussion of how this heterogeneity is resolved to

section 5.4.

4.2 Search

In this section I describe the actual search procedure that is used to gen-

erate candidate definitions for a new source. The procedure is based on

the top-down best-first search strategy used in FOIL. Later in the section

I discuss the trade-off involved in writing definitions in terms of source

relations as opposed to global relations.

4.2.1 Basic Algorithm

The algorithm used to enumerate the space of possible view definitions

takes as input a type signature for the new source and uses it to seed the

search for candidate definitions. (In the following I will refer to the new

source relation as the target predicate and the set of known source relations

as source predicates.) The space of candidate definitions is enumerated in a

best-first manner, with each candidate being tested to see if the data it re-

39



4.2. SEARCH CHAPTER 4. INDUCING DEFINITIONS

turns is similar to the target. Pseudo-code describing the overall algorithm

is shown in algorithm 1:

input : A predicate signature s∗

output: The best scoring view definition v∗

Invoke target with set of random inputs;1

Add empty clause to queue;2

while queue 6= ∅ do3

v ← best definition from queue;4

forall v′ ∈ expand(v) do5

if eval(v′) ≥ eval(v) then6

insert v′ into queue;7

end8

end9

end10

Algorithm 1: Best-First Search Algorithm

The first step in the algorithm is to invoke the new source with a rep-

resentative set of input tuples so as to generate examples of output tuples

that characterize the functionality of the source. This set of invocations

must include positive examples (invocations for which output tuples were

produced) and if possible, also negative tuples (i.e. inputs for which no out-

put was returned). The algorithm’s ability to induce the correct definition

for a source will be highly dependent on the number of positive examples

available. Thus a minimum requirement on the number of positive invoca-

tions of the source is imposed. This means that the algorithm may have to

invoke the source repeatedly using different inputs until sufficient positive

invocations can be recorded. Selecting appropriate input values so as to

successfully invoke a service is easier said than done. I defer discussion of

the issues and difficulties involved in successfully invoking the new source

40



CHAPTER 4. INDUCING DEFINITIONS 4.2. SEARCH

to section 7.1, and assume for the moment that the induction system is

able to generate a table of values that represent its functionality.

The next step in the algorithm is to initialise the search by adding an

empty clause to the queue of definitions to expand. The rest of the algo-

rithm is simply a best-first search procedure with backtracking. At each

iteration the highest scoring but not yet expanded definitions is removed

from the queue and expanded. Each candidate generated is compared to

the original definition to see if the score is improved. If so it is added to

the queue. If no definitions are found that improve the score, backtracking

is performed. In the next section I will describe the expansion step (line 4

of the algorithm) in more detail.

4.2.2 Generating Candidates

In order to generate candidate definitions for the new source, the system

performs a top-down best-first search through the space of conjunctions of

source predicates. In other words, it starts with a very simple source defi-

nition and builds ever more complicated definitions by adding one source

predicate at a time to the end of the best definition found so far. It keeps

doing this until the data produced by the definition matches that produced

by the source it is trying to model.

I now run through an example of the process of generating candidate

definitions. Consider a newly discovered source, which takes in a zipcode

and a distance, and returns all the zipcodes that lie within the given radius

(along with their respective distances). The target predicate representing

this source is as follows:

source5($zip1, $dist1, zip2, dist2)

Now assume that there are two known sources. The first being the source

for which the definition was learnt in the example from section 2.1, namely:

41



4.2. SEARCH CHAPTER 4. INDUCING DEFINITIONS

source4($zip1, $zip2, dist):-

centroid(zip1, lat1, long1), centroid(zip2, lat2, long2),

greatCircleDist(lat1, long1, lat2, long2, dist2),

multiply(dist1, 1.6093, dist2).

The second source isn’t actually a source but is the interpreted predicate

less-than. Being interpreted, it doesn’t need a definition, as the system

knows how to check ordering over distance values. (Note that the binding

constraints for this predicate requires that both arguments be bound, which

means that the less-than predicate cannot be used to generate any values,

just check ordering over them.)

≤($dist1, $dist2).

The search for a definition for the new source might then proceed as follows.

The first definition to be generated is the empty clause:

source5($ , $ , , ).

The null character ( ) represents the fact that none of the inputs or out-

puts have any restrictions placed on their values. Prior to adding the first

literal (source predicate), the system will check whether any output at-

tributes echo the input values. In this case, given the semantic types, two

possibilities would need to be checked:

source5($zip1, $ , zip1, ).

source5($ , $dist1, , dist1).

Assuming neither of these possibilities is true (i.e. improves the score),

then literals will be added one at a time to refine the definition. A literal is

a source predicate with an assignment of variable names to its attributes.

A new definition must be created for every possible literal that includes

at least one variable already present in the clause. (For the moment I

ignore the issue of binding constraints on the sources being added and

defer discussion to section 4.3.4.) Thus many candidate definitions would

be generated including the following:

42



CHAPTER 4. INDUCING DEFINITIONS 4.2. SEARCH

source5($zip1, $dist1, , ) :- source4($zip1, $ , dist1).

source5($zip1, $ , zip2, ) :- source4($zip1, $zip2, ).

source5($ , $dist1, , dist2) :- ≤(dist1, dist2).

Note that the semantic types in the type signature of the target predicate

limit greatly the number of candidate definitions that can be produced.

The system then evaluates each of these candidates in turn, selecting the

best one for further expansion. Assuming the first of the three has the

best score, it would be expanded by adding another literal, forming more

complicated candidates such as the following:

source5($zip1, $dist1, , dist2) :-

source4($zip1, $ , dist1), ≤(dist1, dist2).

This process continues until the system discovers a definition which per-

fectly describes the source, or is forced to backtrack because no literal

improves the score.

4.2.3 Domain Predicates vs. Source Predicates

In the above example, the decision to perform search over the source pred-

icates rather than the domain predicates was made in an arbitrary fashion.

In this section I justify that decision. If one were to perform the search

over the domain predicates, then testing each definition would require an

additional query reformulation step. For example, consider the following

candidate definition for source5 containing the domain predicate centroid:

source5($zip1, $ , , ) :- centroid(zip1, , ).

In order to evaluate this candidate, the system would need to first treat

the definition as a query and reformulate it into a set of rewritings (that

together form a union query) over the various sources as follows:

source5($zip1, $ , , ) :- source4($zip1, $ , ).

source5($zip1, $ , , ) :- source4($ , $zip1, ).

This union query can then be executed against the available sources (in

43



4.2. SEARCH CHAPTER 4. INDUCING DEFINITIONS

this case just source4) to see what tuples the candidate definition returns.

In practice however, if the definitions for the known sources contain multi-

ple literals (as they normally do) and the domain relations are of high-arity

(as they often are), then the search over the space of conjunctions of do-

main predicates is often much larger than the corresponding search over

the space of conjunctions of source predicates. This is because multiple

conjunctions of domain predicates (candidate definitions) end up reformu-

lating to the same conjunction of source predicates (union queries). For

example, consider the following candidate definitions written in terms of

the domain predicates:

source5($zip1, $ , , ) :-

centroid(zip1, lat1, ), greatCircleDist(lat1, , , , ).

source5($zip1, $ , , ) :-

centroid(zip1, , long1), greatCircleDist( , long1, , , ).

source5($zip1, $ , , ) :-

centroid(zip1, lat1, long1), greatCircleDist(lat1, long1, , , ).

All three of these candidates would reformulate to the same query over the

sources (shown below), and thus are indistinguishable given the sources

available.

source5($zip1, $ , , ) :- source4($zip1, $ , ).

In general the number of candidate definitions that map to the same re-

formulation can be exponential in the number of hidden variables present

in the definitions of the known sources. For this reason, we simplify the

problem and search the space of conjunctions of source predicates. In some

sense, performing the search over the source predicates can be seen as intro-

ducing a “similarity heuristic” which focuses the search toward definitions

with similar structure to the definitions of the available sources. I note

that the definitions produced can (and will) later be converted to queries

over the global predicates by unfolding and possibly tightening them to re-

44



CHAPTER 4. INDUCING DEFINITIONS 4.3. LIMITING THE SEARCH

move redundancies. I will discuss the process of tightening the unfoldings

in section 6.3.1.

4.3 Limiting the Search

The search space generated by this top-down search algorithm may be very

large even for a small number of sources. An upper bound for this space is

given by the following expression: (See Appendix A.2 for an explanation

of how this upper bound is derived.)

size(l, |S|, a) ≤
l

∑

i=0





|S| + i − 1

i



B((i + 1)a)

Here l is the maximum length of the clauses generated, |S| is the number

of sources available, and a is the maximum arity of any of those sources,

(which is assumed to be greater than the arity of the target predicate).

B(n) is the nth Bell number, which is the count of all partitions2 of a set

of size n. It represents the number of different ways n variables can be

assigned names (equated) independently of the labels used [27]. The Bell

number is calculated recursively as follows:

B(0) = 1 and B(n + 1) =
n

∑

k=0





n

k



B(k)

Intuitively, the set of all partitions is greater than the powerset but less

than the set of permutations, i.e.: 2n < B(n) < n! for n ≥ 5. Needless to

say, this upper bound for the search space is extremely large. It increases

in a super exponential manner with the length l and the maximum arity

a. For example, in the experiments described in chapter 9, the maximum

arity for a source predicate is 16, and there are over 30 sources, making

the search space bound enormous even for small l.

2A partition of a set X is a set of non-empty subsets {Y1, ..., Yn}, Yi ⊆ X, |Yi| > 0, which exactly

cover the set, i.e. X =
⋃

i Yi and ∀i6=j Yi ∩ Yj = ∅.

45



4.3. LIMITING THE SEARCH CHAPTER 4. INDUCING DEFINITIONS

The use of semantic types limits greatly the ways in which variables

within each definition can be equated (aka the join paths) and thus goes

a long way to reduce the size of the search space. If we let b denote the

maximum number of times the same type appears in any given source

predicate, (for simplicity assume that b divides evenly into a), then the

upper bound becomes the following:

size(l, |S|, a, b) ≤
l

∑

i=0





|S| + i − 1

i



B((i + 1)b)a/b

For example, if a = 16 and b = 8 then the search space for l = 0 is 611

times smaller than without semantic types.

Despite this reduction, as the number of sources available increases, the

search space becomes so large that techniques for limiting it must be used.

We employ some standard (and other not so standard) ILP techniques

for limiting this space. Such limitations are often referred to as inductive

search bias or language bias [18].

4.3.1 Clause Length

The most obvious way to limit the search space is to limit the maximum

length of a clause, i.e. the number of source predicates that can occur

in a definition. Implementing this limitation in the algorithm described

previously simply involves backtracking whenever the definition reaches

the maximum length. Such forced backtracking provides an important

way of escaping from local minima in the search space that result from the

greedy enumeration.

The assumption being made here is that shorter definitions are more

probable than longer ones, which makes sense as service providers are likely

to provide data in the simplest (rawest) form possible. Moreover, the

simpler the definition of the sources learnt, the more useful they will be

to a mediator, so it makes sense to trade away completeness (losing the

46



CHAPTER 4. INDUCING DEFINITIONS 4.3. LIMITING THE SEARCH

ability to express longer definitions) in exchange for improved accuracy

over shorter definitions.

4.3.2 Predicate Repetition

The second restriction placed on the candidate definitions is to limit the

number of times the same source predicate appears in a given candidate.

Doing this makes sense because the definitions of real services tend not

to contain many repeated predicates. Intuitively speaking, this is because

most services provide raw data without performing many calculations over

it. Repeated use of the same predicate in a definition is more useful for de-

scribing some form of calculation than raw data itself. (Exceptions to this

rule exist, for example predicates representing unit conversion functional-

ity such as Fahrenheit to Celsius, may necessarily occur multiple times in

the definition of a source.)

Limiting to one the number of times the same predicate occurs in the

body of a clause would reduce the upper bound on the search space con-

siderably:

size(l, |S|, a, b) ≤
l

∑

i=0





|S|

i



B((i + 1)b)a/b

4.3.3 Existential Quantification Level

The third bias limits the complexity of the definitions generated by re-

ducing the number of literals that do not contain variables from the head

of the clause. Specifically, it limits the level of existential quantification

(sometimes also referred to as the depth [17]) of each variable in a clause.

This level is defined to be zero for all distinguished variables (those ap-

pearing in the head of the clause). For existential variables (those not

appearing in the head) it is defined recursively as one plus the lowest level

of any variable appearing in the same literal. For example, the candidate

47



4.3. LIMITING THE SEARCH CHAPTER 4. INDUCING DEFINITIONS

definition shown below has a maximum existential quantification level of

three because the shortest path from the last literal to the head literal (via

join variables) passes through two other literals:

source5($zip1, $ , , ) :-

source4($zip1, $ , d1), source3($d1, d2), source3($d2, ).

The effect of this bias is to concentrate the search around simpler but highly

connected definitions, where each literal is closely linked to the input and

output of the source. Taking this restriction to an extreme by limiting

the maximum level of a variable to be 1 (all literals must contain a head

variable), would reduce the search space to (assuming for simplicity that

b = a and that the target predicate has arity less than a):

size(l, |S|, a, b) ≤
l

∑

i=0





|S|

i



B((i + 1)(a − 1))a2i

4.3.4 Executability

The fourth restriction placed on source definitions is that they are exe-

cutable. More specifically, it should be possible to execute them from left

to right, meaning that the inputs of each source appear either in the target

predicate (head of the clause) or in one of the literals to the left of that

literal. For example, of the two candidate definitions shown below, only

the first definition is executable. The second definition is not, because zip2

is used as input for source4 in the first literal, without first being bound

to a value in the head of the clause:

source5($zip1, $ , zip2, ) :- source4($zip1, $zip2, ).

source5($zip1, $ , , ) :-

source4($zip1, $zip2, dist1), source4($zip2, $zip1, dist1).

This restriction serves two purposes. Firstly, like the other biases, it limits

the size of the search space. Secondly, it makes it easier to evaluate the

definitions produced. In theory, one could still evaluate the second def-

48



CHAPTER 4. INDUCING DEFINITIONS 4.4. ENHANCEMENTS

inition above by generating lots of input values for zip2, but this would

require a lot of invocations for minimal gain. While the upper bound on

the resulting search space does not change, I note that the size of the search

space necessarily shrinks as a result of the constraints placed by binding

patterns on the types of definitions possible.

4.3.5 Variable Repetition

The last restriction reduces the search space by limiting the number of

times the same variable can appear in any given literal in the body of the

clause. Definitions in which the same variable appears multiple times in a

given literal, such as in the following example which returns the distance

between a zipcode and itself, are not very common in practice:

source5($zip1, $ , , dist2) :- source4(zip1, zip1, dist2).

If we set the maximum repetition to be zero, this definition would not be

allowed, because zip1 appears twice in the same literal. Explicitly pre-

venting such definitions from being generated makes sense because sources

requiring them are so rare, that it is better to reduce the search space

exponentially3 by ignoring them, than to explicitly check for them each

time.

4.4 Enhancements

I now discuss some enhancements to the basic search algorithm introduced

in section 4.2.1.

3The number of different ways that the variables within a literal can be assigned names in this case

reduces from B(a) to 2a.

49



4.4. ENHANCEMENTS CHAPTER 4. INDUCING DEFINITIONS

4.4.1 High Arity Predicates

The sources used in the examples of section 4.2.2 all had relatively low

arity. On the Internet this is unlikely to be the case. Moreover, a number

of those sources are likely to contain a large numbers of attributes of the

same type. This is a problem, because it will cause an exponential number

of definitions to be possible at each expansion step. Consider for instance

a service providing stock price data. A relation representing the source is

shown below. The source takes as input a ticker symbol and returns the

current price, high and low prices, as well as market opening and closing

prices:

stockprice($ticker, price, price, price, price, price)

If the definition to which this predicate is to be added already contains k

price variables, then the number of ways in which the price attributes of

the new relation can be assigned variables is
∑5

i=0

(

5
i

)(

k+i−1
i

)

. This value is

prohibitively large number even for moderate k.

To limit the search space in the case of such high-arity predicates, we

first generate candidates with a minimal number of bound variables in

the new literal and progressively constrain the best performing of these

definitions within each expansion. (High arity predicates are handled in a

similar fashion in FOIL [24].) For example, consider using the stockprice

source above to learn a definition for a new source, with type signature:

source6($ticker, price, price)

We start by adding literals to an empty definition as before. This time

though, instead of generating a literal, for every possible assignment of

variable names to the attributes of each relation, we generate only the

simplest assignments such that all of the binding constraints are met. In

this particular example, the ticker symbol input of the stockprice source

would need to be bound, generating a single definition:

50



CHAPTER 4. INDUCING DEFINITIONS 4.4. ENHANCEMENTS

source6($tic, , ) :- stockprice($tic, , , , , ).

This definition would then be evaluated, and if it scores well, more con-

strained definitions would be generated by equating a variable from the

same literal to other variables from the clause. Two such definitions are

shown below:

source6($tic, pri1, ) :- stockprice($tic, pri1, , , , ).

source6($tic, pri1, ) :- stockprice($tic, , pri1, , , ).

The best of these definitions would then be selected and constrained fur-

ther, generating definitions such as:

source6($tic, pri1, pri2) :- stockprice($tic, , pri1, pri2, , ).

source6($tic, pri1, pri2) :- stockprice($tic, , pri1, , pri2, ).

In this way, the best scoring literal can be found without the need to iterate

over all of the possible assignments of variables to attributes.

4.4.2 Favouring Shorter Definitions

As mentioned previously, shorter definitions for the target source should

be preferred over longer and possibly less accurate ones. In accordance

with this principle, the second enhancement I make to the basic algorithm

is to weight definitions by their length so as to favour shorter definitions

as follows:

eval(v) = ωlength(v) · score(v)

Here v is the candidate definition, ω < 1 is a weighting factor, length(v)

is the length of the clause, and score is a function for evaluating clauses,

(a definition for which will be introduced in the next chapter). Setting the

weighting factor to be a little less than 1 (such as 0.95) helps to remove

logically redundant definitions, which can sometimes be hard to detect, but

are often return almost exactly the same score as their shorter equivalent.

I will discuss the problem of generating non-redundant clauses in section

51



4.4. ENHANCEMENTS CHAPTER 4. INDUCING DEFINITIONS

6.1.2.

52



Chapter 5

Scoring Definitions

In this chapter I discuss techniques for evaluating the candidate definitions

generated by the induction system.

5.1 Comparing Candidates

I now proceed to the problem of evaluating the candidate definitions gen-

erated during search. The basic idea is to compare the output produced

by the source with the output produced by the definition for the same

input. The more similar the tuples produced, the higher the score for the

candidate. The score is then averaged over a set of different input tuples

to get an indication of how well the candidate definition describes the data

produced by the new source.

5.1.1 Evaluation Function

In the motivating example of section 2.1, the source for which a definition

was being learnt (the definition is repeated below), only produced one

output tuple 〈dist〉 for every input tuple 〈zip1, zip2〉:

source4($zip1, $zip2, dist):-

centroid(zip1, lat1, long1), centroid(zip2, lat2, long2),

53



5.1. COMPARING CANDIDATES CHAPTER 5. SCORING DEFINITIONS

greatCircleDist(lat1, long1, lat2, long2, dist2),

multiply(dist1, 1.6093, dist2).

This fact made it simple to compare the output of the service with the

output of the induced definition. In general however, the source to be

modeled (and the candidate definitions modeling it) may produce multi-

ple output tuples fore each input tuple. Take for example source5 from

section 4.2.2, which produces the set of output tuples 〈zip2, dist2〉 contain-

ing all the zipcodes which lie within a given radius of the input zipcode

〈zip1, dist1〉. In such a case, the system needs to compare a set of output

tuples with the set produced by the definition to see if any of the tuples are

the same. Since both the new source and the existing known sources may

not be complete, the two sets may simply overlap, even if the candidate

definition correctly describes the new source. Assuming that we can count

the number of tuples that are the same, we need a measure which tells us

how well a candidate hypothesis describes the data returned by the new

source. One such measure is the following:

score(s, v, I) =
1

|I|

∑

i∈I

|Os(i) ∩ Ov(i)|

|Os(i) ∪ Ov(i)|

where s is the new source, v is a candidate source description, and I ⊆ D[βs]

is the set of input tuples used to test the source1. Os(i) denotes the set of

tuples returned by the new source when invoked with input tuple i. Ov(i) is

the corresponding set returned by the candidate definition. Using relational

projection and selection operators (see Appendix A.1 for a definition) and

the notation introduced in section 2.3.1, these sets can be written as2:

Os(i) ≡ πβc
s
(σβs=i(E [s])) and Ov(i) ≡ πβc

s
(σβs=i(EI [v]))

If we view this hypothesis testing as an information retrieval task, we can

consider recall to be the number of common tuples, divided by the num-
1The binding pattern βs denotes the set of input attributes of source s.
2The complement of the binding pattern, βc

s = s\βs denotes the set of output attributes of source s.

54



CHAPTER 5. SCORING DEFINITIONS 5.1. COMPARING CANDIDATES

ber of tuples produced by the source, and precision to be the number of

common tuples divided by the number of tuples produced by the defini-

tion. The above measure takes both precision and recall into account by

calculating the average Jaccard similarity between the sets.

5.1.2 An Example

Table 5.1 gives an example of how this score is calculated for each input

tuple.

input tuple actual output predicted output Jaccard similarity

i ∈ I tuples Os(i) tuples Ov(i) for tuple i

〈a, b〉 {〈x, y〉, 〈x, z〉} {〈x, y〉} 1/2

〈c, d〉 {〈x,w〉, 〈x, z〉} {〈x,w〉, 〈x, y〉} 1/3

〈e, f〉 {〈x,w〉, 〈x, y〉} {〈x,w〉, 〈x, y〉} 1

〈g, h〉 ∅ {〈x, y〉} 0

〈i, j〉 ∅ ∅ #undef!

Table 5.1: Examples of the Jaccard Similarity score

The first two rows of the table show inputs for which the predicted and

actual output tuples overlap with each other. In the third row, the defini-

tion produces exactly the same set of tuples as the source being modeled

and thus gets the maximum score. In the fourth row, the definition pro-

duced a tuple, while the source didn’t, so the definition was penalised. In

the last row, the definition correctly predicted that no tuples would be out-

put from the source. Our score function is undefined at this point. From

a certain perspective the definition should score well here because it has

correctly predicted that no tuples be returned for that input, but giving

a high score to a definition when it produces no tuples can be dangerous.

Doing so may cause overly constrained definitions which can generate very

few output tuples to score well, while causing less constrained definitions

that are better at predicting the output tuples on average to score poorly

55



5.1. COMPARING CANDIDATES CHAPTER 5. SCORING DEFINITIONS

overall. For example, consider a source which returns weather forecasts for

zipcodes in Los Angeles. The correct definition for this source is shown

below:

source($zip, temp) :-

forecast(zip, tomorrow, temp), UScity(zip,Los Angeles).

Now consider two candidate definitions for the source. The first returns

the temperature for a zipcode, while the second returns the temperature

only if it is below 0◦C:

v1($zip, temp) :- forecast(zip, tomorrow, temp).

v2($zip, temp) :- forecast(zip, tomorrow, temp), temp < 0 ◦C .

Assume that the source and candidates are invoked using 20 different ran-

domly selected zipcodes from all over the US. For most of these zipcodes

the source will not return any output, because the zipcode will lie outside of

Los Angeles. The first candidate will likely return output for all zipcodes,

while the second candidate would, like the source, only rarely produce any

output. This is because the temperature in most zipcodes will be greater

than zero, and has nothing to do with whether or not the zipcode is in Los

Angeles.

If we score definitions highly when they correctly produce no output,

the system would erroneously prefer the second candidate over the first,

(because the latter often produces no output). To prevent that from hap-

pening, we simply ignore inputs for which the definition correctly predicts

zero tuples. This is the same as setting the score for this case to be the

average of the other values.

Returning our attention to table 5.1, after ignoring the last row, the

overall score for this definition would be calculated as 0.46.

56



CHAPTER 5. SCORING DEFINITIONS 5.2. PARTIAL DEFINITIONS

5.2 Partial Definitions

As the search proceeds toward the correct definition for the service, many

semi-complete (unsafe) definitions will be generated. These definitions will

not produce values for all attributes of the target tuple but only a subset

of them. For example, the candidate definition:

source5($zip1, $dist1, zip2, ) :- source4(zip1, zip2, dist1).

produces only one of the two output attributes produced by the source.

This presents a problem, because our score is only defined over sets of

tuples containing all of the output attributes of the new source. One

solution might be to wait until the definitions become sufficiently long

as to produce all outputs, before comparing them to see which one best

describes the new source. There are two reasons why doing this would not

make sense:

• The space of safe definitions is too large to enumerate, and thus we

need to compare partial definitions so as to guide the search toward

the correct definition.

• The best definition that the system can generate may well be a partial

one, as the set of known sources may not be sufficient to completely

model the source.

5.2.1 Using the Projection

The simplest way to compute a score for a partial definition is to compute

the same function as before, but instead of using the raw source tuples,

projecting them over the subset of attributes that are produced by the

definition. This revised score is shown below. (Note that the projection

is over v\βs, which denotes the subset of output attributes of s which are

produced by the view definition v. Note also that the projection is not

57



5.2. PARTIAL DEFINITIONS CHAPTER 5. SCORING DEFINITIONS

distinct, i.e. multiple instances of the same tuple may be produced3.)

score′(s, v, I) =
1

|I|

∑

i∈I

|πv\βs
(Os(i)) ∩ Ov(i)|

|πv\βs
(Os(i)) ∪ Ov(i)|

This revised score is not very useful however, as it gives an unfair advantage

to definitions that do not produce all of the output attributes of the source.

This is because it is far easier to correctly produce a subset of the output

attributes than to produce all of them. Consider for example the two source

definitions shown below. The two definitions are identical except that the

second returns the output distance value dist2, while the first does not:

source5($zip1, $dist1, zip2, ) :-

source4(zip1, zip2, dist2), ≤(dist2, dist1).

source5($zip1, $dist1, zip2, dist2) :-

source4(zip1, zip2, dist2), ≤(dist2, dist1).

Since the two are identical, the projection over the subset will in this case

return the same number of tuples. This then means that both definitions

would get the same score although the second definition is clearly better

than the first as it produces all of the required outputs.

5.2.2 Penalising Partial Definitions

We need to be able to penalise partial definitions in some way for the

attributes they don’t produce. One way to do this is to first calculate

the size of the domain |D[a]| of each of the missing attributes. In the

example above, the missing attribute is the distance value. Since distance

is a continuous value, calculating the size of its domain is not obvious. We

can approximate the size of its domain by:

|D[distance]| ≈
max − min

accuracy

3The fact that the projection is not distinct is important for preserving the correctness of the calcu-

lation.

58



CHAPTER 5. SCORING DEFINITIONS 5.2. PARTIAL DEFINITIONS

where accuracy is the error-bound on distance values. (This cardinality

calculation may be specific to each semantic type.) Armed with the domain

size, we can penalise the score for the definition by dividing it by the

product of the size of the domains of all output attributes not generated

by the definition. In essence, we are saying that all possible values for these

extra attributes have been “allowed” by this definition. This technique is

similar to a technique for learning without explicit negative examples as

described in [32].

The set of missing output attributes is given by the expression βc
s\v,

thus the penalty for missing attributes is just the size of the domain of

tuples of that scheme, i.e.:

penalty = |D[βc
s\v]|

Using this penalty value we can then calculate a new score, which takes

into account the missing attributes. Simply dividing the projected score

by the penalty would not adhere to the intended meaning of compensating

for the missing attribute values, and thus may skew the results. Instead, I

derive a new score by introducing the concept of typed dom predicates as

follows:

A dom predicate for a semantic data-type t, denoted domt, is a

single arity relation whose extension is set to be the domain of

the datatype, i.e. E [domt] = D[t]. Similarly, a dom predicate for

a scheme A, denoted domA, is a relation over A whose extension

is E [domA] = D[A].

Dom predicates were used in [10] to handle the problem of query reformu-

lation in the presence of sources with binding constraints4. Here we shall

use them to convert a partial definition v into a safe (complete) definition

4The dom predicates described in that work were all single arity and untyped, although the use of

type information would have resulted in a more efficient algorithm

59



5.2. PARTIAL DEFINITIONS CHAPTER 5. SCORING DEFINITIONS

v′. We can do this simply by adding a dom predicate to the end of the

view definition that generates values for the missing attributes. For the

example above, v′ would be:

source5($zip1, $dist1, zip2, x) :-

source4(zip1, zip2, dist2), ≤(dist2, dist1), domdistance(x).

where x is a new variable of type distance. The new view definition v′

is safe, because all the variables in the head of the clause also appear in

the body. In general, we can turn an unsafe view definition v into a safe

definition v′ by appending a dom predicate domβc
s\v(x1, ..., xn), where each

xi is a distinguished variable (from the head of the clause) corresponding

to an output attribute of v′ that wasn’t bound in v. Now we can use this

complete definition to calculate the score as before:

score′′(s, v, I) = score(s, v′, I) =
1

|I|

∑

i∈I

|Os(i) ∩ Ov′(i)|

|Os(i) ∪ Ov′(i)|

which can be rewritten (by expanding the denominator) as follows:

score′′(s, v, I) =
1

|I|

∑

i∈I

|Os(i) ∩ Ov′(i)|

|Os(i)| + |Ov′(i)| − |Os(i) ∩ Ov′(i)|

We can then remove the references to v′ from this equation by considering:

Ov′(i) = Ov(i) × E [domβc
s\v] = Ov(i) ×D[βc

s\v]

Thus the size of the set is given by |Ov′(i)| = |Ov(i)||D[βc
s\v]| and the size

of the intersection can be calculated (by taking the projection over the

output attributes produced by v) as follows:

|Os(i) ∩ Ov′(i)| = |πv\βs
(Os(i) ∩ Ov(i) ×D[βc

s\v])| = |πv\βs
(Os(i)) ∩ Ov(i)|

Substituting these cardinalities into the score function given above, we

arrive at the following equation for the penalised score:

score′′(s, v, I) =
1

|I|

∑

i∈I

|πv\βs
(Os(i)) ∩ Ov(i)|

|Os(i)| + |Ov(i)||D[βc
s\v]| − |πv\βs

(Os(i)) ∩ Ov(i)|

60



CHAPTER 5. SCORING DEFINITIONS 5.3. BINDING CONSTRAINTS

5.3 Binding Constraints

Some of the candidates definitions generated during the search may have

different binding constraints from the target predicate. For instance in the

partial definition shown below, the variable zip2 is an output of the target

source, but an input to source4 :

source5($zip1, $dist1, zip2, ) :- source4($zip1, $zip2, dist1).

From a logical perspective, in order to test this definition correctly, we need

to invoke source4 with every possible value from the domain of zipcodes.

Doing this is not practical for two reasons: Firstly, the system may not

have a complete list of zipcodes at its disposal. Secondly and far more

importantly, invoking source4 with thousands of different zipcodes would

take a very long time and would probably result in the system being blocked

from further use of the service.

5.3.1 Sampling

So instead of invoking the same source thousands of times, we approximate

the score for this definition by sampling from the domain of zipcodes and

invoking the source using the sampled values. We then compensate for this

sampling by scaling (certain components of) the score by the ratio of the

sampled zipcodes to the entire domain. Considering the example above, if

we randomly choose a sample (denoted δ[zipcode]) of say 20 values from

the domain of zipcodes, then the set of tuples returned by the definition

will need to be scaled by a factor of |D[zipcode]|/20.

A more general equation for computing the scaling factor is shown be-

low. Note that the sampling may need to be performed over a set of

attributes (δ[βv\βs] ⊆ D[βv\βs]), where βv\βs denotes all of the input at-

tributes of the view which are outputs of the new source5.

5The executability constraint from section 4.3.4 ensures that βv ⊆ s.

61



5.3. BINDING CONSTRAINTS CHAPTER 5. SCORING DEFINITIONS

scaling =
|D[βv\βs]|

|δ[βv\βs]|

I now calculate the effect of this scaling factor on the overall score as

follows. I denote the set of tuples returned by the definition given the

sampled input as Õv(i). This value when scaled will approximate the set

of tuples that would have been returned had the definition been invoked

with all the possible values for the additional input attributes:

|Ov(i)| ≈ |Õv(i)| ∗ scaling

Assuming the sampling is performed randomly over the domain of possible

values, the intersection between the tuples produced by the source and

the definition should scale in the same way. Thus the only factor not

affected by the scaling in the score defined previously is |Os(i)|. If we

divide throughout by the scaling factor we have a new score function as

follows:

1

|I|

∑

i∈I

|πv\βs
(Os(i)) ∩ Õv(i)|

|Os(i)|/scaling + |Õv(i)||D[βc
s\v]| − |πv\βs

(Os(i)) ∩ Õv(i)|

5.3.2 Distortion

The problem with this approach is that often the sampled set of values is

too small and as a result it does not intersect with the set of values returned

by the source, even though a larger sample would have intersected in some

way. Thus our sampling introduces unfair distortions into the score for

certain definitions causing them to perform poorly.

For example, consider again source5 and assume that for scalability

purposes, the service places a limit on the maximum value for the input

radius dist1. (This makes sense, as otherwise the user could set the input

radius to cover the entire US, and a tuple for every possible zipcode would

62



CHAPTER 5. SCORING DEFINITIONS 5.3. BINDING CONSTRAINTS

need to be returned.) Now consider the sampling performed above. If we

randomly choose only 20 zipcodes from the set of all possible zipcodes, the

chance of the sample containing a zipcode which lies within say a 300 mile

radius of a particular zipcode (in say, the middle of the desert) is very low.

Moreover, even if one pair of zipcodes (out of 20) results in a successful

invocation, this will not be sufficient for learning a good definition for the

service.

So to get around this problem I bias the sample such that, whenever

possible, half of the values are taken from positive examples of the target

(i.e. the set of tuples returned by the new source) and half are taken

from negative examples (those tuples not returned by the source). By

sampling from both positive and negative tuples, we guarantee that the

approximation generated will be as accurate as possible given the limited

sample size used.

I denote the set of positive and negative samples as δ+[βv\βs] and

δ−[βv\βs], and use these values to define scaling factors as shown below.

(The numerator for the positive values is different from before, as these

values have been taken from the output of the new source.)

scaling+ =
|πβv\βs

(πv\βs
(Os(i)))|

|δ+[βv\βs]|

The total scaling is the same value as before, but calculated slightly differ-

ently:

scaling =
|D[βv\βs]|

|δ+[βv\βs]| + |δ−[βv\βs]|

The score can then be approximated accordingly by taking into account

these new scaling factors. Differently from before, the intersection needs

to be scaled using the positive scaling factor:

|πv\βs
(Os(i)) ∩ Ov(i)| ≈ |πv\βs

(Os(i)) ∩ Õv(i)| ∗ scaling+

63



5.4. APPROXIMATING EQUALITY CHAPTER 5. SCORING DEFINITIONS

This new scaling results in a new function for evaluating the quality of a

view definition, denoted score′′′′(s, v, I):

1

|I|

∑

i∈I

|πv\βs
(Os(i)) ∩ Õv(i)| ∗ scaling+

|Os(i)| + |Õv(i)||D[βc
s\v]| ∗ scaling − |πv\βs

(Os(i)) ∩ Õv(i)| ∗ scaling+

5.4 Approximating Equality

Up until this point I have ignored the problem of deciding whether two

tuples produced by the target source and the definition are the same. Since

different sources may serialize data in different ways and at a different level

of accuracy, we must allow for some flexibility in the values that the tuples

contain. For instance, in the example from section 2.1, the distance values

returned by the source and definition did not match exactly, but were

“sufficiently similar” to be accepted as the same value. Defining equality

as exact string matches may make sense for certain types, such as zipcodes,

but it won’t make much sense for other types like distance, temperature or

company name.

5.4.1 Error Bounds

For numeric types like temperature or distance it makes sense to use an

error bound (like ±0.5◦C) or a percentage error (such as ±1%) to decide

if two values can be considered the same. This is because the sensing

equipment (in the case of temperature) or the algorithm used (in the case

of distance) will have some error bound associated with it the values it

produces. I require that an error bound for each numeric type be provided

in the problem specification, although the origin of that bound may be

some automated procedure which learns from examples.

64



CHAPTER 5. SCORING DEFINITIONS 5.4. APPROXIMATING EQUALITY

5.4.2 String Distance Metrics

For certain nominal types like company names, where values like 〈IBM

Corporation〉 and 〈International Business Machines Corp.〉 represent the

same value, simplistic equality checking using exact or substring matches

is not sufficient for deciding whether two values correspond to the same

entity. In this case string edit distances such as the JaroWinkler score do

a better job at distinguishing strings representing the same entity from

those representing different ones. (See [7] for a discussion and comparison

of various string similarity measures.)

A machine learning classifier could be trained on a set of such exam-

ples to learn which of the available string edit distances best distinguishes

values of that type and what threshold to set for accepting a pair as a

match. I require that this pair of similarity metric and threshold (or any

combinations of metrics) be provided in the problem specification.

5.4.3 Specialized Procedures

In other cases, an enumerated types like months of the year might be

associated with a simple equality checking procedure, so that values like

〈January〉, 〈Jan〉 and 〈1〉 can be found equal. The actual equality procedure

used will depend on the semantic type and we assume in this work that

such a procedure is given in the problem definition. We note that the

procedure need not be 100% accurate, but only provide a sufficient level

of accuracy to guide the system toward the correct source description.

Indeed, the equality rules could even be generated offline by training a

machine learning classifier.

Complex types such as date present an even bigger problem when one

considers the range of possible serializations, including values like 〈5/4/2006〉

or 〈May 4, 2006〉 or 〈Thu, 4 May 2006〉 or 〈2006-05-04〉. In such cases spe-

65



5.4. APPROXIMATING EQUALITY CHAPTER 5. SCORING DEFINITIONS

cialized functions are not only required to check equality between values

but also to break the complex types up into their constituent parts (in

this case day, month and year). The latter would form part of the domain

model.

5.4.4 Relation Dependent Equality

In some cases, deciding whether two values of the same type can be consid-

ered equal doesn’t just depend on the Semantic Type, but on the relations

they are used in as well. For instance, consider the two relations shown

below. The first provides the latitude and longitude coordinates of the cen-

troid for a zipcode, while the second returns the coordinates for a particular

address:

centroid(zipcode, latitude, longitude)

geocode(number, street, zipcode, latitude, longitude)

Given the different ways of calculating the centroid (including using the

center of mass or the center of population density) of a zipcode, an error

bound of 500 meters might make sense for equating latitude and longitude

coordinates. For a geocoding service on the other hand an error bound of

50 meters may be more reasonable.

In the general case, such error bounds should be associated with the set

of global relations instead of just the semantic types and could be learnt

accordingly. If the attributes of the relations contain multiple (nominal or

numeric) attributes, then the problem of deciding whether two tuples refer

to the same entity (are the same) is called the record linkage problem [29].

There exists an entire field of research devoted to tackling this problem.

Due to the complexity of the problem and the variety of techniques that

have been developed to handle it, I do not investigate this problem further

in this thesis.

66



CHAPTER 5. SCORING DEFINITIONS 5.4. APPROXIMATING EQUALITY

5.4.5 Non-Logical Equality

Finally, an alternative to handling equality between values of a data-type

in a purely logical manner would be to associate each pair of values with a

similarity score between zero and one (such as that returned by the edit-

distance metrics mentioned previously), and use this value to calculate the

similarity between tuples of values. In this case, one would be able to

define the similarity between two tuples (denoted τ1 and τ2) in such a way

that the similarity increases with the number of similar component values.

For instance the following equation uses a probabilistic interpretation to

calculate the similarity between tuples6 (τ1(a) denotes the value of the

attribute a in the tuple τ1):

similarity(τ1, τ2) = 1 −
∏

a∈A

(1 − similarity(τ1(a), τ2(a)))

A threshold could then be applied to decide whether two tuples do refer to

the same entity. Proceeding in this manner while interesting would cause a

number of complications in the evaluation of view definitions, not the least

of which, how one should calculate joins across relations. Thus the idea

of implementing induction using similarities rather than equality is left to

future work.

6Note that the symbol
∏

denotes the product not the projection, which is denoted π

67



5.4. APPROXIMATING EQUALITY CHAPTER 5. SCORING DEFINITIONS

68



Chapter 6

Optimisations & Extensions

In this chapter I discuss various optimisations and extensions to the algo-

rithm outlined in chapters 4 & 5 that either reduce the size of the candidate

hypothesis space that needs to be searched, or improve the quality of the

definitions produced by the system.

6.1 Logical Optimisations

Evaluating definitions can be very expensive both in terms of time (waiting

for sources on the Internet to return data) and computation (calculating

joins over large tables). Thus the system should spend extra computational

effort when generating candidates to try and prevent as many provably

dispensable definitions from being produced as possible.

6.1.1 Preliminaries

Before discussing the optimisations I need to introduce some notation and

concepts for conjunctive queries. When comparing different queries it is

often useful to see if one of the queries is contained in the other. Formally

the concept of query containment is defined as follows:

A query q1 ∈ LR,A is said to be contained in another query q2 ∈

69



6.1. LOGICAL OPTIMIS. CHAPTER 6. OPTIMISATIONS & EXTENSIONS

LR,A if for any database instance I, the set of tuples returned by

the first query is a subset of those returned by the second, i.e.

∀I EI [q1] ⊆ EI [q2]. We denote containment by q1 ⊑ q2.

I note that when a new literal is added to a conjunctive query (as is done

during the expansion step of the algorithm given in section 4.2.1) the new

query is contained in the previous query. Based on the definition for query

containment one can also decide when two queries are logically equivalent :

Two queries q1, q2 ∈ LR,r are considered logically equivalent if

they are contained in each other, i.e. q1 ⊑ q2 ∧ q2 ⊑ q1. We

denote this equivalence by q1 ≡ q2.

For conjunctive queries such as those learnt in this thesis, testing for query

containment reduces to the problem of finding a containment mapping [6]

from the contained query to the containing query.

Consider two conjunctive queries q1, q2 ∈ L∧
R,A expressed as:

q1(X0) :- a1(X1), ..., al(Xl). and q2(Y0) :- b1(Y1), ..., bm(Ym).

A containment mapping from q2 to q1 is a function γ : vars(q2) →

vars(q1), which maps the variables of q2 onto the variables of q1

in such a way that the distinguished variables match, and for

every literal in the body of q2 there exists a literal in the body of

q1 with the same predicate and the same variable signature, i.e.:1

q1 ⊑ q2 ↔ ∃γ s.t. γ(Y0) = X0 ∧ ∀i∃j s.t. bi = aj ∧ γ(Yi) = Xj

Testing for containment between queries containing interpreted predicates

{≤,<,...} is slightly more complicated. I refer the reader to [3].

6.1.2 Preventing Redundant Definitions

Evaluating a candidate definition may require expensive calls to the set

of available services, so it makes sense to try to prevent definitions that
1For readability I abuse the notation and use γ(Y ) to denote 〈γ(y1), ..., γ(yn)〉, for yi ∈ Y

70



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.1. LOGICAL OPTIMIS.

are logically equivalent, or logically redundant (defined below) from being

generated in the first place. I first consider logically equivalent definitions.

A pair of such definitions are given below:

source($zip, temp, lat, long):-

getConditions($zip, temp), getCentroid($zip, lat, long).

source($zip, temp, lat, long):-

getCentroid($zip, lat, long), getConditions($zip, temp).

The second candidate definition is equivalent to the first because it con-

tains a reordering of the same literals that appear in the first. In order to

test for such equivalent clauses the induction procedure must keep a record

of all candidate definitions generated thus far during the search and check

each new definition against that set to see if it is a reordering of a pre-

viously evaluated clause. In general, logical equivalence must be checked

using the containment mapping technique discussed in the previous sec-

tion. For two clauses of the same length, equivalence can be checked more

simply, however. (A total ordering over predicate and variable names can

be defined such that clauses once converted to the canonical format may

be compared using string equality.) Once a reordering has been discovered

the search procedure can backtrack avoiding the entire search sub-tree, as

that too would contain only equivalent clauses.

Similarly, the search procedure should also prevent logically redundant

clauses from being generated. An example of a logically redundant clause

is the following definition:

source($zip, , lat, long):-

getCentroid($zip, lat, long), getCentroid($zip, lat, ).

This definition is redundant because it contains a literal (the second in-

stance of getCentroid) which is subsumed in another literal (the first in-

stance). More formally, we would say that this clause is redundant because

it is logically equivalent to a shorter definition containing only the first lit-

71



6.1. LOGICAL OPTIMIS. CHAPTER 6. OPTIMISATIONS & EXTENSIONS

eral. In general:

A literal pi(Xi) in the body of a conjunctive query q is said to

be redundant if removing it from the query produces a logically

equivalent query q′ ≡ q. A conjunctive query is said to be redun-

dant if it contains a redundant literal.

Checking for simple forms of redundancy such as this one above (where

one literal is a more constrained version of another) does not require full

containment checks [14]:

A literal pi(Xi) in the body of a query q is said to be trivially

redundant if there exists a different literal pj(Xj) in q such that

the predicates are the same pi = pj and each variable xi,k ∈ Xi is

either the same as the corresponding variable xj,k ∈ Xj or equal

to null2, i.e. ∀k xi,k = xj,k ∨ xi,k = ‘ ’

Thus checking for this simple form of redundancy can easily be performed

during the search for a valid definition, with little computational overhead.

There are also more complicated forms of redundancy which are harder to

detect. In the following example for a source which returns all the hotels

in a given state, the last two literals are redundant:

source($state, hotel):-

getZipcodes($state, zip1), getHotels($zip1, hotel),

getZipcodes($state, zip2), getHotels($zip2, hotel).

Checking for such complicated forms of redundancy involves the systematic

removal of literals from the clause followed by containment checking (which

itself requires searching for a containment mapping) and thus may not be

computationally feasible in the time available for generating definitions.

2Formally, a null (or “don’t care”) variable corresponds to a fresh variable name, i.e. a variable name

that doesn’t appear anywhere else in the query.

72



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.1. LOGICAL OPTIMIS.

Note that in most cases, weighting shorter definitions higher than longer

definitions as proposed in section 4.4.2 will remove logically redundant defi-

nitions after they have been checked because the shorter definition will have

the same raw score. It makes sense, however, to remove such definitions

before they are evaluated, because it takes time and multiple source invoca-

tions to evaluate each definition. Moreover, the search algorithm, unaware

of the redundancy in the definitions produced, would likely continue on

to longer definitions, causing for entire subtrees of the search space to be

repeated.

6.1.3 Inspecting the Unfolding

Some redundancies in the candidate definitions generated during search

can only be discovered (and thereby avoided), by unfolding the candidates

in terms of the individual source definitions. By doing this the system can

check for inconsistencies which prove that a particular candidate definition

will not produce any tuples. For example, consider a source which provides

the current temperature and altitude for airports around the world. A

candidate definition generated for describing such a source might be:

source($airport, temp, altitude) :-

USairports(airport, zip, lat, long), GetConditions(zip, temp),

AustralianTopography(lat, long, altitude).

To the induction system this definition seems perfectly reasonable, despite

the fact that it obviously is not going to provide any tuples. (There are no

US airports in Australia!) The system could understand this if it inspected

the unfolding of that definition:

source($airport, temp, altitude) :-

airports(airport, lat, long),

geocode( , , zip,United States, lat, long),

conditions(zip, temp),

73



6.1. LOGICAL OPTIMIS. CHAPTER 6. OPTIMISATIONS & EXTENSIONS

altitude(lat, long, altitude), geocode( , , ,Australia, lat, long).

The system would see that the country attribute of the geocode domain

relation cannot be both United States and Australia for the same latitude

and longitude coordinates. (Note that reasoning over functional depen-

dencies would be required to come to this conclusion3. Other types of

inconsistencies can involve reasoning over inequalities instead of functional

dependencies.)

By checking the unfolding of the candidate view definitions we can also

handle the problem of different sources providing inverse functionality. For

example, consider two services, one which converts temperature values in

Fahrenheit to values in Celsius, and the other which performs the inverse

operation. The view definitions for these sources are shown below:

ConvertCtoF($temp1, temp2) :- Celsius2Faharenheit(temp1, temp2).

ConvertFtoC($temp1, temp2) :- Celsius2Faharenheit(temp2, temp1).

Now consider a new source which provides temperature values by zipcode.

Provided with the conversion sources above, the induction system might

well generate the following definition for the source:

source($zip, temp) :-

ConvertCtoF(temp, temp1), ConvertFtoC(temp1, temp).

Of course such a definition is not very useful as it is simply converting a

temperature from Celsius into Fahrenheit and then back into Celsius again.

If we inspect the unfolding:

source($zip, temp) :-

Celsius2Faharenheit(temp, temp1),

Celsius2Faharenheit(temp, temp1).

3A functional dependency is a limitation on the set of tuples in the extension of a relation, such that

the values of a subset of the attributes of the relation functionally determine the values of another subset

of the attributes. In this case there is only one value for the country attribute of the geocode relation for

every pair of latitude and longitude values, i.e. the country attribute is functionally determined by those

attributes.

74



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.1. LOGICAL OPTIMIS.

The repetition of literals makes it immediately apparent that the defi-

nition is not useful. The unfolding is logically equivalent to a shorter

unfolding produced by a definition containing only ConvertCtoF and not

ConvertFtoC. In general, when a literal is added to definition, if the un-

folding of that definition is logically equivalent to before, there is no need

to add that literal, as it is providing no new information in the definition.

(It is not constraining the definition in any way.)

6.1.4 Functional Sources

For certain sources, especially those implemented locally in the system

(such as add, multiply, concatenate, etc.), more information will be known

about their functionality than is given by their view definitions, such as

whether or not they are complete with respect to these definitions4. If

available, the induction system should take advantage of this information

to improve the efficiency of the search procedure. In this section I discuss

optimisations for a particular type of source which I call a functional source:

A functional source is a (complete) source, which for any input

tuple returns exactly one output tuple, i.e.:

∀τ∈D[βs] |σβs=τ(E [s])| = 1

Examples of functional sources are add, which sums prices together, con-

catenate, which appends last names to first names, and greatCircle, which

calculates the distance around the globe between two pairs of latitude and

longitude coordinates. Type signatures for these sources are:

add($price, $price, price)

concatenate($name, $name, name)

greatCircle($latitude, $longitude, $latitude, $longitude, distance)

4If a source is complete, it will return all of the tuples which belong to its definition, i.e. E [s] = EI [v]

75



6.1. LOGICAL OPTIMIS. CHAPTER 6. OPTIMISATIONS & EXTENSIONS

If the system knows that a source is functional, it can take advantage of

the fact that the source is complete and will not restrict the values of input

tuples. Whenever a literal referring to a functional source is added to a

candidate definition, the score for that definition will be the same as before

assuming that none of the outputs of the functional source are bound. (This

is because the set of tuples returned by the definition is exactly the same

as before, just with a few new attributes corresponding to the output of

the functional source.) Thus the definition does not need to be evaluated,

but can be added to the queue (of definitions to expand) as is. Doing this

is advantageous if the number of input attributes of a source is large, as

is the case for the greatCircle distance above. The algorithm need not try

different bindings for the input attributes 〈lat1, lon1, lat2, lon2〉 to see if

the operation accepts those values, since it knows a priori that the function

will accept all values for these inputs. Thus the system can immediately

start binding all the outputs (in this case dist) of the functional source.

In ILP systems, the concept of a determinate literal [5], (which is similar

but slightly less restricted when compared to functional sources), is used

to increase the efficiency of search for certain types of relations.

A determinate literal is a literal containing a relation whose ex-

tension is such that for every input tuple there is at most one

output tuple, i.e. ∀τ∈D[βr] |σβr=τ(E [r])| ≤ 1

Since adding such literals to the end of a clause (with all inputs bound)

will not increase the number of tuples covered by the clause, but simply

expand the scheme of those tuples (with the new attributes introduced by

the output of the literal), FOIL introduces all determinate literals whose

inputs can be bound at each expansion step. Doing this in FOIL makes

sense because checking the value of each attribute introduced in this way

is assumed minimal. In our case that checking would most likely involve

76



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.2. CONSTANTS

calls to an external service, meaning that adding all applicable determinate

literals at each expansion step does not make sense.

Finally, I note that two of the example functional sources given above,

the add and greatCircle sources, are symmetric about their input attributes.

In other words the same output value is produced when the input attributes

are inverted. If this information is made available to the system it can be

used to search for and eliminate symmetrically equivalent definitions. The

simplest way to do this is to impose a total ordering over the binding of

input variables of the same type.

6.2 Constants

Many source descriptions involve constant values. Constants are often used

to define the scope of a service. For instance a weather service that only

provides weather reports for zipcodes in California might be defined as

follows:

californiaWeather($zip, $date, temp) :-

USstate(zip,California), forecast(zip, date, temp).

The constants in the definition are used by the Mediator system when it

performs query reformulation to check whether a source is useful for an-

swering a particular query. For example, if the query posed to the mediator

is to find the current temperature for Chicago, it will know that Chicago

is in Illinois not California, and therefore, that there is no need to access

that particular source for information.

Thus constant values in source definitions can be very useful to the con-

sumer of those definitions. Simply introducing constants into the modeling

language would cause the size of the search space to grow prohibitively,

however. This can be seen from a simple example. Consider the following

candidate definition containing a single zipcode constant 90066:

77



6.2. CONSTANTS CHAPTER 6. OPTIMISATIONS & EXTENSIONS

source5($zip1, $dist1, , ) :- source4($zip1, $90066, dist1).

If the system knows of say one thousand different zipcodes, then it will need

to generate one thousand such definitions. Obviously a generate and test

methodology does not make sense when the domain of a semantic type

is so large. Alternatively, one can check for constants while evaluating

simpler definitions. Checking for repeated constants in a table is easy, so

this technique allows us to introduce constants into the definition language

without causing a blow-up in the search space.

If the constant attribute is an output of the target, then it will have

the same value across all tuples produced by the target. If the constant

attribute is an existential variable from the definition (such as the state

variable below) then it will have the same value across all tuples in the

join of the source and definition relations.

source($zip, $date, temp) :-

forecast(zip, date, temp), USstate(zip, state).

For example, when evaluating the definition above, each tuple from the

definition 〈zip, date, temp, state〉, will be compared with a source tuple

〈zip, date, temp〉. If the value for state is California in all overlapping

tuples, then this constant should be added to the definition. In general,

if restricting an existential variable in the query to be a certain constant

improves the score, then that constant should be retained.

Other instances of constant values, such as range limitations over continuous-

valued attributes, can be harder to detect. For example, in the partial

definition below, the input distance is restricted to be less than 300 miles.

source5($zip1, $dist1, , ) :- ≤ (dist1, 300).

Since the interpreted predicate ≤ doesn’t produce a value for its second

attribute, the best value for this constant must be discovered by the in-

duction procedure. The FOIL algorithm handles this case efficiently by

sorting tuples based on the value of the specified attribute (dist1 ), and

78



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.3. POST-PROCESSING

then selecting a threshold so as to maximise the gain [5]. A similar process

could be adopted for inducing source definitions, except that the threshold

would need to be selected so as to maximise the average score over the set

of input tuples.

6.3 Post-Processing

After a definition has been learnt for a new source, it may be possible to

tighten that definition by removing logical redundancies from the unfold-

ing. I discuss two types of tightening that can be performed below. I also

discuss the loosening of some provably overly constrained definitions.

6.3.1 Tightening by Removing Redundancies

We can remove a literal from an unfolding if it logically contains another

literal also present in the unfolding. In other words, if a predicate appears

twice in the unfolding and one appearance is a simpler version (in terms

of the variable bindings) of the other, then it may be removed without

affecting the meaning of the unfolding. For example, consider a definition

containing calls to two sources, one to get the availability of a given hotel,

and the second to check its rating:

source($hotel, address, rating):-

hotelAvailability($hotel, address, price),

ratingCheck($hotel, rating, address).

Now consider the following unfolding of that definition shown below, which

contains two references to the domain relation accommodation:

source($hotel, address, rating):-

accommodation(hotel, , address), available(hotel, today, price),

accommodation(hotel, rating, address).

The first accommodation literal is contained in the second because the

79



6.3. POST-PROCESSING CHAPTER 6. OPTIMISATIONS & EXTENSIONS

variable bindings of the first represent a subset of those of the second.

Thus the first literal may be removed from the definition, because it is not

constraining the set of tuples being returned by the view query in any way.

Thus the definition is simplified to:

source($hotel, address, rating):-

available(hotel, today, price),

accommodation(hotel, rating, address).

In general, the same rules used for checking redundancy in candidate def-

initions that were introduced in section 6.1.2 can be used for removing

redundant literals from the unfolding of the best definition found. More-

over, since this process is once off (and does not need to be performed

during the search), the system could well spend time searching for more

complicated forms of redundancy, by using the containment mapping test

described previously. This is done by simply removing one literal at a time

from the unfolding (denoted u) and checking whether the shorter definition

(u′) is equivalent to the longer one, i.e. u′ ≡ u. The shorter the definition

discovered using this process the more useful it will be to the mediator

system that employs it. The reason for this is that a mediator must refor-

mulate all queries into plans over the source predicates, and the size of the

query reformulation search space is highly dependent on the length of the

source definitions.

6.3.2 Tightening based on Functional Dependencies

Sometimes functional dependencies if known can be used to merge two

literals referring to the same relation, even though neither of the literals is

logically contained in the other. For example, consider a similar source to

the hotel information discussed above. This new source returns the phone

number of the hotel as well as it’s address and rating. Now assume that

the accommodation relation is extended with an additional phone attribute,

80



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.3. POST-PROCESSING

resulting in the following unfolding which defines the source:

source($hotel, address, phone, rating):-

accommodation(hotel, , address, phone),

available(hotel, today, price),

accommodation(hotel, rating, address, ).

This unfolding is no longer redundant as before. The first instance of the

accommodation cannot be removed, because it provides useful information

(the phone number of the hotel), which is not provided by the second

instance of that relation. If however, the system knows that for this relation

the attributes hotel and address functionally determine the value of the

phone number, then the first and third literal can be merged into one5,

generating:

source($hotel, address, rating):-

accommodation(hotel, rating, address, phone),

available(hotel, today, price),.

Thus knowledge of functional dependencies can be useful for tightening the

definitions generated by a source induction system. Moreover, since sources

often provide information only about certain attributes of a relation (such

as the price of an automobile but not it’s fuel efficiency), discovering a single

source which provide all of its features at once would increase the efficiency

of a mediator system. I do not investigate functional dependencies further

in this thesis, but leave them as a future extension for the work herein.

6.3.3 Loosening Definitions

Just as some definitions can be tightened to make them more useful to a

mediator, other definitions may be loosened to achieve a yet more poignant

effect. Consider for instance a source which provides ski resort information,

when queried by region (a.k.a. state):

5The same would have been true if rating had been the functionally determined attribute.

81



6.3. POST-PROCESSING CHAPTER 6. OPTIMISATIONS & EXTENSIONS

source($region, resort, city, country)

Now imagine that only one source is available which is capable of providing

ski resort information. Moreover, that particular source only provides data

for Austria. Its definition is as follows:

austrianSkiResorts($region, resort, city) :-

skiResort(resort, city, region,Austria).

The best definition that could be learnt for the new source, given the other

sources available, would then have the following unfolding6:

source($region, resort, city,Austria) :-

skiResort(resort, city, region,Austria).

This definition is only useful to a mediator for handling queries regarding

ski resorts in Austria. Imagine however, that the source actually provides

information for resorts all over Europe, not just Austria. Then if the sys-

tem compares the tuples returned by the source (which include constants

like Italy, France, Switzerland and Austria) with those returned by the

definition (which only include Austria), it ought come to the conclusion

that the definition should be loosened to the following:

source($region, resort, city, country) :-

skiResort(resort, city, region, country).

I note that this loosening process involves an implicit inductive step, whereby

a single example of the country attribute is used to induce a more general

definition. (In general, one would like to have multiple examples, which

show that for other country values, like Italy, the same skiResort relation

produces the correct values for the other attributes.) The assumption that

source definitions can be modeled without disjunction, discussed in section

3.1.4, makes this inductive step valid even for a single example. The result-

ing definition is far more useful to a mediator, as it can now use the source

6Note that the constant Austria in the head of the clause would need to have been learnt using the

technique described in section 6.2.

82



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.4. HEURISTICS

to access ski resort information for other countries apart from Austria.

6.4 Heuristics

The order in which the search space is enumerated depends in part on

the order in which predicates are selected for addition to the current best

clause. In this section I investigate different options for ordering these pred-

icates with the aim of improving search performance. I adopt two simple

techniques for ordering predicates. One is based on the set of types present

in each possible predicate. The other is based on the types of clauses that

can be generated once that particular predicate has been added. These

techniques are described in the next sections.

6.4.1 Type-based Predicate Ordering

The first heuristic is a simple one that orders the source predicates based on

the number and type of the attributes they provide. For example, consider

the following type signature for a new source:

source($zipcode, temperature, latitude, longitude)

Now consider that there are two sources available for use in generating a

definition. The signatures for those sources are as follows:

weatherForecast($zipcode, temperature, latitude, longitude)

hotelSearch($zipcode, hotel, rating, street, city, state)

Inspecting the signatures, it seems likely that the first source will be more

useful than the second for generating a definition. The type-based predicate

ordering takes advantage of this intuition and orders predicates according

to the number of semantic types they provide which also occur in the

target predicate. More precisely, the heuristic orders predicates according

to the size of the intersection between the multiset7 of attribute types not

7A multiset is a set, which may contain repeated elements, i.e. a set for which each distinct element

83



6.4. HEURISTICS CHAPTER 6. OPTIMISATIONS & EXTENSIONS

yet bound in the head of the clause, and the multiset provided by a new

predicate.

6.4.2 Look-ahead Predicate Ordering

Sometimes the relationship between the input and output attributes of

a newly discovered source are more complicated and the concatenation

of different sources is required to describe this relationship. Moreover,

sometimes the binding constraints of certain sources are such that they

cannot be added to a definition, until other intermediate sources have been

added to produce their input values. In this case, the type-based heuristic

introduced above may not be useful, as it will ignore these intermediate

sources if they do not produce any attributes of the target predicate. For

example, consider the simple source below:

source($airport, temperature)

Assume that the following sources are available:

inboundFlights($airport, airline, flightNumber)

airportLookup($airport, street, zipcode)

currentTemp($zipcode, temperature)

Looking at the sources, it seems obvious that the first will likely not be

useful for creating a definition, while a combination of the second and third

may produce the desired output value. Because of the binding constraint

on the zipcode attribute of the third source, this source cannot be added to

a definition until the second source, which produces such values, has been

added. Thus we would like to have a heuristic which gives preference to the

second source (over the first) because it is able to produce useful output.

The look-ahead heuristic does this by searching forward in the space of

plausible definitions, to see which predicate, if added to the definition, will

bring the definition closer to producing all of the attributes present in the

is associated with a count from 1 to infinity. The intersection of two multisets is itself a multiset.

84



CHAPTER 6. OPTIMISATIONS & EXTENSIONS 6.4. HEURISTICS

head of the clause.

85



6.4. HEURISTICS CHAPTER 6. OPTIMISATIONS & EXTENSIONS

86



Chapter 7

Implementation Issues

In this chapter I discuss a number of issues that arose during implemen-

tation of the system, including a number of optimisations that need to

be performed in order for the system to be able to learn definitions for

data sources which are both real (as apposed to synthetic) and live (the

induction process works online).

7.1 Generating Inputs

The first step in the source induction algorithm is to generate a set of tuples

which will represent the target relation during the induction process. In

other words, the system must try to invoke the new source to gather some

example data. Doing this without biasing the induction process is easier

said than done.

7.1.1 Selecting Constants

The simplest approach to generating input values is to select constants at

random from the set of examples given in the problem specification. The

problem with this approach is that in some cases the new source will not

produce any output for the selected inputs. Instead the system may need

87



7.1. GENERATING INPUTS CHAPTER 7. IMPLEMENTATION ISSUES

to select values according to some distribution over the domain of values

in order for the source to invoke correctly. For example, consider a source

providing posts of used cars for sale in a certain area. The source takes

the make of the car as input, and returns car details.

usedCars($make, model, year, price, phone)

While there are over a hundred different car manufacturers in the world,

only a few of them produce the bulk of the cars being sold. Thus invoking

the source with values like Ferrari, Lotus and Aston Martin will be less

likely to return any tuples, when compared with more common brands such

as Ford and Toyota. That is, unless the source is only providing data for

sports cars of course! Thus if a distribution over possible values is available,

the system could try first the more common ones, or more generally, it could

choose values from that set according to the distribution.

In this particular example it might not be too difficult to query the

source with a complete set of car manufacturers until one of the invocations

returns some data. In general, the set of examples may be very large (such

as the over 40000 zipcodes in the US) and the number of “interesting”

values in that set (the ones likely to return results) may be very small, in

which case taking advantage of prior knowledge as to the distribution of

possible values makes sense. It should be noted also that the system as

it runs generates a lot of output data from the different sources it knows

about. These examples can be recorded and in the case of nominal values

such as car manufacturer, a distribution of possible values can be generated

over time.

7.1.2 Assembling Tuples

The problem of generating viable input for a new source becomes yet more

difficult if the input required is not a single value but a tuple of values. In

this case the system should first try to invoke the source with random com-

88



CHAPTER 7. IMPLEMENTATION ISSUES 7.2. DEALING WITH SOURCES

binations of input values from the examples of each type. Invoking some

sources (such as source5 ) is easy because there is no explicit restriction on

the combination of input values:

source5($zip, $distance, zip, distance)

In other cases, such as a geocoding service shown below, the combination

of possible input values is highly restricted.

USGeocoder($number, $street, $zipcode, latitude, longitude)

Randomly selecting input values independently of one another is unlikely

to result in any successful invocations. (In order for the invocation to

succeed, the randomly generated tuple must correspond to an address that

actually exists.) In such cases, after failing to invoke the source a number

of times, the system looks for and tries to invoke other known sources (such

as the hotel lookup service shown below), which produce tuples containing

the required input.

HotelSearch($city, hotel, number, street, zipcode)

In general, this process of invoking sources to generate input for other

sources can be chained until a set of viable inputs can be found.

7.2 Dealing with Sources

7.2.1 Caching

In order to minimise source accesses which can be very expensive in terms

of both time and bandwidth, all requests to the individual sources are

cached in a local relational database (for scaling reasons, one cannot keep

all tuples in main memory). This implementation means that there is an

implicit assumption in my work that the output produced by the services

is constant for the duration of the induction process. This could become a

problem if the service being modeled provides (near) realtime data with an

update frequency of less than the time it takes to induce a definition. For

89



7.2. DEALING WITH SOURCES CHAPTER 7. IMPLEMENTATION ISSUES

a weather prediction service, updated hourly, this may not present much

of a problem, as the difference between predicted temperatures may vary

only slightly from one update to the next. For a realtime flight status

service providing the coordinates of a given aircraft every five minutes, the

caching may be problematic as the location of the plane will vary greatly

if it takes say 1 hour to induce the definition. In theory one could test

for such variation systematically by periodically invoking the same source

with a previously successful input tuple to see if the output has changed,

and update the caching policy accordingly.

Despite the fact that the system caches all service accesses, it may still

in some cases end up calling certain sources a very large (or even exponen-

tial) number of times. The large number of source accesses results from

the need to often sample values from the domains of certain attributes.

Sometimes, randomly selecting examples from the entire domain of an at-

tribute, doesn’t make much sense given the fact that prior source accesses

have been cached and can be reused instead. Randomly selecting tuples

from the cache rather than the entire domain of possible values may in-

troduce some bias into the induction process, but has the advantage of

drastically reducing the number of source accesses required to learn a def-

inition. In order to minimise the distortion introduced, the cached values

are not used until the table (representing the tuples returned by a given

source) grows to be larger than some threshold. After that, values are

selected from the cache whenever possible to minimise source accesses and

thereby also the time required to induce a definition.

7.2.2 Source Idiosyncrasies

Some sources, such as the REST (Representational State Transfer) ser-

vices provided by Yahoo, perform a process called rate limiting to ensure

scalability of their services. Rate limiting involves setting a limit on the

90



CHAPTER 7. IMPLEMENTATION ISSUES 7.2. DEALING WITH SOURCES

number of times a service can be accessed within a certain time window.

Thus when more than a maximum number of requests are received from

the same IP-address, the server blocks further access, regardless of the in-

put arguments. A while later (in the case of Yahoo after 24 hours), the

server will remove this block.

From our perspective, recognising when a service is blocking is impor-

tant, otherwise the system may learn an incorrect and overly restrictive

definition for the source. Recognising such blocking is not obvious, how-

ever, as the service may not always return output for all inputs - in some

cases the service may produce an error because one of the inputs lies out-

side of an acceptable range. For instance, consider a service that takes as

input a zipcode and a radius and returns all zipcodes lying within that

radius. Obviously, the set of zipcodes returned will be very large for large

radius, and will be the complete set of all zipcodes in the US if the radius

is large enough. To make the service useful, and prevent abuse, the system

may limit the input radius to be less than a certain maximum value.

This restriction can be described in the datalog and will be learnt by

the system. I.e. when the system tries to invoke the source with a large

radius value, it should not mistakenly think that the system is blocking

access because some access limit has been exceeded.

To try and distinguish between “true failures” where the inputs are such

that service ought not return any tuples, and “false failures”, where some

rate limit has been exceeded, one could try to recognise the error message

returned by the source indicates a source is blocking and when it just means

that the input tuple is no good. Doing so would be difficult however, as

each source may produce a different type of error message, making it very

difficult to recognise it.

The approach I take to recognising that a service is blocking is the

following. The success of all requests to each service is logged, where failure

91



7.3. PROBLEM SPECIFICATION CHAPTER 7. IMPLEMENTATION ISSUES

denotes an empty tuple being returned. When the number of successive

failures exceeds a threshold, the system tries to invoke the source with an

input tuple that had been successful in the past. If the service returns

no tuples for this input, then the source must have changed state, and is

probably blocking access. If the service returns the desired output on the

other hand, the threshold for successive failure is increased.

7.3 Problem Specification

In this section I discuss the specification language used for describing prob-

lems in the system. An example problem specification is given in Appendix

B.1.

7.3.1 Semantic Types, Relations & Comparison Predicates

The syntax used for defining semantic types in the system is as follows:

type name [primitive type] {example table; equality metric}

This syntax is best described using examples. Two examples of semantic

type definitions are given below:

type hotel [varchar(100)] {examples.hotel.val; JaroWinkler > 0.9}

type latitude [decimal(20)] {numeric : −90.0, +90.0; 0.02}

For the hotel type, example values can be found in a table called exam-

ples.hotel, and the JaroWinkler score with a threshold of 0.9 will be used

for deciding whether two instances are the same or not. The latitude type,

meanwhile, takes value from the range [−90.0, 90.0] and a tolerance of

±0.02 will be used to decide if two latitude values are equal or not.

Relations (and interpreted predicates) are defined by statements of the

following form:

relation name(semantic type∗)

92



CHAPTER 7. IMPLEMENTATION ISSUES 7.3. PROBLEM SPECIFICATION

Examples of the centroid relation and the interpreted predicate less-than

are shown below:

relation centroid(zipcode, latitude, longitude)

comparison < ($latitude, $latitude)

Note that the set of possible interpreted predicates must be defined for each

type and will likely only compare values of that type. (The comparison

zipcode < latitude wouldn’t make much sense.)

7.3.2 Sources, Functions & Target Predicates

Similarly, sources and functions are defined using the syntax below.

source name(variable∗) :- relation(variable∗)∗ {access parameters}

The access parameters tell the system how to invoke the source, such as

where to find the service (i.e. its URL), how to format the input (e.g. via

URL encoding) and how to parse the output. For functions (sources which

are known to produce exactly one output tuple for every possible input

tuple), the same syntax is used except that the source keyword is replaced

by function. For target predicates (a.k.a. the source for which a definition

needs to be learnt), the target keyword is used, and semantic types replace

variable names in the head of the clause, i.e.:

target name(semantic type∗) {access parameters}

93



7.3. PROBLEM SPECIFICATION CHAPTER 7. IMPLEMENTATION ISSUES

94



Chapter 8

Related Work

In this chapter I describe how the work in this thesis relates to other work

which has been performed by the research community. Related research

areas include service classification and discovery, multi-relational schema

mapping, schema matching with complex types and Semantic Web service

description languages. The work has been performed by researchers from

three different communities, namely machine learning, databases and the

Semantic Web, and the work has been heavily influenced by the perspec-

tives taken in those communities. I will discuss the three bodies of work

below, but first I describe some earlier work which doesn’t quite fit into

any of the three categories.

8.1 An Early Approach

The only work directly concerned with the problem of learning models

for describing operations available on the Internet was performed in 1995

(pre-XML!) by the authors of [20], who defined the category translation

problem. This problem consisted of an incomplete internal world model

and an external information source with the goal being to characterize the

information source in terms of the world model.

The world model consisted of a set of objects O, where each object

95



8.1. AN EARLY APPROACH CHAPTER 8. RELATED WORK

o ∈ O belonged to a certain category (e.g. people) and was associated with

a set of attributes 〈a1(o), ..., an(o)〉, made up of strings and other objects.

A simple relational interpretation of this world model would consider each

category to be a relation, and each object to be a tuple. The information

source meanwhile, was an operation that took in a single value as input

and returned a single tuple as output.

Thus the category translation problem can be viewed as a simplification

on the source definition induction problem, (or conversely, the latter can

be seen as a generalisation on the former). Using the notation introduced

in section 2.3.1, we can state this more formally as follows:

• The extensions of the global relations are all explicit. This is like

saying there is one source per global relation, and that source doesn’t

have any binding constraints, i.e. R = S.

• The known sources are static. In other words, the information pro-

vided by the sources does not change over time, although it may not

be complete.

• The new source, for which a definition is to be learnt, is restricted to

taking a single value as input and returning a single tuple as output,

i.e. ∀τ∈D[βs∗ ] |σβs∗=τ(E [s∗])| ≤ 1

In order to find solutions to instances of the category translation prob-

lem, the authors employed a variant of relational pathfinding [26], which

is an extension on the FOIL algorithm, to learn models of the external

source. The technique described in this thesis for solving instances of the

source induction problem is similar in that it too is based on a FOIL-like

inductive search algorithm.

96



CHAPTER 8. RELATED WORK 8.2. MACHINE LEARNING APPROACHES

8.2 Machine Learning Approaches

Since the advent of services on the Internet, researchers have been investi-

gating ways to model them automatically. Primarily, interest has centered

on using machine learning techniques to classify the input and output types

of the service, or indeed the service itself, so as to facilitate discovery of

relevant services.

8.2.1 Classifying Service Inputs and Outputs

The problem of classifying input and output attributes of a service into dif-

ferent semantic types based on metadata in interface descriptions (WSDL

files) was first posed by the authors of [11]. The notion of semantic types

(such as zipcode) as apposed to syntactic types (like integer) that they

introduced, went some way toward defining the functionality that a source

provides. As mentioned in the section 1.3.2, the classification technique

used in that work was a combination of Naive Bayes and Support Vec-

tor Machines. Recently, other researchers [12] proposed the use of logistic

regression for assigning semantic types to input parameters based on meta-

data, and a pattern language for assigning semantic types to the output

parameters based on the data the source produces.

This work on classifying input and output attributes of a service to

semantic types forms a prerequisite for the work in this thesis. For the

purposes of this thesis, I have assumed that this problem has been solved.

8.2.2 Classifying Service Operations

In addition to classifying the input/output attributes of services, the au-

thors of [11] investigated the idea of classifying the services themselves into

different service types. More precisely, the authors used the same classifica-

tion techniques to assign service interfaces (in WSDL) to different semantic

97



8.2. MACHINE LEARNING APPROACHES CHAPTER 8. RELATED WORK

domains, such as weather and flights, and the operations that each inter-

face provides to different classes of operation, such as weatherForecast and

flightStatus. As discussed in section 3.1.1, the resulting source description

language is limited to select-project queries, which are not sufficiently ex-

pressive to describe many of the sources available on the Internet. Accord-

ing to that approach, every possible type of operation must be associated

with a particular operation type (e.g. weatherForecast). Thus operations

that provide overlapping (non-identical) functionality would need to have

different types as would operations which provide composed functionality

(such as say an operation that provides weather and flight data). The need

to have a complete set of operation types is a major limitation of that ap-

proach, not shared by the work described in this thesis, which relies on a

more expressive language for describing service operations.

8.2.3 Unsupervised Clustering of Services

One way to eliminate the need for a predefined set of operation types, is to

use unsupervised clustering techniques to generate the (operation) classes

automatically from examples (of WSDL documents). This idea was first

proposed by the writers of [9] in a system called Woogle. Their system

clustered service interfaces together using a semantic similarity score. It

then took advantage of the clusters produced to improve keyword-based

search for web services. The semantic similarity metric used in their exper-

iments was based on the co-occurrence of keywords in different interface

definitions.

An advantage of this unsupervised approach is that no labeled training

data is required, which can be time-consuming and difficult to generate.

Such clustering approaches, however, while useful for the discovery of rel-

evant services, suffer the same limitations as the previous approach when

it comes to expressiveness.

98



CHAPTER 8. RELATED WORK 8.3. DATABASE APPROACHES

8.3 Database Approaches

The database community have long been interested in the problem of inte-

grating data from disparate sources. Specifically, in the area of data ware-

housing [28], researchers are interested in resolving semantic heterogeneity

which exists between different databases so that the data they contain can

be combined into a single data warehouse.

8.3.1 Multi-Relational Schema Mapping

A somewhat similar problem is the so-called schema mapping problem.

(This should not to be confused with the schema matching problem, which

generally involves discovering a one-to-one correspondence between the at-

tributes of two relational tables or the nodes of two tree-structured doc-

uments.) The schema mapping problem is the problem of determining a

mapping between the relations contained in a source schema and a par-

ticular relation in a target schema. A mapping defines a transformation

which can be used to populate the target relation with data from the source

schema. Mappings may be arbitrarily complex procedures, but in general

they will be declarative queries in SQL or Datalog.

The schema integration system CLIO [30] helps users build SQL queries

that map data from a source to a target schema. In CLIO, foreign keys and

instance data are used to generate integration rules semi-automatically.

Unfortunately, since CLIO relies heavily on user involvement it doesn’t

make sense to compare it directly with the automated system developed

in this thesis.

Similarly to the category translation problem, the schema mapping

problem can be viewed as a simplification on the source definition induc-

tion problem, where the source schema represents the global relations and

the target relation is the newly discovered source (for which a definition

99



8.3. DATABASE APPROACHES CHAPTER 8. RELATED WORK

must be learnt). The schema mapping problem is simpler because the data

in the source and target schema (the extensions for the global relations and

the new source) are all explicitly available.

8.3.2 Schema Matching with Complex Types

Another problem which is closely related to the work performed in this

thesis is the problem of discovering complex (many-to-one) mappings be-

tween two relational tables or XML schemas. This is sometimes referred to

as schema matching with complex types, and is far more complicated than

the basic schema matching problem for two reasons:

• The space of possible correspondences between the relations is no

longer the cross product of the source and target relation, but the

superset of the source relation times the target relation.

• Many-to-one mappings require a mapping function, which can be sim-

ple like concatenate(x,y,z), or an arbitrarily complex formula such as

z = x2 + y.

The iMAP system [8] tries to learn such many-to-one mappings between

the concepts of a set of source relations and a target relation. It uses a set

of special purpose searchers to learn different types of mappings (such as

mathematical expressions, unit conversions and time/date manipulations).

It then uses a meta-heuristic to control the search being performed by the

different special purpose searchers.

If one views both the source schema and the functions available for

use in the mappings (such as concatenate(x,y,z), add(x,y,z), etc.) as the

set of known sources in the source definition induction problem, then the

complex schema matching and source induction problems are somewhat

similar. The main difference between the problems are:

100



CHAPTER 8. RELATED WORK 8.4. SEMANTIC WEB APPROACH

• The data associated with the source schema is explicit (and static)

in the complex schema matching problem, while it is hidden (and

dynamic) in the source induction problem. (In the source induction

problem in order to access the information provided by a source or

the target, the system must invoke it by providing it with reasonable

input values.)

• In general, the set of known sources in a source induction problem

will be much larger (and the data they provide may be less consis-

tent), than the set of mapping functions (and relations from the source

schema) of a complex schema matching problem.

In this thesis I develop a general framework for handling the source induc-

tion problem. Since iMAP provides functionality which is similar to that

provided by my system, I perform a simple empirical comparison of the

systems in section 9.3.1.

8.4 Semantic Web Approach

The stated goal of the Semantic Web is to enable machine understanding

of web resources. This is done by annotating those resources with se-

mantically meaningful meta-data. According to that definition, the work

performed in this thesis is very much in line with the Semantic Web, in so

far as I am attempting to discover semantically meaningful definitions for

online information sources.

8.4.1 Semantic Web Services

De facto standards for annotating services with semantic markup have

been around for a number of years [1]. These annotation standards provide

service owners with a metadata language for adding declarative statements

101



8.4. SEMANTIC WEB APPROACH CHAPTER 8. RELATED WORK

to service interface descriptions in an attempt to describe the semantics of

each service in terms of the functionality (e.g. a book purchase operation)

or data (a weather forecast) that it provides. Work on these languages is

related to this thesis from two perspectives:

• This work can be viewed as an alternative approach to gaining knowl-

edge as to the semantics of a newly discovered source (providing that

source already has semantic meta-data associated with it).

• Semantic web service annotation languages can be seen as a target

language for the semantic descriptions learnt in this thesis and thus

should be compared to the Datalog representation used herein.

In this thesis I am interested in making use of the vast sources of in-

formation for which semantic markup is currently unavailable. Indeed the

work in this thesis complements that of the Semantic Web community

by providing a way of automatically annotating sources with semantic in-

formation; thereby relieving service providers of the burden of manually

annotating their services, a job which they appear unwilling to do.

Once learnt, Datalog source definitions can be converted to Description

Logic based representations such as is used in OWL-S [16]. The reason for

employing a Datalog representation (over a Description Logic one) in this

thesis is that most mediator-based information integration systems rely

on Datalog as a representation. Some researchers in the Semantic Web

community have recently even proposed semantic markup languages based

on Datalog [4].

Obviously, whenever available semantic markup should be taken ad-

vantage of by the consumer of the service. Having said that, heterogeneity

may still exist between the ontology or schema used by the service provider

while annotating their services and that used by the client, in which case

the learning capabilities described in this thesis may still be required to

102



CHAPTER 8. RELATED WORK 8.4. SEMANTIC WEB APPROACH

reconcile those differences.

103



8.4. SEMANTIC WEB APPROACH CHAPTER 8. RELATED WORK

104



Chapter 9

Evaluation

In this chapter I describe the evaluation performed on the source induction

algorithm detailed in this thesis. In the first section I describe the exper-

imental setup used and briefly discuss the implementation. I then detail

the experiments performed and analyse the results. Finally, I compare the

induction algorithm with a particular complex schema matching system,

demonstrating that it is capable of learning definitions for the sources used

in (experiments with) that system.

9.1 Experimental Setup

9.1.1 Implementation

The source induction algorithm defined in this thesis was implemented in

a system called EIDOS, which stands for Efficiently Inducing Definitions

for Online Sources. EIDOS implements the techniques and optimisations

discussed in chapters 4 through 71. All code for the system was written

in Java and a MySQL database was used for caching the results of source

1Some of the optimisations from chapter 6 were only partially implemented: The implementation

currently does not check for redundancy in the unfolding of each clause, it checks for constants only in

the head of each clause and does not perform any tightening of the definitions produced. The heuristics

discussed in section were turned off (and a random predicate ordering was used) because doing so had

no significant effect on performance for the problems discussed in this chapter.

105



9.1. EXPERIMENTAL SETUP CHAPTER 9. EVALUATION

invocations. The input to EIDOS is a problem specification as described in

section 7.3. The output is a set of conjunctive queries, one for each target

predicate in the problem specification.

9.1.2 Domains and Sources Used

EIDOS was tested on 25 different problems involving real services from

several domains including hotels, financial data, weather and cars. The

target predicates used in the experiments are listed in appendix B.2, along

with with their semantic type signatures. The domain model used was

the same for each problem and included over 70 different semantic types,

ranging from common ones like zipcode to more specific types such as stock

ticker symbols. The data model also contained 36 relations (excluding

interpreted predicates), which were used to model 33 different services.

All of the modeled services are publicly available information sources.

I note here that the decision to use the same set of known sources for

each problem (regardless of the domain) was important in order to make

sure that the tests were realistic. This decision made the problem more

difficult than the standard schema matching/mapping scenario, in which

the source schema is chosen because it provides data that is known a-priori

to be relevant to the output schema.

9.1.3 System Settings

In order to induce definitions for each problem, the source (and each candi-

date definition) was invoked at least 20 times using random inputs. When-

ever possible, the system attempted to generate 10 positive examples of

the source (invocations for which the source returned some tuples) and

10 negative examples (inputs which produced no output). To ensure that

the search terminated, the number of iterations of the algorithm including

106



CHAPTER 9. EVALUATION 9.1. EXPERIMENTAL SETUP

backtracking steps was limited to 30. A search time limit of 20 minutes

was also imposed. The inductive search bias used during the experiments

is given in table 9.1, and a weighting factor (defined in section 4.4.2 ) of

0.9 was used to direct the search toward shorter definitions.

Search Bias

Maximum clause length = 7

Maximum predicate repetition = 2

Maximum variable level = 5

Executable candidates only

No variable repetition within a literal

Table 9.1: Inductive bias used in the experiments

In the experiments, different procedures were used to decide equality be-

tween different values of the same type as described in section 5.4. Some

of the equality procedures (and thresholds) used for different types are

listed in table 9.2. For all types not listed in the table, substring match-

ing (checking if one string contained the other) was used to test equality

between values.

Types Equality Procedure

latitudes, longitudes accuracy bound of ±0.002

distances, speeds, temperatures, prices accuracy bound of ±1%

humidity, pressure, degrees accuracy bound of ±1.0

decimals accuracy bound of ±0.1

companies, hotels, airports JaroWinkler score ≥ 0.85

dates specialised equality procedure

Table 9.2: Equality procedures used in the experiments

The experiments were run on a dual core 3.2 GHz Pentium 4 with 4 GB

of RAM (although memory was not a limiting factor in any of the tests).

The system was running Windows 2003 Server and the Java Runtime En-

vironment 1.5, and using MySQL 5.0 as a database implementation.

107



9.1. EXPERIMENTAL SETUP CHAPTER 9. EVALUATION

9.1.4 Evaluation Criteria

In order to evaluate the induction system one would like to compare for

each problem the definition generated by the system with the ideal defi-

nition for that source (denoted vbest and v∗ respectively). In other words,

we would like to have an evaluation function, which rates the quality of

each definition produced with respect to a hand-written definition for the

source (i.e. quality : vbest × v∗ → [0, 1]). The problem with doing this is

twofold. Firstly, it is not obvious how to define such a similarity function

over conjunctive queries and many different possibilities exist (see [15] for

a particular example). Secondly, working out the best definition by hand,

while taking into account the limitations of the domain model and the fact

that the available sources are noisy, incomplete, possibly less accurate, and

even serialise data in different ways, may be extremely difficult to do, if

even possible.

So in order to evaluate each of the discovered definitions, I instead count

the number of correctly generated attributes in each definition. An at-

tribute is said to be correctly generated, if:

• it is an input, and the definition correctly restricts the domain of

possible values for that attribute, or

• it is an output, and the definition correctly predicts its value for given

input tuples.

Given a definition for correctly generated attributes, one can define ex-

pressions for precision and recall over the attributes contained in a source

definition2.

2Note that we define here precision and recall at the schema level in terms of the attributes involved

in a source definition. They could also be defined at the data level in terms of the tuples being returned

by the source and the definition. Indeed, the Jaccard similarity used to score candidate definitions is a

combination of data-level precision and recall values.

108



CHAPTER 9. EVALUATION 9.2. EXPERIMENTS

I define precision to be the ratio of correctly generated attributes to the

total number of attributes generated by a definition, i.e.:

precision =
# of correctly generated attributes

total # of generated attributes

I define recall to be the ratio of generated attributes to the total number

of attributes that would have been generated by the ideal definition, given

the sources available. (In some cases no sources are available to generate

values for an attribute in which case, that attribute is not included in the

count.)

recall =
# of correctly generated attributes

total # of attributes that should have been generated

9.2 Experiments

The definitions learnt by the system are described in the next sections.

Overall the system performed very well and was able to learn the intended

definition (ignoring missing join variables and superfluous literals) in 19

out of the 25 problems. I discuss the individual problems from the various

domains below.

9.2.1 Geospatial Sources

The first set of problems involved nine geospatial data sources providing a

variety of location based information. The definitions learnt by the system

are listed below. They are reported in terms of the source predicates rather

than the domain relations (i.e. the unfoldings), because the corresponding

definitions are much shorter. This makes it easier to understand how well

the search algorithm is performing. The unfoldings of these definitions are

given in appendix B.3.

1 GetInfoByZip($zip0,cit1,sta2,_,tim4) :-

109



9.2. EXPERIMENTS CHAPTER 9. EVALUATION

GetTimezone(sta2,tim4,_,_), GetCityState(zip0,cit1,sta2).

2 GetInfoByState($sta0,cit1,zip2,_,tim4) :-

GetTimezone(sta0,tim4,_,_), GetCityState(zip2,cit1,sta0).

3 GetDistanceBetweenZipCodes($zip0,$zip1,dis2) :-

GetCentroid(zip0,lat1,lon2), GetCentroid(zip1,lat4,lon5),

GetDistance(lat1,lon2,lat4,lon5,dis10), ConvertKm2Mi(dis10,dis2).

4 GetZipCodesWithin($_,$dis1,_,dis3) :-

<(dis3,dis1).

5 YahooGeocoder($str0,$zip1,cit2,sta3,_,lat5,lon6) :-

USGeocoder(str0,zip1,cit2,sta3,lat5,lon6).

6 GetCenter($zip0,lat1,lon2,cit3,sta4) :-

WeatherConditions(cit3,sta4,_,lat1,lon2,_,_,_,_,_,_,_,_,_,_,_),

GetZipcode(cit3,sta4,zip0).

7 Earthquakes($_,$_,$_,$_,lat4,lon5,_,dec7,_) :-

USGSEarthquakes(dec7,_,lat4,lon5).

8 USGSElevation($lat0,$lon1,dis2) :-

ConvertFt2M(dis2,dis1), Altitude(lat0,lon1,dis1).

9 CountryInfo($cou0,cou1,cit2,_,_,cur5,_,_,_,_) :-

GetCountryName(cou0,cou1), GoCurrency(cur5,cou0,_),

WeatherChannelConditions(cit2,_,cou1,_,_,_,_,_,_,_,_,_,_,_,_,_).

The first two sources provide information about zipcodes, such as the name

of the city, the state and the timezone. They differ in their binding con-

straints, with the first taking a zipcode as input, while the second takes a

state. This means that that the second source returns many output tuples

per input value, thus making it harder to learn a definition for it, despite

the fact that logically the two sources provide the same information. The

definitions learnt for these sources are as good as could be hoped, given the

sources available. (The missing output attribute is a telephone areacode,

which none of the known sources provided.) The third source calculates

the distance in miles between two zipcodes, (it is the same as source4 from

section 2.1). The correct definition was learnt for this source, but for the

next source, which returned zipcodes within a given radius, a reasonable

110



CHAPTER 9. EVALUATION 9.2. EXPERIMENTS

definition could not be learnt within the time limit imposed. Ignoring bind-

ing constraints, the intended definition here was the same as the third, but

with an additional restriction that the output distance be less than the

input distance. Thus it would have been far easier for EIDOS to learn a

definition for the fourth source in terms of the third. Indeed, when the

new definition for the third source was added to the set of known sources,

the system was able to learn the following definition for the fourth:

4’ GetZipCodesWithin($zip0,$dis1,zip2,dis3) :-

GetDistanceBetweenZipCodes(zip0,zip2,dis3), <(dis3,dis1).

The ability for the system to improve its learning ability over time as the

set of known sources increases is a key benefit of the approach.

Source five is a geocoding service3 provided by Yahoo. EIDOS learnt

that the same functionality was provided by a service called USGeocoder.

Source six is a simple service providing the latitude/longitude coordinates

and the city and state for a given zipcode. Interestingly, the system learnt

that the source’s coordinates were better predicted by a weather conditions

service (discussed in section 9.2.3), than by the GetCentroid source from

the third definition.

The seventh source provided earthquake data within a bounding box

which it took as input. In this case, the system discovered that the source

was indeed providing earthquake data4, but didn’t manage to work out

how the input coordinates related to the output. The next source provided

elevation data in feet, which was found to be sufficiently similar to known

altitude data in meters. Finally, the system learnt a definition for a source

providing information about countries such as the currency used, and the

name of the capital city. Since known sources were not available to provide

3Geocoding services map addresses to latitude and longitude coordinates.
4Latitude lat4 and longitude lon5 are the coordinates of the earthquake, while the decimal value dec7

is its magnitude.

111



9.2. EXPERIMENTS CHAPTER 9. EVALUATION

this information, the system ended up learning that weather reports were

available for the capital of each country.

Prob. Candidates # Source Time Normalised Precision Recall

# Generated Invocations (sec.) Score

1 25 5068 85 -1.36 4/4 4/4

2 24 9804 914 -1.08 4/4 4/4

3 888 11136 449 -0.75 3/3 3/3

4 3 11176 25 0.25 1/1 1/4

5 50 13148 324 -0.45 6/6 6/6

6 40 15162 283 -7.61 5/5 5/5

7 11 14877 18 -6.87 3/3 3/9

8 15 177 72 -8.58 3/3 3/3

9 176 28784 559 -5.77 4/4 4/4

Table 9.3: Search details for geospatial problems

Table 9.3 shows some details regarding the search performed to learn

each of the definitions listed above. For each problem, it shows the number

of candidates generated prior to the winning definition, along with the time

taken and number of source invocations required to learn the definition.

(The last two values should be interpreted with caution as they are highly

dependent on the delay in accessing sources, and on the caching of data in

the system.) The scores shown in the fifth column are a normalised version5

of the scoring function used to compare the definitions during search. The

scores can be very small so the logarithm of the values is shown (hence

the negative values). These scores can be interpreted as the confidence the

system has in the definitions produced. The closer the score is to zero, the

better the definition’s ability to produce the same tuples at the source. We

can see that the system was far more confident with the definitions one

through five, than the latter ones. The last two columns give the precision

and recall value for each problem. The average precision for these problems

5Normalisation involved removing the penalty applied for missing outputs.

112



CHAPTER 9. EVALUATION 9.2. EXPERIMENTS

was 100%. (Note that a high precision value is to be expected, given

that the induction algorithm relies on finding matching tuples between the

source and definition.) The average recall for the geospatial problems was

also very high at 84%.

9.2.2 Financial Sources

Two sources were tested that provided financial data. The definitions

generated by EIDOS for these sources are shown below.

10 GetQuote($tic0,pri1,dat2,tim3,pri4,pri5,pri6,pri7,cou8,_,pri10,_,_,

pri13,_,com15) :-

YahooFinance(tic0,pri1,dat2,tim3,pri4,pri5,pri6,pri7,cou8),

GetCompanyName(tic0,com15,_,_), Add(pri5,pri13,pri10),

Add(pri4,pri10,pri1).

11 YahooExchangeRate($_,$cur1,pri2,dat3,_,pri5,pri6) :-

GetCurrentTime(_,_,dat3,_), GoCurrency(cur1,cou5,pri2),

GoCurrency(_,cou5,pri5), Add(pri2,pri5,pri12), Add(pri2,pri6,pri12).

The first financial service provided stock quote information, and the system

learnt that the source returned exactly the same information as a stock

market service provided by Yahoo. It was also able to work out that the

previous day’s close plus today’s change was equal to the current price.

The second source provided the rate of exchange between the currencies

given as input. In this case, the system did not fair as well. It was unable

to learn the intended result, which involved calculating the exchange rate

by taking the ratio of the values for the first and second currency.

Prob. Candidates # Source Time Normalised Precision Recall

# Generated Invocations (sec.) Score

10 2844 16671 387 -8.13 12/13 12/12

11 367 16749 282 -9.84 1/5 1/4

Table 9.4: Search details for financial problems

113



9.2. EXPERIMENTS CHAPTER 9. EVALUATION

Details regarding the search spaces for the two problems are shown in

table 9.4. The average precision and recall for these problems were much

lower at 56% and 63% respectively, due to the fact that the system was

unable to learn the intended definition in the second problem.

9.2.3 Weather Sources

On the Internet, there are two types of weather information services, those

that provide forecasts for coming days, and those that provide details of

the current weather conditions. In the experiments, a pair of such services

provided by Weather.com, were used to learn definitions for a number of

other weather sources. The first set of definitions, which correspond to

sources that provide current weather conditions, are listed below.

12 NOAAWeather($ica0,air1,_,_,sky4,tem5,hum6,dir7,spe8,_,pre10,tem11,_,_)

:- GetAirportInfo(ica0,_,air1,cit3,_,_),

WeatherForecast(cit3,_,_,_,_,_,_,_,_,_,_,_,sky4,dir7,_,_),

WeatherConditions(cit3,_,_,_,_,_,_,_,_,tem5,sky4,pre33,_,spe8,hum6,

tem11), ConvertIn2mb(pre33,pre10).

13 WunderGround($sta0,$cit1,tem2,_,_,pre5,pre6,sky7,dir8,spe9,spe10) :-

WeatherConditions(cit1,sta0,_,_,_,_,_,_,dat8,tem9,sky7,pre5,dir8,spe13,

_,tem2), WeatherForecast(cit1,sta0,_,_,_,_,_,_,tem24,_,_,_,_,_,spe10,_),

ConvertIn2mb(pre5,pre6), <(tem9,tem24), ConvertTime(dat8,_,_,_,_),

<(spe9,spe13).

14 WeatherBugLive($_,cit1,sta2,zip3,tem4,_,_,dir7,_,_) :-

WeatherConditions(cit1,sta2,_,_,_,_,_,_,_,tem4,_,_,dir7,_,_,_),

GetZipcode(cit1,sta2,zip3).

15 WeatherFeed($cit0,$_,tem2,_,sky4,tem5,_,_,pre8,lat9,_,_) :-

WeatherConditions(cit0,_,_,lat9,_,_,_,_,_,_,sky4,pre8,dir12,_,_,tem5),

WeatherForecast(cit0,_,_,_,_,_,_,_,_,tem2,_,_,_,dir12,_,_).

16 WeatherByICAO($ica0,air1,cou2,lat3,lon4,_,dis6,_,sky8,_,_,_,_) :-

Altitude(lat3,lon4,dis6), GetAirportInfo(ica0,_,air1,cit6,_,cou8),

WeatherForecast(cit6,_,cou8,_,_,_,_,_,_,_,_,_,sky8,_,_,_),

GetCountryName(cou2,cou8).

114



CHAPTER 9. EVALUATION 9.2. EXPERIMENTS

17 WeatherByLatLon($_,$_,_,_,_,lat5,lon6,_,dis8,_,_,_,_,_,_) :-

Altitude(lat5,lon6,dis8).

In the first problem the system learnt that source 12 provided current

conditions at airports, by checking the weather report for the cities in

which each airport was located. This particular problem demonstrates

some of the advantages of learning definitions for new sources described in

section 3.2. Once the definition has been learnt, if a mediator receives a

request for the current conditions at an airport, it can generate an answer

that query by executing a single call to the newly modeled source, (without

needing to find a nearby city).

The system performed well on the next three sources (13 to 15) learning

definitions which cover most of the attributes of each. On the last two

problems, the system did not perform as well. In the case of source 16, the

system spent most of its time learning which attributes of the airport were

being returned (such as its country, coordinates, elevation, etc.). In the

last case, the system was only able to learn that the source was returning

some coordinates along with their elevation. I note here, that different

sources may provide data at different levels of accuracy (in terms of both

precision and timeliness). Thus the fact that the system is unable to learn

a definition for a particular source could simply mean that the data being

returned by that source wasn’t sufficiently accurate for the system to label

it a match.

In addition to current weather feeds, the system was run on two prob-

lems involving weather forecast feeds. It did very well on the first problem,

matching all bar one of the attributes (the country) and finding that the

order of the high and low temperatures was inverted. It did well also for

the second problem, learning a definition for the source that produced most

of the output attributes.

18 YahooWeather($zip0,cit1,sta2,_,lat4,lon5,day6,dat7,tem8,tem9,sky10) :-

115



9.2. EXPERIMENTS CHAPTER 9. EVALUATION

WeatherForecast(cit1,sta2,_,lat4,lon5,_,day6,dat7,tem9,tem8,_,_,sky10,

_,_,_), GetCityState(zip0,cit1,sta2).

19 WeatherBugForecast($_,cit1,sta2,_,day4,sky5,tem6,_) :-

WeatherForecast(cit1,sta2,_,_,_,tim5,day4,_,tem6,_,tim10,_,sky5,_,_,_),

WeatherConditions(cit1,_,_,_,_,tim10,_,tim5,_,_,_,_,_,_,_,_).

Prob. Candidates # Source Time Normalised Precision Recall

# Generated Invocations (sec.) Score

12 277 579 233 -2.92 8/9 8/11

13 1989 426 605 -6.35 6/9 6/10

14 98 2499 930 -13.37 5/5 5/8

15 199 754 292 -6.48 5/6 5/10

16 102 946 484 -29.69 6/7 6/9

17 45 7669 1026 -26.71 3/3 3/13

18 119 13876 759 -5.74 10/10 10/11

19 116 14857 1217 -12.56 5/5 5/7

Table 9.5: Search details for weather problems

Details regarding the number of candidates generated in order to learn

definitions for these weather sources are given in table 9.5. The average

precision of the definitions produced was 91%, while the average recall was

62%.

9.2.4 Hotel Sources

Definitions were also learnt for sources providing hotel information from

the Yahoo, Google and the US Fire Administration. These definitions are

shown below.

20 USFireHotelsByCity($cit0,_,_,sta3,zip4,cou5,_) :-

HotelsByZip(zip4,_,_,cit0,sta3,cou5).

21 USFireHotelsByZip($zip0,_,_,cit3,sta4,cou5,_) :-

HotelsByZip(zip0,_,_,cit3,sta4,cou5).

22 YahooHotel($zip0,$_,hot2,str3,cit4,sta5,_,_,_,_,_) :-

116



CHAPTER 9. EVALUATION 9.2. EXPERIMENTS

HotelsByZip(zip0,hot2,str3,cit4,sta5,_).

23 GoogleBaseHotels($zip0,_,cit2,sta3,_,_,lat6,lon7,_) :-

WeatherConditions(cit2,sta3,_,lat6,lon7,_,_,_,_,_,_,_,_,_,_,_),

GetZipcode(cit2,sta3,zip0).

The system performed well on three out of the four problems. It was unable

in the time allocated to discover a definition for the hotel attributes (name,

street, latitude and longitude) returned by the Google web service. The

average precision for these problems was 90% while the average recall was

60%.

Prob. Candidates # Source Time Normalised Precision Recall

# Generated Invocations (sec.) Score

20 16 448 48 -4.00 4/4 4/6

21 16 1894 5 -2.56 4/4 4/6

22 43 3137 282 -2.81 5/5 5/9

23 95 4931 1161 -7.50 3/5 3/6

Table 9.6: Search details for hotel problems

9.2.5 Cars and Traffic Sources

The last problems on which the system was tested were a pair of traffic

related web services. The first service, provided by Yahoo, reported live

traffic data (such as accidents and construction work) within a given radius

of the input zipcode. No known sources were available which provided such

information, so not surprisingly, the system was unable to learn a definition

for the traffic related attributes of that source6.

24 YahooTraffic($zip0,$_,_,lat3,lon4,_,_,_) :-

GetCentroid(zip0,_,lon4), CountryCode(lat3,lon4,_).

6The semantic types found in the target signature (such as distance, latitude and longitude) were

present amongst the known sources, but the desired relationships between them (e.g. that an accident

had occurred at those coordinates), were not available.

117



9.2. EXPERIMENTS CHAPTER 9. EVALUATION

25 YahooAutos($zip0,$mak1,dat2,yea3,mod4,_,_,pri7,_) :-

GoogleBaseCars(zip0,mak1,_,mod4,pri7,_,_,yea3),

ConvertTime(dat2,_,dat10,_,_), GetCurrentTime(_,_,dat10,_).

The second problem involved a classified used-car listing from Yahoo that

took a zipcode and car manufacturer as input. EIDOS was able to learn

a good definition for that source, taking advantage of the fact that some

of the same cars (defined by their make, model, year and price) were also

listed for sale on Google’s classified car listing.

Prob. Candidates # Source Time Normalised Precision Recall

# Generated Invocations (sec.) Score

24 81 29974 1065 -11.21 0/3 0/4

25 55 405 815 -5.29 6/6 6/6

Table 9.7: Search details for car and traffic problems

Since the system failed on the first problem (it found some incorrect/non-

general relationships between different attributes), but succeeded on the

second problem to find the best possible definition, the average precision

and average recall for these problems were both 50%.

9.2.6 Overall Results

Over the 25 problems tested, EIDOS managed to generate definitions with

high accuracy (average precision was 88%) and a large number of attributes

(average recall was 69%). These results are very promising considering that

all problems involved real data sources. Comparing the different domains,

one can see that the system performed better on problems with fewer input

and output attributes (such as the geospatial problems), which was to be

expected given that the resulting search space is much smaller.

118



CHAPTER 9. EVALUATION 9.3. EMPIRICAL COMPARISON

9.3 Empirical Comparison

Having demonstrated the effectiveness of EIDOS when it comes to learning

definitions for real information services, I now show that the system is

capable of handling the same problems as a well-known complex schema

matching system.

9.3.1 iMAP: Schema Matching with Complex Types

The iMAP system [8] (discussed in section 8.3.2) is a schema matcher

that can learn complex (many-to-one) mappings between the concepts of

a source and a target schema. It uses a set of special purpose searchers to

learn different types of mappings. The EIDOS system on the other hand

uses a generic search algorithm to solve a comparable problem. Since the

two systems can be made to perform a similar task, I show that EIDOS is

capable of running on one of the problem domains used to test iMAP in

[8]7. I chose the particular domain of online cricket databases because it

is the only one used in the evaluation of the iMAP system that involved

aligning data from two independent data sources8.

9.3.2 Experiments

As mentioned above, player statistics from two online cricket databases

(cricketbase.com and cricinfo.com) were used in the experiments. Since

neither of the sources provided programmatic access to their data, the

statistics data was extracted from HTML pages and inserted into a rela-

tional database. The extraction process involved flattening the data into a

7The implementation of iMAP is not publicly available, preventing a more direct empirical comparison.
8All other problems described in that work involved generating synthetic problems by splitting a

single database into two different schemas (the source and the target). Synthetic examples would not be

interesting for EIDOS, because all constants would match, overlap is guaranteed, and few joins (if any)

would be required to map the data.

119



9.3. EMPIRICAL COMPARISON CHAPTER 9. EVALUATION

relational model and a small amount of data cleaning9. The data from the

two websites was then used to create three data sources representing each

website. The three sources representing cricinfo.com were then used to

learn definitions for the three sources representing cricketbase.com. Other

known sources were available to the system, including functionality for

splitting apart comma-separated lists, adding and multiplying numbers,

and so on. The definitions learnt to describe the cricketbase services are

shown below:

1 CricbasePlayers($cou0,nam1,_,dat3,_,unk5,unk6) :-

CricinfoPlayer(nam1,dat3,_,_,_,lis5,nam6,unk5,unk6),

contains(lis5,cou0),

CricinfoTest(nam6,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_).

2 CricbaseTest($_,nam1,cou2,_,_,_,cou6,cou7,dec8,cou9,_,_,_,cou13,cou14,

dec15,_,dec17,cou18,_,_) :-

CricinfoTest(nam1,_,_,cou2,cou6,cou18,cou7,_,dec8,dec15,_,cou9,_,_,_,

cou14,cou13,_,_,_,_,dec17).

3 CricbaseODI($_,nam1,cou2,_,_,_,cou6,cou7,dec8,cou9,cou10,_,cou12,cou13,

_,dec15,dec16,dec17,cou18,cou19,_) :-

CricinfoODI(nam1,_,_,cou2,cou6,_,cou10,_,dec8,_,cou7,cou18,cou19,cou9,

_,_,cou13,cou12,dec15,_,dec16,dec17).

The first source provided player profiles by country. The second and

third sources provided detailed player statistics for two different types of

cricket (Test and One-Day-International respectively). The system easily

found the best definition for the first source. The definition involved look-

ing for the player’s country in a list of teams that he played for. EIDOS

did not perform quite as well on the second and third problems. There

were two reasons for this. Firstly, the arity of these sources was much

higher with many instances of the same semantic type (count and deci-

9The relational tables used in the iMAP experiments were not available, meaning that the problem

formulation is similar but not necessarily exactly the same.

120



CHAPTER 9. EVALUATION 9.3. EMPIRICAL COMPARISON

mal), making the space of possible alignments much larger10. Secondly, a

high frequency of null values (the constant “N/A”) in the data for some

of the fields confused the algorithm, and made it harder for it to discover

overlapping tuples with all of the desired attributes.

Prob. Candidates # Source Time Normalised Precision Recall

# Generated Invocations (sec.) Score

1 199 3762 432 -3.95 5/5 5/5

2 1162 1517 1319 -4.70 8/11 8/16

3 3114 4299 2127 -6.28 8/14 8/16

Table 9.8: Search details for cricket problems

Details of the search performed to learn the definitions are given in table

9.8. The average precision for these problems was 77% while the average

recall was lower at 66%. These values are comparable to the quality of the

matchings reported in [8]11.

These results are very good, considering that EIDOS searches in the

space of many-to-many correspondences, (trying to define the set of target

attributes contemporaneously), while iMAP searches the spaces of one-

to-one and many-to-one correspondences. Moreover, EIDOS first invokes

the target source to generate representative data (a task not performed by

iMAP) and then performs a generic search for reasonable definitions with-

out relying on specialised search algorithms for different types of attributes

(as is done in iMAP).

10Because of the large search space (and the large tables being generated) a longer timeout of 40

minutes was used in the experiments.
11The actual values for precision and recall in the cricket domain are not quoted, but an accuracy range

of 68-92% for simple matches (one-to-one correspondences between source and target fields) and 50-86%

for complex matches (many-to-one correspondence between source and target) accross the synthetic and

non-synthetic problems is recorded.

121



9.3. EMPIRICAL COMPARISON CHAPTER 9. EVALUATION

122



Chapter 10

Discussion

In this chapter I first summarise the contribution of the work in this thesis.

I then discuss some application areas for the techniques developed. Finally

I discuss areas for further research that would enhance the work described

herein.

10.1 Contribution

In this thesis I have presented a completely automatic approach to learning

definitions for online services. This approach exploits the definition of

sources that have either been given to the system or learned previously.

The resulting framework is a significant advance over prior approaches

that have focused on learning only the inputs and outputs or the class of

a service. I have demonstrated empirically the viability of the approach.

10.1.1 Key Benefits

The key contribution of this thesis is a procedure for learning semantic

definitions for online information services, which is:

• Automated : Definitions are learnt in a completely automated manner.

123



10.2. APPLICATION SCENARIOS CHAPTER 10. DISCUSSION

• Expressive: The query language for defining sources is that of con-

junctive queries.

• Efficient : The procedure accesses sources only as required in order to

learn reasonable definitions.

• Robust : The procedure is able to learn definitions in the presence of

noisy and incomplete data.

• Evolving : The procedure’s ability to learn definitions will improve over

time as each new definition is learnt and added to the set of known

sources.

10.2 Application Scenarios

There are a number of different application scenarios for a system that is

capable of learning definitions for online sources. They generally involve

providing semantic definitions to data integration systems, which then ex-

ploit and integrate the available sources. I discuss three different scenarios

below.

10.2.1 Mining the Web

The most obvious application for this work would be a system which crawls

the web, searching for information sources. Upon finding a new source,

the system would use a classifier to assign semantic types to the source,

followed by the inductive learner to generate a definition for the source.

The definition learnt could then be used to annotate the source for the

Semantic Web, or simply be given to a mediator for answering queries. In

other words, the flow of information would be the following:

crawler → classifier → learner → mediator

124



CHAPTER 10. DISCUSSION 10.2. APPLICATION SCENARIOS

Importantly, this entire process could run with minimal if any user involve-

ment.

10.2.2 Real-time Source Discovery

A more challenging application scenario would involve real-time service dis-

covery as follows. Consider the case where a mediator receives a query, and

realises that it is unable to answer the query given the sources available1

(perhaps because the available sources are out of scope for the desired in-

formation). A search string could then be generated based on the “missing

conjuncts” from the query (i.e. the relation names and constants from the

part of the query that couldn’t be answered). The string would be given

to a specialised web service search engine (such as [9]), which returns a

number of possible services based on keyword similarity. This set of ser-

vices would then annotated with semantic types and if relevant, the learner

would induce a definition for it. Once the new definition is provided to the

mediator, it hopefully would be able to complete the query processing and

return an answer to the user.

mediator → search engine → classifier → learner → mediator

This scenario may seem a little far fetched until one considers a specific

example. Imagine a user interacting with a geospatial information viewer

such as Google Earth. If the user turns on a particular information layer,

such as say ski resorts, but there is no source available for the current

field of view (of say Italy), then no results would be displayed. In the

background, a search could be performed, and a new source discovered,

which provides ski resort information for all of Europe, (where before only

ski resorts information for Austria was available). The relevant data could

1Note that a mediator not being able to answer a query is different from a mediator returning no tuples

for a query. In the former case, the mediator can prove that no useful query execution plans exist given

the sources available, i.e. that the unfoldings of all possible plans are inconsistent.

125



10.3. OPPORTUNITIES FOR FURTHER RESEARCH CHAPTER 10. DISCUSSION

then be accessed and displayed on screen, with the user unaware that a

search has been performed.

10.2.3 User Assisted Source Discovery

Perhaps the most likely application scenario for a source induction system

would be a mixed initiative one as discussed in section 3.2.6. In this case a

human would annotate the different operations of a service interface with

semantic definitions. At the same time, the system would then attempt

to induce definitions for the remaining operations, and prompt the user

with suggestions for these operations. In this case the classifier may not be

needed, as attributes of the same name in the different operations would

likely have the same semantic type.

user → learner → user

10.3 Opportunities for Further Research

There are a number of future directions for this work that will allow the

techniques developed to be applied more broadly. These directions can be

categorised as either improving the search algorithm, enriching the domain

model, or extending the query language. I discuss some of the possibilities

below.

10.3.1 Improving the Search

As the number of known sources grows, so too will the search space, and

it will be necessary to develop additional heuristics to better direct the

search toward the best definition. Many heuristic techniques have been

developed in the ILP community and some of them may be applicable to

the source induction problem. Most recently there has been work on the

126



CHAPTER 10. DISCUSSION 10.3. OPPORTUNITIES FOR FURTHER RESEARCH

use of stochastic search and randomised restarts [31], a technique borrowed

from the combinatorial search community, which has proven effective for

dealing with large search spaces.

More pressing perhaps than the need to improve the heuristic, is the

need to develop a robust termination condition for halting the search once

a “sufficiently good” definition has been discovered. Again as the number

of available sources increases, the simple timeout used in the experiments

of chapter 9 will be ineffective as certain more complicated definitions will

necessarily take longer to learn than other (simpler) ones.

10.3.2 Enriching the Domain Model

In order to apply this system to new domains, additional semantic types

and relations will need to be included in the domain model. Eventually,

the domain model will become so large that it will become necessary to

structure it hierarchically. The set of semantic types could be arranged

into a hierarchy, where specific types are subtypes of more general ones.

For example, the semantic type restaurant might be considered a subclass

of business, while TemperatureF (temperature in Fahrenheit) could be a

subclass of Temperature. Such hierarchies are useful for two reasons:

• The classifier used to assign semantic types to the inputs and outputs

of a service may not be able to distinguish between similar types (such

as TemperatureF and TemperatureC ), in which case it should return

the super-type instead, leaving it up to the induction system to work

out which if any of the subtypes is the actual type being returned.

• When modeling the domain, some predicates may be defined over

the super-types rather than the subtypes. For example, the relation

employees(business, first, last) would be reused with the different sub-

types of business, such as restaurant, hotel, etc.

127



10.3. OPPORTUNITIES FOR FURTHER RESEARCH CHAPTER 10. DISCUSSION

Similarly, one could add hierarchy to the domain relations by introducing

inclusion dependencies. Inclusion dependencies are generalised functional

dependencies2, where the dependency occurs between attributes of different

relations. Using inclusion dependencies, one can define a hierarchy over the

domain relations, such that a relation like building(...) can be a subclass of

a more general relation, like address(...). The hierarchy can then be used

to reduce the amount of search required to discover definitions and also to

tighten the definitions produced.

10.3.3 Extending the Query Language

Another way to increase the applicability of this work would be to extend

the query language used so that it better describes the sources available

online. Often sources on the net (especially search services such as those

provided by Yahoo and Google) do not return a complete set of results but

rather return a subset of the result, cut-off at some maximum cardinality.

Recognising this explicit limit (and possibly also how to move to the “next

page of results” as it were), would expand the usefulness of the system.

For example the YahooHotel source described in section 9.2.4, returns a

maximum of 20 hotels near a given location, and orders them according

to their distance from the location. Corrupting the notation from section

3.1.2, we might like to write something like the following to describe this

source:

YahooHotel($zip0, $ , hot2, str3, cit4, sta5, pho6, , , , ) :-

HotelsByCity(cit4, hot2, str3, sta5, zip0, , pho6),

ORDER BY dist LIMIT 20.

In such a case, recognising the specific ordering on the tuples produced

would be very useful to a mediator. For example, if the mediator receives

2Functional dependencies were discussed in section 6.1.3. They are dependencies between the at-

tributes of a certain relation. For example, a unique key constraint is a type of functional dependency.

128



CHAPTER 10. DISCUSSION 10.3. OPPORTUNITIES FOR FURTHER RESEARCH

a query containing explicit constraints on the distance variable, such as

dist < 1km or MIN(dist), then it can handle them efficiently given the

definition above. In the case of the minimisation query for example, the

mediator would know that it can answer the query by performing a single

call to the source.

A second useful extension to the query language would be the ability to

describe sources using the simple procedural construct if-then-else. This

construct is needed to describe the behaviour of certain sources when in-

voked with input tuples that contain missing or inconsistent data. For

example, consider the YahooGeocoder from section 9.2.1, which takes as

input a tuple containing a street name and number, and a zipcode. If

the geocoder is unable to locate the corresponding address in its database

(either because the database is incomplete or the address doesn’t exist),

instead of returning no tuples, it returns the centroid of the zipcode. De-

scribing such behavior is only possible using procedural constructs. Indeed,

this procedural aspect of the service can trick the system into learning a

simpler definition for the service - namely that the service simply outputs

the centroid of each zipcode!

129





Bibliography

[1] A. Ankolenkar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. Mc-

Dermott, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and

K. Sycara. Daml-s: Web service description for the semantic web. In

The First International Semantic Web Conference (ISWC), 2002.

[2] Y. Arens, C. Y. Chee, C.-N. Hsu, , H. In, and C. A. Knoblock.

Query processing in an information mediator. In Proceedings of the

ARPA/Rome Laboratory Knowledge-Based Planning and Scheduling

Initiative Workshop, Tucson, AZ, 1994.

[3] José M. Barja, Nieves R. Brisaboa, José R. Paramá, and Miguel R.

Penabad. Containment of inequality queries revisited. In ADBIS Re-

search Communications, pages 31–40, 2002.

[4] Jos De Bruijn, Axel Polleres, Rubn Lara, and Dieter Fensel. Owl

dl vs. owl flight: Conceptual modeling and reasoning for the seman-

tic web. In In Proceedings of the 14th World Wide Web Conference

(WWW2005), 2005.

[5] R. Mike Cameron-Jones and J. Ross Quinlan. Efficient top-down in-

duction of logic programs. SIGART Bull., 5(1):33–42, 1994.

[6] Ashok K. Chandra and Philip M. Merlin. Optimal implementation

of conjunctive queries in relational data bases. In Proceedings of the

131



BIBLIOGRAPHY BIBLIOGRAPHY

9th ACM Symposium on Theory of Computing (STOC), pages 77–90,

Boulder, Colorado, 1977.

[7] William W. Cohen, Pradeep Ravikumar, and Stephen Fienberg. A

comparison of string distance metrics for name-matching tasks. In

Proceedings of IJCAI-03 Workshop on Information Integration on the

Web (IIWeb-03), 2003.

[8] R. Dhamanka, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap:

Discovering complex semantic matches between database schemas. In

SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD International

Conference on Management of data, 2004.

[9] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun

Zhang. Simlarity search for web services. In Proceedings of VLDB,

2004.

[10] Oliver M. Duschka. Query Planning and Optimization in Information

Integration. PhD thesis, Department of Computer Science, Stanford

University, 1997.

[11] A. Hess and N. Kushmerick. Machine learning for annotating semantic

web services. In Proc. AAAI Spring Symposium on Semantic Web

Services, 2004.

[12] Kristina Lerman, Anon Plangprasopchok, and Craig A. Knoblock. Au-

tomatically labeling data used by web services. In In Proceedings of

the 21st National Conference on Artificial Intelligence (AAAI), 2006.

[13] Alon Y. Levy. Logic-based techniques in data integration. In Jack

Minker, editor, Logic-Based Artificial Intelligence. Kluwer Publishers,

November 2000.

132



BIBLIOGRAPHY BIBLIOGRAPHY

[14] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh

Srivastava. Answering queries using views. In Proceedings of the

14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 95–104, San Jose, Calif., 1995.

[15] Zdravko Markov and Ivo Marinchev. Metric-based inductive learning

using semantic height functions. In In Proceedings of the 11th Euro-

pean Conference on Machine Learning (ECML 2000). Springer, 2000.

[16] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein,

Drew McDermott, Deborah McGuinness, Bijan Parsia, Terry Payne,

Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia Sycara.

Bringing semantics to web services: The owl-s approach. In Proceed-

ings of the First International Workshop on Semantic Web Services

and Web Process Composition (SWSWPC 2004), 2004.

[17] S. Muggleton and C. Feng. Efficient induction of logic programs. In

In Proceedings of the 1st Conference on Algorithmic Learning Theory,

1990.

[18] C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend.

Declarative bias in ILP. In L. De Raedt, editor, Advances in Inductive

Logic Programming, pages 82–103. IOS Press, 1996.

[19] Michael J. Pazzani and Dennis F. Kibler. The utility of knowledge in

inductive learning. Machine Learning, 9:57–94, 1992.

[20] M. Perkowitz and O. Etzioni. Category translation: Learning to un-

derstand information on the internet. In IJCAI-95, 1995.

[21] Ronald P. A. Petrick and Fahiem Bacchus. A knowledge-based ap-

proach to planning with incomplete information and sensing. In Pro-

133



BIBLIOGRAPHY BIBLIOGRAPHY

ceedings of the Sixth International Conference on Artificial Intelligence

Planning and Scheduling (AIPS-2002). AAAI Press, 2002.

[22] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated com-

position of web services by planning at the knowledge level. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), 2005.

[23] Rachel Pottinger and Alon Y. Halevy. Minicon: A scalable algorithm

for answering queries using views. VLDB Journal, 10(2-3), 2001.

[24] J. Ross Quinlan and R. Mike Cameron-Jones. FOIL: A midterm re-

port. In Machine Learning: ECML-93, European Conference on Ma-

chine Learning, Proceedings, volume 667, pages 3–20. Springer-Verlag,

1993.

[25] E. Rahm and P.A. Bernstein. A survey of approaches to automatic

schema matching. VLDB Journal, 10(4), Dec 2001.

[26] Bradley L. Richards and Raymond J. Mooney. Learning relations by

pathfinding. In National Conference on Artificial Intelligence, pages

50–55, 1992.

[27] I. Weber, B. Tausend, and I. Stahl. Language series revisited: The

complexity of hypothesis spaces in ILP. In Proceedings of the 8th

European Conference on Machine Learning, volume 912, pages 360–

363. Springer-Verlag, 1995.

[28] Jennifer Widom. Research problems in data warehousing. In CIKM

’95: Proceedings of the fourth International Conference on Informa-

tion and Knowledge Management, pages 25–30. ACM Press, 1995.

134



BIBLIOGRAPHY BIBLIOGRAPHY

[29] W. Winkler. The state of record linkage and current research problems.

Technical report, Statistical Research Division, U.S. Bureau of the

Census, Washington, DC, 1999.

[30] Ling Ling Yan, René J. Miller, Laura M. Haas, and Ronald Fagin.

Data-driven understanding and refinement of schema mappings. In

SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD International

Conference on Management of data, 2001.

[31] F. Zelezny, A. Srinivasan, and D. Page. A monte carlo study of ran-

domised restarted search in ilp. In In Proceedings of the 14th Interna-

tional Conference on Inductive Logic Programming (ILP’04). Springer-

Verlag, 2004.

[32] John M. Zelle, Cynthia A. Thompson, Mary Elaine Califf, and Ray-

mond J. Mooney. Inducing logic programs without explicit negative

examples. In Proceedings of the Fifth International Workshop on In-

ductive Logic Programming, 1995.

135





Appendix A

Definitions & Derivations

A.1 Relational Operators

This section provides definitions for the relational operators projection and

selection that are used in this thesis.

• For a tuple τ over a set of attributes A, the value of an attribute a ∈ A

is denoted τ(a).

• The projection of an extension E [A] over a subset of the attributes

A′ ⊆ A, denoted πA′(E [A]), is the set of tuples {〈τ(a1), ..., τ(an)〉 | τ ∈

E [A], ai ∈ A′}

• The selection1 of tuples from an extension E [A], for which a subset

of the attributes A′ ∈ A have values from the tuple τ ′, is denoted

σA′=τ ′(E [A]) = {τ ∈ E [A] | ∀a∈A′ τ(a) = τ ′(a)}.

A.2 Search space size

This section provides derivations for the formulas for calculating the upper

bound of the search space size given in section 4.3. Tighter upper bounds

1Selection can also be defined over other criteria like inequality, for instance σa>c(E [A]) denotes

{τ ∈ E [A] | τ(a) > c}

137



A.2. SEARCH SPACE SIZE APPENDIX A. DEFINITIONS & DERIVATIONS

for certain types of query languages can be found in [27].

Consider a conjunctive view definition v of the form:

v(X0) :- s1(X1), s2(X2), ..., sl(Xl).

where si denotes a source from the set of sources S, l is the length of the

clause, and Xi denotes an ordered set of variable names. For a fixed length

l, a maximum arity a = maxs∈S(arity(s)) and assuming that a ≥ arity(v),

consider the assignment of sources to 〈s1, ..., sl〉 and variable names to

〈X0, ..., Xl〉:

• There will be
(

|S|+l−1
l

)

ways to assign l sources from S (with repeti-

tion) to 〈s1, ..., sl〉. Note that order of the sources is not important

(〈s3, s3, s4〉 is the same as 〈s4, s3, s3〉), otherwise we would have to

use |S|l.

• For any given assignment of sources, the total number of variables
∑l

i=0 |Xi| will be less than or equal to (l + 1)a.

• For (l + 1)a variables there are B((l + 1)a) different ways to as-

sign names to (equate) those variables, which are unique under re-

naming (i.e. the assignment 〈A, A, B〉 and 〈A, B, B〉 are different,

but 〈A, A, B〉 and 〈C, C, D〉 are the same). Here B(·) denotes the

Bell number, which counts the number of ways a set can be parti-

tioned into non-empty subsets, and is defined recursively as follows:

B(0) = 1, B(n + 1) =
∑n

k=0

(

n
k

)

B(k)

Thus for a given length l, set of sources S with maximum arity a, the

number of possible view definitions is less than
(

|S|+l−1
l

)

B((l + 1)a)

To calculate an upper bound for the number of different conjunctive

queries of length 0 to l, we need simply sum over this value:

size(l, |S|, a) ≤
l

∑

i=0





|S| + i − 1

i



B((i + 1)a)

138



APPENDIX A. DEFINITIONS & DERIVATIONS A.2. SEARCH SPACE SIZE

The second upper bound given in section 4.3 can be derived as follows.

Assume that b represents the maximum number of times the same type

appears in any given source predicate and that it divides evenly into a.

The maximum number of variables of a given type in a clause of length

l is then given by (l + 1)b. Since those variables of the same type can

be assigned names in B((l + 1)b) different ways, the maximum number of

different variable name assignments for all the different types in a clause

will be less than B((l + 1)b)a/b.

The third upper bound (in section 4.3.2) can be derived from the second

by considering the fact that without repeating predicates, the number of

ways to assign |S| sources to l positions, independent of order and without

repetition is given by
(

|S|
l

)

.

Finally, the equation given in section 4.3.3 can be derived from the

third upper bound by considering the fact that each literal must contain

at least one variable from the head of the clause: (For simplicity, assume

that b = a.) For each literal there are a different variables that could

be chosen for equating to one of a different head variables, resulting in

a2 possibilities for each literal, and a2l variable name assignments for a

clause of length l. The remaining (a − 1) variables per literal add up to

(l + 1)(a − 1) variables per clause (assuming arity(v) < a), that can be

assigned names in B((l+1)(a−1)) ways. Thus the total number of possible

variable assignments is less than B((l + 1)(a − 1))a2l.

139



A.2. SEARCH SPACE SIZE APPENDIX A. DEFINITIONS & DERIVATIONS

140



Appendix B

Experiment Data

B.1 Example Problem Specification

type city [varchar(100)] {examples: examples.city.val}

type state [varchar(2)] {examples: examples.state.code}

type zipcode [varchar(10)] {examples: examples.zipcode.val}

type areacode [varchar(3)]

type timezone [varchar(5)]

relation municipality(city,state,zipcode,timezone)

relation phoneprefix(zipcode,areacode)

source GetZipcode($city,$state,zip) :- municipality(city,state,zip,_).

{wrappers.Ragnarok; getZipcode}

target GetInfoByZip($zipcode,city,state,areacode,timezone)

{wrappers.USZip; GetInfoByZip}

B.2 Target Predicates

1 GetInfoByZip($zipcode,city,state,areacode,timezone)

2 GetInfoByState($state,city,zipcode,areacode,timezone)

3 GetDistanceBetweenZipCodes($zipcode,$zipcode,distanceMi)

4 GetZipCodesWithin($zipcode,$distanceMi,zipcode,distanceMi)

141



B.2. TARGET PREDICATES APPENDIX B. EXPERIMENT DATA

5 YahooGeocoder($street,$zipcode,city,state,country,latitude,longitude)

6 GetCenter($zipcode,latitude,longitude,city,state)

7 Earthquakes($latitude,$longitude,$latitude,$longitude,latitude,

longitude,distanceKm,decimal,datetime)

8 USGSElevation($latitude,$longitude,distanceFt)

9 CountryInfo($countryAbbr,country,city,areaSqKm,count,currency,

longitude,latitude,longitude,latitude)

10 GetQuote($ticker,price,date,time,price,price,price,price,count,price,

price,percentage,priceRange,price,ratio,company)

11 YahooExchangeRate($currency,$currency,price,date,time,price,price)

12 NOAAWeather($icao,airport,latitudeDMS,longitudeDMS,sky,temperatureF,

humidity,direction,speedMph,speedMph,pressureMb,temperatureF,

temperatureF,distanceMi)

13 WunderGround($state,$city,temperatureF,temperatureC,humidity,

pressureIn,pressureMb,sky,direction,speedMph,speedMph)

14 WeatherBugLive($zipcode,city,state,zipcode,temperatureF,distanceIn,

speedMph,direction,speedMph,direction)

15 WeatherFeed($city,$stateName,temperatureF,temperatureC,sky,temperatureF,

humidity,directionSpeed,pressureIn,latitude,longitude,time)

16 WeatherByICAO($icao,airport,countryAbbr,latitude,longitude,degrees,

distanceM,percentage,sky,speedKmph,temperatureC,datetime,temperatureC)

17 WeatherByLatLon($latitude,$longitude,icao,airport,countryAbbr,

latitude,longitude,degrees,distanceM,percentage,sky,speedKmph,

temperatureC,datetime,temperatureC)

18 YahooWeather($zipcode,city,state,country,day,date,temperatureF,

temperatureF,sky)

19 WeatherBugForecast($zipcode,city,state,zipcode,day,sky,temperatureF,

temperatureF)

20 USFireHotelsByCity($city,hotel,street,state,zipcode,count,phone)

21 USFireHotelsByZip($zipcode,hotel,street,city,state,count,phone)

22 YahooHotel($zipcode,$distanceMi,hotel,street,city,state,phone,

latitude,longitude,distanceMi,url)

23 GoogleBaseHotels($zipcode,hotel,city,state,datetime,price,latitude,

longitude,rating)

24 YahooTraffic($zipcode,$distanceMi,unknown,latitude,longitude,

timestamp,timestamp,timestamp)

142



APPENDIX B. EXPERIMENT DATA B.3. UNFOLDING THE DEFINITIONS

25 YahooAutos($zipcode,$make,datetime,year,model,vin,mileage,price,

distanceMi)

B.3 Unfolding the Definitions

1 GetInfoByZip($zip0,cit1,sta2,_,tim4) :-

municipality(_,sta2,_,tim4), timezone(tim4,_,_),

municipality(cit1,sta2,zip0,_).

2 GetInfoByState($sta0,cit1,zip2,_,tim4) :-

municipality(_,sta0,_,tim4), timezone(tim4,_,_),

municipality(cit1,sta0,zip2,_).

3 GetDistanceBetweenZipCodes($zip0,$zip1,dis2) :-

centroid(zip0,lat1,lon2), centroid(zip1,lat4,lon5),

distance(lat1,lon2,lat4,lon5,dis10), convertDist(dis10,dis2).

4 GetZipCodesWithin($_,$dis1,_,dis3) :-

<(dis3,dis1).

5 YahooGeocoder($str0,$zip1,cit2,sta3,_,lat5,lon6) :-

address(str0,_,zip1,"US",lat5,lon6), municipality(cit2,sta3,zip1,_).

6 GetCenter($zip0,lat1,lon2,cit3,sta4) :-

municipality(cit3,sta4,zip2,tim3), country(_,cou5,_),

northAmerica(cou5), centroid(zip2,lat1,lon2),

conditions(lat1,lon2,_,_,_,_,_,_,_,_,_,_,_), timezone(tim3,_,_),

municipality(cit3,sta4,zip0,_).

7 Earthquakes($_,$_,$_,$_,lat4,lon5,_,dec7,_) :-

earthquake(dec7,_,lat4,lon5).

8 USGSElevation($lat0,$lon1,dis2) :-

convertDistMFt(dis0,dis2), elevation(lat0,lon1,dis0).

9 CountryInfo($cou0,cou1,cit2,_,_,cur5,_,_,_,_) :-

country(cou1,cou0,_), exchange("USD",cur5,_), currency(cur5,_,cou8),

country(cou8,cou0,_), municipality(cit2,_,zip14,tim15),

country(cou1,cou17,_), northAmerica(cou17),

centroid(zip14,lat21,lon22),

conditions(lat21,lon22,_,_,_,_,_,_,_,_,_,_,_), timezone(tim15,_,_).

10 GetQuote($tic0,pri1,dat2,tim3,pri4,pri5,pri6,pri7,cou8,_,pri10,_,_,

pri13,_,com15) :-

143



B.3. UNFOLDING THE DEFINITIONS APPENDIX B. EXPERIMENT DATA

trade(dat2,tim3,tic0,pri1), market(dat2,tic0,pri6,pri5,pri6,pri7,cou8),

sum(pri6,pri4,pri1), listing(_,com15,tic0,_), sum(pri5,pri13,pri10),

sum(pri4,pri10,pri1).

11 YahooExchangeRate($_,$cur1,pri2,dat3,_,pri5,pri6) :-

currentTime(tim0), time(tim0,_,_,dat3,_,_,_),

exchange("USD",cur1,pri2), currency(cur1,_,cou13),

country(cou13,cou15,_), exchange("USD",cur18,pri5),

currency(cur18,_,cou22), country(cou22,cou15,_), sum(pri2,pri5,pri28),

sum(pri2,pri6,pri28).

12 NOAAWeather($ica0,air1,_,_,sky4,tem5,hum6,dir7,spe8,_,pre10,tem11,_,_)

:- airport(ica0,_,air1,cit3,_,_,_,_), municipality(cit3,_,zip10,_),

country(_,cou13,_), northAmerica(cou13), centroid(zip10,lat17,lon18),

forecast(lat17,lon18,dat21,_,_,sky4,_,_,dir7,_,_),

time(_,_,_,dat21,_,_,_), municipality(cit3,_,zip39,tim40),

country(_,cou42,_), northAmerica(cou42), centroid(zip39,lat46,lon47),

conditions(lat46,lon47,_,tem5,sky4,tem11,hum6,_,spe8,_,pre58,_,_),

timezone(tim40,_,_), convertPress(pre58,pre10).

13 WunderGround($sta0,$cit1,tem2,_,_,pre5,pre6,sky7,dir8,spe9,spe10) :-

municipality(cit1,sta0,zip2,tim3), country(_,cou5,_),

northAmerica(cou5), centroid(zip2,lat9,lon10),

conditions(lat9,lon10,dat13,tem14,sky7,tem2,_,dir8,spe19,_,pre5,_,_),

timezone(tim3,_,_), municipality(cit1,sta0,zip29,_), country(_,cou32,_),

northAmerica(cou32), centroid(zip29,lat36,lon37),

forecast(lat36,lon37,dat40,tem41,_,_,_,_,_,spe10,_),

time(_,_,_,dat40,_,_,_), convertPress(pre5,pre6), <(tem14,tem41),

time(_,dat13,_,_,_,_,_), <(spe9,spe19).

14 WeatherBugLive($_,cit1,sta2,zip3,tem4,_,_,dir7,_,_) :-

municipality(cit1,sta2,zip2,tim3), country(_,cou5,_),

northAmerica(cou5), centroid(zip2,lat9,lon10),

conditions(lat9,lon10,_,tem4,_,_,_,dir7,_,_,_,_,_),

timezone(tim3,_,_), municipality(cit1,sta2,zip3,_).

15 WeatherFeed($cit0,$_,tem2,_,sky4,tem5,_,_,pre8,lat9,_,_) :-

municipality(cit0,_,zip2,tim3), country(_,cou5,_),

northAmerica(cou5), centroid(zip2,lat9,lon10),

conditions(lat9,lon10,_,_,sky4,tem5,_,dir18,_,_,pre8,_,_),

timezone(tim3,_,_), municipality(cit0,_,zip29,_), country(_,cou32,_),

144



APPENDIX B. EXPERIMENT DATA B.3. UNFOLDING THE DEFINITIONS

northAmerica(cou32), centroid(zip29,lat36,lon37),

forecast(lat36,lon37,dat40,_,tem2,_,_,_,dir18,_,_),

time(_,_,_,dat40,_,_,_).

16 WeatherByICAO($ica0,air1,cou2,lat3,lon4,_,dis6,_,sky8,_,_,_,_) :-

elevation(lat3,lon4,dis6), airport(ica0,_,air1,cit6,_,cou8,_,_),

municipality(cit6,_,zip13,_), country(cou8,cou16,_),

northAmerica(cou16), centroid(zip13,lat20,lon21),

forecast(lat20,lon21,dat24,_,_,sky8,_,_,_,_,_),

time(_,_,_,dat24,_,_,_), country(cou8,cou2,_).

17 WeatherByLatLon($_,$_,_,_,_,lat5,lon6,_,dis8,_,_,_,_,_,_) :-

elevation(lat5,lon6,dis8).

18 YahooWeather($zip0,cit1,sta2,_,lat4,lon5,day6,dat7,tem8,tem9,sky10) :-

municipality(cit1,sta2,zip2,_), country(_,cou5,_),

northAmerica(cou5), centroid(zip2,lat4,lon5),

forecast(lat4,lon5,dat7,tem9,tem8,sky10,_,_,_,_,_),

time(_,_,day6,dat7,_,_,_), municipality(cit1,sta2,zip0,_).

19 WeatherBugForecast($_,cit1,sta2,_,day4,sky5,tem6,_) :-

municipality(cit1,sta2,zip2,_), country(_,cou5,_),

northAmerica(cou5), centroid(zip2,lat9,lon10),

forecast(lat9,lon10,dat13,tem6,_,sky5,tim17,_,_,_,_),

time(_,_,day4,dat13,_,_,tim28), municipality(cit1,_,zip31,tim32),

country(_,cou34,_), northAmerica(cou34), centroid(zip31,lat38,lon39),

conditions(lat38,lon39,_,_,_,_,_,_,_,_,_,tim17,_),

timezone(tim32,tim28,_).

20 USFireHotelsByCity($cit0,_,_,sta3,zip4,cou5,_) :-

hotel(hot0,_,_,zip4,"US",_), hotelInfo(hot0,cou5),

municipality(cit0,sta3,zip4,_).

21 USFireHotelsByZip($zip0,_,_,cit3,sta4,cou5,_) :-

hotel(hot0,_,_,zip0,"US",_), hotelInfo(hot0,cou5),

municipality(cit3,sta4,zip0,_).

22 YahooHotel($zip0,$_,hot2,str3,cit4,sta5,_,_,_,_,_) :-

hotel(hot2,_,str3,zip0,"US",_), hotelInfo(hot2,_),

municipality(cit4,sta5,zip0,_).

23 GoogleBaseHotels($zip0,_,cit2,sta3,_,_,lat6,lon7,_) :-

municipality(cit2,sta3,zip2,tim3), country(_,cou5,_),

northAmerica(cou5), centroid(zip2,lat6,lon7),

145



B.3. UNFOLDING THE DEFINITIONS APPENDIX B. EXPERIMENT DATA

conditions(lat6,lon7,_,_,_,_,_,_,_,_,_,_,_),

timezone(tim3,_,_), municipality(cit2,sta3,zip0,_).

24 YahooTraffic($zip0,$_,_,lat3,lon4,_,_,_) :-

centroid(zip0,_,lon4), address(_,_,_,cou6,lat3,lon4),

country(cou6,_,_).

25 YahooAutos($zip0,$mak1,dat2,yea3,mod4,_,_,pri7,_) :-

car(mak1,mod4,_,yea3,vin4), car_details(vin4,_,zip0,_,_,pri7),

time(_,dat2,_,dat14,_,_,_), currentTime(tim18),

time(tim18,_,_,dat14,_,_,_).

146


