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Abstract 
 

 

Recent growth of the geospatial information on the web has made it possible to 

access various spatial data.  By integrating diverse spatial datasets, one can support 

the queries that could have not been answered given any of these sets in isolation.  

However, accurately integrating different geospatial data remains a challenging task 

because diverse geospatial data may have different projections and different 

accuracy levels.  Most of the existing conflation algorithms only handle vector-

vector data integration or require human intervention to accomplish vector-raster or 

raster-raster data integration. In this dissertation, I propose an approach, named 

AMS-Conflation, that achieves automatic geospatial data integration by exploiting 

multiple sources of geospatial information. In particular, I focus on vector-imagery 

and map-imagery conflation. For vector-imagery conflation, I describe techniques to 

automatically generate control points by exploiting the information from the road 

vectors to perform localized image processing on the imagery. I also evaluate various 

filtering algorithms to eliminate inaccurate control point pairs. Based on the 

experimental results, these techniques automatically align the roads to orthoimagery, 

such that in one of my experiments, 85% of the conflated roads are within 4.5 m 

from the real road axes compared to 55% for the original roads for partial areas in St. 

Louis, MO. For map-imagery conflation, my approach can take a map of unknown 

coordinates and automatically align it with an image. My approach first aligns road 
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vectors with imagery using vector-imagery conflation techniques to generate control 

points on the imagery. For the maps, my approach utilizes image processing 

techniques to detect intersections. Furthermore, I present an algorithm (called 

GeoPPM) to compute the matched point pattern from the two point sets.  The 

experimental results show that GeoPPM only misidentified one point pattern from 

the fifty tested maps. The experimental results also show that my approach can align 

a set of TIGER maps with imagery for an area in St. Louis, MO, such that 85.2% of 

the conflated map roads are within 10.8 m from the real road axes compared to 

51.7% for the original and geo-referenced TIGER map roads. 

.
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Chapter 1 

 

Introduction 
 

 

1.1 Motivation and Problem Statement 

With the rapid improvement of geospatial data collection techniques, the growth of 

Internet and the implementation of Open GIS, a large amount of geospatial data are 

now readily available on the web. The examples of well-known vector datasets are 

US Census TIGER/Line files1 (covering most roads over the United States), 

NAVSTREETS from NAVTEQ2 and the GDT data from Geographic Data 

Technology.3 The National Map,4 ESRI’s Geography Network,5 MapQuest,6 Yahoo 

Map Service,7 Google Map Service,8 Microsoft TerraService9 [4] and Space 

Imaging10 are good examples of map or satellite imagery repositories. The users of 

these data products often want these geospatial data and other related data to be 

displayed in some integrated fashion for knowledge discovery. Instead of simply 

being able to display all of the related data in a single framework, we need to 
                                                 
1 http://www.census.gov/geo/www/tiger/ 
2 http://www.navteq.com/ 
3 http://www.geographic.com/ 
4 http://seamless.usgs.gov 
5 http://www.geographynetwork.com/ 
6 http://www.mapquest.com 
7 http://maps.yahoo.com/ 
8 http://maps.google.com 
9 http://terraserver-usa.com/ 
10 http://www.spaceimaging.com/ 
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actually fuse the data to provide additional inferences that cannot be gathered from 

any single information source. 

In fact, geospatial data fusion has been one of the central issues in GIS11 [42]. 

Geospatial data fusion requires that the system integrates various datasets, and then 

creates a single composite dataset from the integrated elements. Towards geospatial 

data fusion, a vital step is reducing the spatial inconsistencies among multiple 

datasets. Figure 1.1 shows an example of combining a road network (NAVTEQ 

NAVSTREETS) and an image (geo-referenced USGS color imagery with 0.3 m per 

pixel resolution). By simply superimposing the roads on top of the imagery, certain 

geospatial inconsistencies become noticeable (as shown in Figure 1.1(a)). An 

alignment of the imagery with the road network of the area (as Figure 1.1(b)) is 

useful to annotate streets in the imagery with detailed attribution information often 

contained in vector datasets. Moreover, once the road network is aligned to higher 

resolution imagery (e.g., 0.3 m/pixel), its relatively poorer positional accuracy can be 

improved. Another example demonstrating the advantages of map and imagery 

integration is shown in Figure 1.2. The user can view the imagery of an unknown 

area nearby and can identify a park in the imagery (as in Figure 1.2(a)). However, 

the imagery does not provide street names. An integrated view of the imagery with 

the map of the area (see Figure 1.2(c)) results in an intelligent image that combines 

the visual appeal and accuracy of imagery with the detailed attribution information 

contained in the map. 

                                                 
11 http://www.cobblestoneconcepts.com/ucgis2summer2002/researchagendafinal.htm 



  
3

One cannot rely on a manual approach to align diverse geospatial datasets, as the 

area of interest may be anywhere in the world and manually aligning a large region, 

such as the continental United States, is very time consuming and error-prone. 

Moreover, performing alignment offline on two geospatial datasets is also not a 

viable option in online GIS-related applications as both datasets may be obtained by 

 

a) Without alignment 
(black lines: NAVTEQ NAVSTREETS roads) 

b) With alignment 
(roads are annotated with vector information) 

Figure 1.1: An example of the integration of road vector data and imagery  

a) Imagery with the area of 
interest highlighted 

b) ESRI street map        c) Imagery with aligned map 

Figure 1.2: An example of the integration of street maps and imagery  



  
4

querying different information sources at run-time (i.e., the data of “area of interest” 

are often needed to be processed and integrated on-demand). However, automatically 

and accurately aligning geospatial datasets, such as road vector data, street maps and 

imagery, is a difficult task. The major challenges are: 

• Different data products may not align. This is because they may have been 

collected at different resolutions; they may use different spheroids, 

projections or coordinate systems; they may have been collected in different 

ways or collected with different precision or accuracy, etc. If the geographic 

projections of both datasets are known, then both datasets can be converted to 

the same geographic projections.  However, the geographic projection for a 

wide variety of geospatial data available on the web is not known.  

Furthermore, converting datasets into the same projection does not address 

the issue of different inaccuracies between two spatial datasets. 

• There are few online maps with known geo-coordinates. For example, many 

online street maps, such as Yahoo Map Service and MapQuest, are not geo-

referenced. Hence, their geo-coordinates are not known in advance, although 

the general region is provided. Even though some map services, such as 

TIGER maps,12 provide the geo-coordinates, they often do not align with 

imagery, due to the reasons mentioned above (as shown in the example in 

Figure 1.3). 

                                                 
12 http://tiger.census.gov/cgi-bin/mapsurfer 
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Conflation is often the process used to integrate or align different geospatial 

datasets13. The conflation process can be divided into the following subtasks: (1) 

feature matching: find a set of conjugate point pairs, termed control point pairs, in 

two datasets, (2) match checking: detect inaccurate control point pairs from the set of 

control point pairs for quality control, and (3) alignment: use the accurate control 

points to align the rest of the geospatial objects (such as points or lines) in both 

datasets by using the triangulation and rubber-sheeting techniques. In particular, 

finding accurate control point pairs is a very important step in this kind of feature-

based conflation process as all the other points in both datasets are aligned based on 

the control point pairs. 

Essentially, the related work for geospatial data conflation techniques can be 

categorized to three groups: 

 

 

                                                 
13 In this thesis, I use the terms conflation, integration and alignment interchangeably. 

a) Georeferenced TIGER street 
map 

b) Georeferenced imagery c) Imagery with superimposed map  
(the roads on imagery are represented  
as white lines) 

Figure 1.3: The map-imagery integration without alignment 
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• Vector to vector data conflation (e.g., road vector to road vector conflation) 

• Vector to raster data conflation (e.g., road vector to satellite imagery 

conflation) 

• Raster to raster data conflation (e.g., map to satellite imagery conflation) 

There have been a number of efforts to automatically or semi-automatically 

accomplish vector to vector conflation. These approaches utilize different methods to 

locate the counterpart elements. However, due to the complexity that characterizes 

natural scenes in imagery, there has been relatively little work on automatically 

conflating vector with imagery or maps with imagery. These days, advances in 

satellite imaging technology are making it possible to capture imagery with ever 

increasing precision. Remotely sensed images from space can offer a resolution of 

0.3 m or better. Utilizing vector to imagery conflation, we can use this accurate 

imagery to update the vector datasets with poorer positional accuracy but richer 

attribution. Moreover, utilizing map to imagery conflation, we can create intelligent 

images that combine the visual appeal and accuracy of imagery with the detailed 

attribution information often contained in diverse maps. 

Traditionally, the problems of vector-imagery and map-imagery conflation have 

been in the domain of image processing and GIS. The focus of the image processing 

techniques has been on automatic identification of objects in the image in order to 

resolve vector-image or map-image inconsistencies.  However, these techniques 

require significant CPU time to process an image in its entirety and still may result in 
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inaccurate results. Moreover, various GIS systems, such as ESRI ArcView14, 

MapMerger15, ER Mapper Image Web Server16, Intergraph I/RASC17 and Able 

R2V18 provide the functionality to integrate different layers of geospatial data. 

However, these products do not provide automatic conflation, and human 

intervention is required to align multiple geospatial datasets. 

This thesis is motivated by the lack of automatic, efficient and accurate vector to 

imagery and map to imagery conflation techniques for GIS applications, which can 

work on large regions retrieved on-demand. In particular, I consider the conflation of 

road vector data and orthoimagery (i.e., this imagery is altered from original photos 

so that it has the geometric properties of a map) and the conflation of street maps 

(i.e., maps showing roads) and orthoimagery. 

1.2 Approach 

This thesis provides novel and efficient solutions to automatically integrate road 

vector data, high resolution orthoimagery (with ground resolution greater than 1 

m/pixel) and street maps by reducing their spatial inconsistencies. 

Based on the conflation process discussed in the previous section, an automated 

conflation algorithm should have the capabilities to automatically and accurately 

detect control points from both datasets, compute the transformations between the 

control points, and then transform other objects accordingly. In this section, I 

                                                 
14 http://www.esri.com/ 
15 http://www.esea.com/products/ 
16 http://www.earthetc.com/ 
17 http://imgs.intergraph.com/irasc/ 
18 http://www.ablesw.com/r2v/ 
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describe my solution, a geospatial information integration approach, named 

Automatic Multi-Source conflation (AMS-conflation) [8, 9, 11], to automatically 

integrate vector data, imagery and maps.  AMS-conflation automatically exploits 

information from each of the sources to be integrated to assist the alignment process. 

Essentially, there are three general sources of information for automatically 

identifying control points: inferences on the data source, metadata and attribution 

information of the data sources and other sources of data that can be linked to the 

source.  I consider each of these in turn. 

• Inferred Information from the Data Source:  

There are a wide variety of techniques that can be applied to geospatial data 

sources to identify possible control points.  For example, road network data can 

be analyzed to find intersection points.  Similarly, image processing techniques 

(such as edge-detection, corner-detection, region-segmentation and histogram-

based classification) can be used on both images and maps to find points, lines or 

homogeneous regions.  Any of these image processing techniques may result in 

some missing points or noisy points, but these problems can be addressed since 

conflation algorithms only need a sparse distribution of accurate points to 

conflate two datasets. 

• Metadata and Attribution Information of the Data Source:  

Recently, metadata (i.e., information about data) is used increasingly in 

geographic information systems to improve both availability and the quality of 

the spatial information delivered. I can exploit metadata from vector data, 
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imagery and maps to perform the automatic conflation procedure. For example, 

for imagery, metadata about the coordinates of data source and resolution is 

important in narrowing the search for corresponding control points. For maps, I 

can exploit the map scale, map resolution, map legend and map orientation to 

improve the performance of locating corresponding control points. Attribution 

information of the geospatial datasets can also provide helpful information to 

identify control points. For example, I can exploit (non-spatial) attributes of the 

road vector data, such as address ranges, road names, or even the number of lanes 

and type of road surface to efficiently and accurately locate control points. 

• Related Information to the Data Source:  

Another important source of information includes peripheral data sources that 

can provide additional information.  For example, I can use telephone books to 

look up the address of a named or pre-identified point in the imagery. Similarly, 

consider conflation of map and imagery. I can utilize a third data source (e.g., 

road vector data) that has relevant information to both sources to support map 

and imagery alignment. 

My approach can automatically exploit these various sources of information to 

accurately identify spatial features, such as road intersections, as control points. 

More precisely, I consider two scenarios, vector-imagery conflation and map-

imagery conflation in turn.  
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Vector and Imagery Conflation: 

I can find the approximate location of road intersections on the images from the 

inferred knowledge of the corresponding vector data. For each intersection point, I 

perform image processing in a small area around the intersection point to find the 

corresponding point in the image.  In addition to the approximate location of 

intersections, I also utilize the information inferred from vector data such as road-

directions, road-widths and road-shapes, to locate intersections on the images.  In 

particular, my approach generates a template inferred from all the vector information 

and then matches it against the small area in the image to find the corresponding 

intersection point on the imagery.  The running time for this approach is dramatically 

lower than traditional image processing techniques because I can localize the image 

processing.  Furthermore, the road direction and width information makes detecting 

roads in the image a much easier task, thus reducing the running time even further. 

Map and Imagery Conflation: 

I can utilize auxiliary information sources (i.e., road vector data) that are not part 

of a map or an image, but have information relevant to both sources. In other words, 

I utilize the road vector data as “glue” to align maps and imagery. First, I align road 

vector data with imagery using my vector-imagery conflation techniques. As a result 

the conflated intersection points on the road network are aligned with the intersection 

points on the imagery. I can then use the conflated intersection points as control 

points on the imagery. For the maps, I can utilize image processing techniques to 

detect promising points (e.g., road intersections) as control points. Furthermore, I 
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compare the distributions of the two point sets by exploiting road directions, map 

scales, etc, to determine the transformation between the map and imagery. 

I evaluate my approach by presenting results of the experiments performed on 

the real-world datasets to show that my approach can automatically align road vector 

datasets (with diverse accuracy levels), various orthoimagery (with different ground 

resolutions) and diverse street maps (with different map scales). 

1.3 Thesis Statement 

In this dissertation, I propose a novel and efficient approach to automatically and 

accurately conflate road vector data, street maps and orthoimagery. The thesis of this 

dissertation is: 

 
By exploiting multiple sources of geospatial information, we can achieve 

automatic and accurate conflation of road vector data, street maps and 

orthoimagery. 

 

1.4 Contributions 

Overall, I make the following contributions in this dissertation: 

• An efficient approach for vector to imagery conflation that exploits 

knowledge from each of the sources to be integrated to automatically identify 

a set of accurate control points. This approach can support automatic, rapid 

and accurate alignment of various vector datasets and imagery. The approach 
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is appropriate for those GIS applications that want to align vector data and 

imagery on large regions retrieved on-demand. 

• An approach for map to imagery conflation that utilizes common vector 

datasets as "glue" to automatically integrate street maps with imagery. The 

approach makes it possible to automatically and accurately create intelligent 

images that combine the visual appeal and accuracy of imagery with the 

detailed attribution information often contained in diverse maps. This 

approach is also applicable for those GIS applications that want to align 

online maps and imagery for the regions retrieved on-demand. 

 

1.5 Thesis Organization 

The remainder of this dissertation is organized as follows: 

Chapter 2 describes my automatic vector to imagery conflation approach.  

Chapter 3 describes my automatic map to imagery conflation approach.  Chapter 4 

reviews the related work on geospatial data alignment. Finally, Chapter 5 concludes 

this dissertation and discusses possible future work in this area. 
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Chapter 2  

 

Automatic Conflation of Road Vectors and Orthoimagery 
 

 

My AMS-conflation is a multi-step geospatial data alignment process that involves 

identification of matching features as control points, filtering of misidentified control 

points and computation of local transformations between two datasets based on 

filtered control points. In this section, I will describe my detailed techniques to 

automatically and accurately conflate road vector data and orthoimagery. I will also 

present my evaluation methodology and provide results of utilizing my approach to 

align real world data. 

Figure 2.1 shows the overall approach for conflating road vector data and 

orthoimagery. First, my approach automatically exploits valuable information, the 

attributes of the road vector data and the metadata of the imagery to find the control 

point pairs. Next, my approach filters the control points. Then, it utilizes 

triangulation and rubber-sheeting to align the vector with imagery.19 

2.1 Finding Control Points 

A control point pair consists of a point in one dataset and a corresponding point in 

the other dataset. Finding accurate control point pairs is a very important step in the 

                                                 
19 A pseudo code in Appendix A presents the vector to imagery conflation algorithm. 
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conflation process as all the other points in both datasets are aligned based on the 

control point pairs. 

Road intersections are good candidates for being control points, because road 

intersections are salient points to capture the major feature of the road network and 

the road shapes around intersections are often well-defined. In addition, various GIS 

researchers and computer vision researchers have shown that the intersection points 

on the road networks are good candidates to be identified as an accurate set of 

control points [10, 11, 18, 21]. In fact, several image processing algorithms to detect 

roads in the imagery have been utilized to identify intersection points in the imagery.  

Unfortunately, extracting road segments directly from imagery is a difficult task due 

to the complexity that characterizes natural scenes [1, 23].  Thus, extracting roads 
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Figure 2.1: Overall approach to align vector with orthoimagery 
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from imagery is error-prone and may require manual intervention.  Moreover, 

processing an image of a large area to extract roads requires substantial processing 

time. 

Integrating vector data into the road extraction procedures alleviates these 

problems. In this section, I describe my technique, called localized template 

matching (LTM) [10], which takes advantage of the vector data attributes, image 

metadata as well as the color of imagery to accurately and efficiently find the 

intersection points of various roads in the imagery. Conceptually, the spatial 

information on the vector data represents the existing knowledge about the 

approximate location of the roads and intersection points in the imagery.  My 

approach improves the accuracy and running time of the algorithms to detect 

intersection points in the image by utilizing the knowledge from the vector data.  

First, the LTM technique finds all the intersection points on the vector data.  For 

each intersection point on the vector data, the LTM technique determines the general 

area in the image where the corresponding intersection point should be located. 

Finally, a template inferred from the vector information (such as road width, road 

directions and road intersections) is matched against this small area to identify the 

intersection points on the imagery.  The area searched for the intersection is a small 

fraction of the entire image. 

The LTM technique may not be able to find all intersection points on the image 

due to the existence of trees or other obstructions, such as cars and building shadows.  

However, the conflation process does not require a large number of control point 
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pairs to perform accurate 

conflation.  Therefore, for a 

particular intersection point on the 

vector data, if LTM cannot find 

corresponding image intersection 

point within the given area, it will 

not greatly affect the conflation 

process.  The entire process of locating road intersections in imagery using road 

network data is shown in Figure 2.2.  I discuss the detailed procedure in the 

following sections. 

2.1.1 Road Networks Intersection Detection 

The process of finding the intersection points on the road network from the vector 

data is divided into two steps.  First, all candidate points are obtained by examining 

all line segments in the vector data.  In this step, the endpoints of each line segment 

in the vector data are labeled as the candidate points.  Second, the connectivity of 

these candidate points is examined to determine if they are intersection points.  In 

this step, each candidate point is examined to see if there are more than two line 

segments connected at this point.  If so, this point is marked as an intersection point 

and the directions of the line segments that are connected at the intersection point are 

calculated. 
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Figure 2.2: Road intersection identification 
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2.1.2 Imagery Road Intersection Detection 

Towards the objective of identifying road intersections on imagery, the vital step is 

to understand the characteristics of roads on imagery. In low resolution imagery, 

roads are illustrated as lines, while in high resolution imagery, roads are exposed as 

elongated homogeneous regions with almost constant width and similar color along a 

road. In addition, roads contain quite well-defined geometrical properties. For 

example, the road direction changes tend to be smooth, and the connectivity of roads 

follows some topological regularities. 

Road intersection can be viewed as the intersection of multiple road axes. Also, it 

is located at the overlapping area of some elongated road regions. These elongated 

road regions form a particular shape around the intersection. Therefore, I can match 

this shape against a template derived from road network data (discussed next) to 

locate the intersection. Based on the characteristics of roads, this shape is formed 

from either detected road-edges or homogeneous regions. Edge detectors (such as 

[32]) could be utilized to identify linear features on imagery to match against vector 

data to locate intersections. However, on high resolution imagery (such as up to 0.3 

m/pixel, as an example shown in Figure 2.3(a)), more detailed outlines of spatial 

objects, such as edges of cars and buildings, introduce noisy edges. Hence, in some 

cases I may obtain fragmented edges that include real road edges, building edges, 

tree edges, etc. (see Figure 2.3(b)). This makes it a difficult task to identify real road 

edges by grouping-based methods (i.e., methods that group detected pixels belonging 

to the same edge as a line or a curve, such as the approach proposed in [41]). As the 
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example shown in Figure 2.3(b), more constraints (such as the road sides of the same 

roads are often in parallel) must be exploited to eliminate the impacts of noisy edges. 

However, I can make use of other useful information about roads, such as the color 

of roads, to overcome this problem. Therefore, in contrast to traditional edge-

detection approach, I propose a more effective way to identify intersection points on 

high resolution imagery. My approach utilizes the Bayes classifier, a histogram 

based classifier [19, 28], to classify an images’ pixels as on-road or off-road pixels 

(as in Figure 2.3(c)). I now describe these algorithms in detail. 

2.1.2.1 Labeling imagery using the Bayes classifier 

The histogram-based classification (Bayes classification) is based on the assumption 

of consistency of image color on road pixels. That is, road pixels can be dark, or 

white, or have color spectrum in a specific range, however; for the imagery set 

whose images were taken around the same time period using similar remote sensing 

equipments, I expect to find the same representative color on nearby road pixels. I 

 
a) High resolution color 
orthoimagery 

b) Detected edges by Canny edge 
detector 

c) Road-classified image (white pixels: 
image pixels pre-classified as roads) 

Figure 2.3: An example of edge-detected image and road-classified image 
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construct the statistical color distribution (called class-conditional density) of on-

road/off-road pixels by utilizing a histogram learning technique as follows. I first 

randomly select a small partial area from the imagery where I intend to identify road 

intersections. Then, I interactively specify on-road regions and off-road regions 

respectively. From the manually labeled training pixels, my system learns the color 

distribution (histograms) for on-road and off-road pixels. Hence, I can construct on-

road and off-road densities. 

The off-line learning process requires manual labeling to obtain conditional 

density functions, but it is performed only when a new imagery dataset is introduced 

to the system. In addition, my system can apply the learned results to automatically 

identify intersections of an area that is much larger than the area my system learns 

from. In order to determine whether new training is needed for a given image or the 

current learning is sufficient for the classification of the new area, in the future, I 

plan to develop an automatic approach based on the statistical analysis of the color 

distribution of the target imagery. 

Figure 2.4 shows the hue probability density and saturation probability density20 

after conducting the learning procedure on nearly 500 manually labeled rectangles 

from a set of USGS 0.3 m/pixel imagery (covering St. Louis County in Missouri of 

the United States). There are 50,000 pixels covered by these rectangles and it took 

about 2.5 hours to perform the labeling process. 

                                                 
20 I eliminated the intensity (i.e. brightness of HSV model) density function. There is no obvious difference 
between the brightness distribution of on-road and off-road pixels, since these images were taken at the same 
time (i.e., under similar illumination conditions). 
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Consider the hue density function on Figure 2.4(a). It shows the conditional 

probabilities Probability(Hue/On-road) and Probability(Hue/Off-road), respectively. 

The X-axis of this figure depicts the hue value grouped every 10 degrees. The Y-axis 

shows the probability of on-road (and off-road) pixels that are within the hue range 

represented by the X-axis. For a particular image pixel, my system can compute its 

hue value h. Given the hue value h, if the probability for off-road is higher than on-

road, my system would predict that the pixel is an off-road pixel. As shown in Figure 
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Figure 2.4: Learned density function on HSV color space for On-road/Off-road pixels 
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2.4, these density functions depict the different distribution of on-road and off-road 

image pixels on hue and saturation dimensions, respectively. Hence, I may use either 

of them to classify the image pixels as on-road or off-road. In my experiments, I 

utilized the hue density function for classification. In general, I can utilize the two 

chromatic components, hue and saturation, together. 

Based on the learned hue density functions, automated road-labeling is conducted 

as follows. A particular image pixel whose hue value is h is classified as road if 

θ≥
road)-Off / (hy Probabilit
road)-On / (hy Probabilit , where θ is a threshold. θ depends on the 

application-specific costs of classification errors and it can be selected using the 

ROC (Receiver Operating Characteristic) technique discussed in [28].  

Since the system knows the approximate intersection locations on the images 

from the road network data (discussed next), the road-labeling procedure is applied 

only to image pixels within a radius of potential intersections. Therefore, my system 

does not need to exhaustively label each pixel on the entire image. 

2.1.2.2 Analyzing imagery using road network data (Localized Template 

Matching) 

Using the classified image (an example is shown in Figure 2.5(b)(c)) as input, my 

system can now match it with a template determined from the road network data to 

identify intersections. 
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First, my LTM technique finds the geo-coordinates of all the intersection points 

on the road network data. Since the system also knows the geo-coordinates of the 

images (from image metadata), it can obtain the approximate location of 

intersections on the imagery (as in Figure 2.5(c)). For each intersection point on the 

road network data, LTM determines the area in the image where the corresponding 

intersection point should be located by picking a rectangular area (with width W and 

height H) in the image centered at the location of the intersection point from the road 

network data. Meanwhile, as an example shown in Figure 2.5(a), a template (with 

width w and height h) around an intersection on road network data is generated by 

the presence of regions inferred from the road network data using information, such 

as the road directions and road widths. LTM will then locate regions in the road-

labeled image (see Figure 2.5(c)) that are similar (in shape) to the generated template 

as follows. Given a road-labeled image I with W x H pixels and a template T with w 

x h pixels, the system moves the template around the image and compares the 

Road 
width

Road width

Road 
width

Road width

Road 
width

Road width  
a) Layout (left) of the original 
road network data around an 
intersection point and template 
(right) inferred by using the 
road network data 

b) Original image c) Road-labeled image (white pixels: 
labeled road pixels; black lines: 
existing road network data; black 
circles: intersections on vector data, 
implying approximate locations of 
intersections on imagery) 

Figure 2.5: An example of the localized template matching 
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template against the overlapped image regions. My adapted similarity measure is a 

normalized cross correlation defined as: 
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where T(x,y) equals one, if (x,y) belongs to a road region, otherwise; T(x,y) equals 

zero. I(x,y) equals one, if (x,y) is pre-classified as a road pixel; otherwise, I(x,y) 

equals zero. C(x,y) is the correlation on the pixel (x,y). In my implementation, I set 

W equal to H (i.e., a square area). 

The highest computed correlation C(x,y) implies the location of the best match 

between the road-labeled image and the template. Furthermore, C(x,y) determines 

the degree of similarity between the matched road-labeled image and the template. 

An intersection will be identified, if C(x,y) is greater than a similarity threshold t (0 

≤ t ≤ 1.0). When setting t to 0.5, I can keep the detected intersections that have 

higher similarity value (i.e., C(x,y)) than its dissimilarity value (i.e., 1.0 - C(x,y)). 

Hence, in my experiment, I set the threshold t to 0.5. Moreover, the square area 

dimension (i.e., the width W) can be determined based on the accuracy and 

resolution (such as ground resolution from image metadata) of the two datasets. In 

my implementation, I conduct experiments using various sizes and select the size 

that has the best performance. As an example, shown in Figure 2.6, I utilized a high 

quality road network, NAVTEQ NAVSTREETS, and the LTM technique with 
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various area sizes to 

identify intersections in a 

1.5 km by 1.5 km USGS 

high resolution color 

imagery (with 106 actual 

road intersections). 

Figure 2.6 shows the 

performance of LTM by 

applying a “buffer method” to calculate recall and precision of identified 

intersections. Road intersection can be viewed as the intersection of multiple road 

axes. Also, it is located at the overlapping area (called buffer) of these elongated 

road regions. Identified road intersections that fall within the buffer are considered as 

“correctly identified intersections”. Using this term, I define: 

image  in  the  onsintersecti   ofNumber  
onsintersecti  identified  correctly   ofNumber  Recall=    Eq.(2.2) 

onsintersecti identified  ofNumber  
onsintersecti  identified correctly   ofNumber  Precision =    Eq.(2.3) 

As shown in Figure 2.6, I increase the area dimension from 60 m (i.e., 200 pixels 

in a 0.3 m/pixel image) to 180 m with the incremental dimension value 30 m. Then, I 

calculate the precision and recall. I also compute the normalized intersection 

detection running time (with respect to the running time of using 180 m as area 

dimension). The results show that the detection time dramatically increases as area 

dimension increases. 
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Figure 2.6: The impact of area dimension (dimension is increased  

by 30 m) 
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As shown in Figure 2.6, the precision decreases when the area dimension 

increases. This is because that larger area may involve more road intersections that 

have similar shape as the road template (e.g., some urban areas where roads are 

sometimes distributed in a grid shape). In addition, there could be more misclassified 

pixels (such as the house roof pixels which have similar color to road pixels and 

might be classified as on-road pixels) for a larger area, thus detecting some incorrect 

intersections. Due to the same reason, the recall also slightly decreases as the area 

dimension increases from 90 m to 180 m. However, I obtained lowest recall when 

setting the dimension size to 60 m. This implies that dimension 60 m is not large 

enough to capture most of the positional displacements between the vector and 

imagery. Therefore, based on these experimental results, I can select 90 m as the area 

dimension to identify intersections as control points on other neighbooring areas. 

This is because setting the area dimension to 90 m, the system achieved 84% 

precision and 64% recall. Although it is slightly smaller than the precision (86%) 

obtained using 60 m as area dimension, I obtain much better recall (64% vs. 52%). 

The histogram-based classifier, as illustrated in the previous section, may 

generate fragmented results due to noisy objects, such as cars, tree-clusters and 

building shadows on the roads. Furthermore, some non-road objects whose color is 

similar to road pixels might be misclassified as roads. However, LTM can alleviate 

these problems by avoiding exhaustive search of all the intersection points on the 

entire image and usually locates the intersection point on the image that is the closest 

intersection point to the intersection point on the road network data.  Moreover, this 
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technique does not require a classifier to label each pixel for the entire region. Only 

the areas near the intersections on the image need to be pre-classified. In addition, 

when utilizing localized template matching, it implicitly implies that the topology 

constraint (such as adjacency) is considered. This is because the template is 

generated based on the connectivity of several road segments merging at the same 

intersection point. 

Note that the objective of the histogram-based classifier is not to correctly 

classify every single pixel of the image as off-road or on-road.  Instead, as long as a 

majority of on-road pixels are identified so that the intersection-shape on the image 

is captured, LTM can successfully match it to the corresponding vector template. 

Even in the worst case, if the system misses an entire intersection, still the entire 

conflation process may be successful as long as a sufficient number of intersections 

are identified. 

In sum, the running time of my LTM 

technique is dramatically lower than 

traditional image processing techniques, 

because image processing is performed on 

localized areas. Furthermore, exploiting 

the road direction information improves 

both the accuracy and efficiency of 

detecting road intersections in the image. 

Figure 2.7 shows an image indicating the 

 
Figure 2.7: The intersections (rectangles) on road 
network data and the corresponding intersections 
(circles) on imagery 
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intersection points on road network data and the corresponding intersection points 

identified on imagery. 

2.2 Filtering Control Points 

The localized template matching may take misclassified pixels (such as the house 

roof pixels, which have similar color to road pixels) as on-road pixels, thus 

producing some inaccurate 

control point pairs.  For example, 

Figure 2.8 shows the 

intersections (rectangles) on road 

network data and the 

corresponding intersections 

(circles) on imagery. The 

detected (and highlighted) 

control point pairs 1, 2 and 3 are 

inaccurate control point pairs. 

Because the conflation algorithm utilizes the control point pairs to align the 

vector data with the image, the inaccurate control point pairs reduce the accuracy of 

the alignment between two datasets.  Therefore, it is very important to filter out 

inaccurate control point pairs. To address this issue, I can exploit the fact that there is 

a significant amount of regularity in terms of the relative positions of the controls 

points across data sets.  This is due to the fact that my system is not trying to correct 

12

3

12

3

Figure 2.8: Some inaccurate control point pairs 
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individual errors, but rather to determine some local transformations across datasets 

that allow the system to integrate two separate data sources. More precisely, while 

there is no global transformation to align imagery and vector data, in small areas the 

relationship between the points on the imagery and the points on the vector data can 

be described by a transformation.  The transformation can be attributed to different 

projections, accuracies, or coordinate systems used in the imagery data and the 

vector data.  Due to the above-mentioned nature of the datasets, in a small region the 

control points on the imagery and the counterparts on vector data should be related 

by similar transformations.  Therefore, the inaccurate control point pairs can be 

detected by identifying those pairs with significantly different relationship as 

compared to the other nearby control point pairs. 

I explored a set of filtering techniques to filter out the inaccurate control point 

pairs.  Section 2.2.1 describes the first filter, vector median filter (VMF) [3]. Section 

2.2.2 discusses the other filter, distance-based outliers detector (DB-outliers detector) 

[30].  Both VMF and DB-outliers detector utilize the same underlying property (that 

is, there is a significant amount of regularity in terms of the relative positions of the 

controls points across data sets), but use different mathematical models to 

accomplish filtering. 

2.2.1 Vector Median Filter (VMF) 

Vector Median Filter (VMF) [3] is a mathematical tool for signal processing to 

attenuate noise, and it is a popular filter to accomplish noise removal in image 
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processing.  The VMF views the data points as vectors and filters out the data point 

with vectors significantly different from the median vector. 

The relative position of the points of each control point pair can be viewed as a 

vector, termed control-point vector. Assuming that N control point pairs are detected 

in a small area by LTM technique. Hence, there are N control-point vectors denoted 

as { ix� | ix�  = iiQP  (i= 1, 2, 3, … N), where the tail Pi is an intersection point on the 

vector dataset, and the head Qi is the (detected) corresponding point on the imagery}. 

Since vectors are invariant under translation, it is convenient to consider the tail 

Pi as located at the origin. Hence, the tail of each control-point vector coincides to 

the same origin. In the example reproduced in Figure 2.9, the control-point vectors 

for the seventeen detected control point pairs of Figure 2.9(a) are shown in Figure 

2.9(b) as arrows (vectors).  Because the spatial inconsistencies between the imagery 

and vector data in a local area are similar, the control-point vector whose direction 

and magnitude are significantly different from others is characterized as an 

inaccurate control-point vector (i.e., an outlier).  Due to the similarities of these 

control-point vectors, their directions and magnitudes can be represented by the 

vector median.  I modified the vector median filter to assist my system in identifying 

the control-point vectors that are significantly different.  The system uses this filter 

to obtain the best matching set of control points. 

The vector median of these N vectors ix�  (i= 1, 2, 3, … N) can be defined as the 

vector vmx�  such that 
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1) The sum ||||
1

i

N

i
vm xx �� −∑

=

 is minimized. Here ||  || stands for L2 norm (Euclidean 

distance). 

2) vmx�  ∈ ix� ; i= 1,2,3,…,N. 

Vector median has similar properties as the median operation.  Intuitively, the 

median vector is the vector that has the shortest summed distance (Euclidean 

distance) to all other vectors. 

The inputs for a vector median filter are N vectors ix�  (i= 1, 2, 3, … N) and the 

output of the filter is the vector median vmx� .  I revised the output of vector median 

filter to accommodate not only vmx� , but also k closest vectors to the vector median.  I 

defined the distance D: 
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Figure 2.9: VMF filter 
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D= 2|||| vmk xx �� −  where kx� is the k -th closest vector to vmx� . 

Then, the output of my vector median filter is 

{ ix� | where Dxx vmi ≤− |||| ��  and i= 1, 2, 3, … N } 

As a result of the modified Vector Median Filter, the k closest vectors to the 

vector median are selected and the other control-point vectors are filtered out.  The 

possible value of k is an integer between 1 and N. Large value of k provides more 

control-point vectors, but may not filter out all inaccurate control point pairs. Based 

on my experiments of tuning different values for k, the VMF filter performs well 

when setting k to  2
N . Hence, the system kept the k=  2

N  closest vectors to the 

vector median and filtered out the remainder of the control point pairs.  As a result, 

some accurate control-point vectors may be lost.  However, the missing control point 

pairs would not greatly affect the conflation results, as some of the selected control 

point pairs close to the lost accurate control point pairs have similar directions and 

displacements. 

Figure 2.9 graphically shows how the VMF works.  For example, to determine 

whether the control point pair 1 (in Figure 2.9(a)) is an outlier or not, its 

corresponding control-point vector would be compared to other control-point vectors 

nearby. The seventeen neighboring control-point vectors within a radius of 300 m to 

the control point pair 1 are shown in Figure 2.9(b) as the arrows.  The thickest arrow 

is the vector median among these control-point vectors. After applying the modified 

Vector Median Filter, only nine (k=9) closest vectors to the vector median are not 

categorized as outliers. As shown in Figure 2.10, the circles mark the control point 
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pairs categorized as outliers by 

VMF. The control point pair 1 will 

be filtered out, because its 

corresponding control-point vector 

(represented as OW  in Figure 

2.9(b)) is categorized as an outlier. 

The system can repeat the same 

process to filter out other outliers. 

2.2.2 Distance-based Outliers 

Detector 

Intuitively, to locate misidentified control points is to find the control-point vector 

that is extreme to its neighbors. The way to measure the “degree of extremity ” of a 

specific control-point vector to its neighbors is calculating the Euclidean distance 

between them. In the previous section, I use the vector median whose summed 

distance to other neighboring control-point vectors is minimum to filter out outliers. 

Instead of utilizing the vector median to detect misidentified control points, in this 

section, I describe an alternative way by utilizing a distance-based outliers detector 

(termed DB(p,D)-outliers detector) [30] (In fact, it is an example of spatial outlier 

detector proposed in [40]). For a dataset T with N objects, an object O in T is a DB(p, 

D)-outlier if at least a fraction p of the objects in T lies greater than distance D from 

O [30]. The DB(p, D)-outliers detector works based on the observation: the control-

11

Figure 2.10: Control point pair 1 is filtered out, after 
applying VMF on Figure 2.9(a). 
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point vectors that have similar directions and magnitudes tend to form some clusters 

that exclude the extreme control-point vectors. 

For example, again, to determine whether control point pair 1 (in Figure 2.9(a)) 

is an outlier or not by using DB(p, D)-outliers detector, its corresponding control-

point vector would be compared to other control-point vectors nearby. The seventeen 

neighboring control-point vectors within a radius of 300 m to the control point pair 1 

are shown in Figure 2.9(b) as the arrows. Consider the head point W (see Figure 

2.9(b)) of the control-point vector OW of the control point pair 1. When setting p to 

50% and D to 15 m, there are only 12% of head points of other control-point vectors 

within 15 m to the point W. Hence, the point W is characterized as an outlier, and its 

corresponding control point pair (i.e., control point pair 1) is categorized as an outlier 

to be filtered out. The system can repeat the same process to filter out other outliers. 

The choice of p and D depends on the application-specific costs of outlier-detection 

errors and it can be determined by experiments. 

Different configurations for p and D will result in different filtering results. 

Compared to VMF, there is no similar set of parameters that needs to be determined 

for VMF in advance, although I can adjust the parameter k of VMF to retain or filter 

out additional control points. However, consider a very inconsistent control-point 

vector set (e.g., none of the control-point vector has similar direction and 

magnitude). VMF is not appropriate to filter control points in this scenario, since it 

may misidentify an inaccurate control-point vector as the vector median. In contrast, 

with proper parameter configurations, the DB(p,D)-outliers detector can handle this 
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scenario. However, from my practical experiments on real world data, this extreme 

scenario is rather rare. 

2.3 Aligning Road Vector Data with Imagery 

After filtering the control point pairs, I have an accurate set of control point pairs for 

the imagery and vector data.  Each pair of corresponding control points from the two 

datasets indicates corresponding positions on the datasets.  Transformations are 

calculated from the control point pairs.  Other points in both datasets are aligned 

based on these transformations.  The Delaunay triangulation [5] and piecewise linear 

rubber sheeting [45] are utilized to find the appropriate transformations. The 

Delaunay Triangulation is discussed in Section 2.3.1, and rubber-sheeting is 

explained in Section 2.3.2.  Moreover, a novel technique to reduce the spatial 

inconsistencies for the area where the system does not have any control point pairs is 

discussed in Section 2.3.3. 

2.3.1 Space Partitioning Using Delaunay Triangulation 

To achieve overall alignment of imagery and vector data, vector data must be 

adjusted locally to conform to the imagery.  The system can align the two datasets 

based on local adjustments, because small changes in one area usually do not affect 

the geometry at long distances. To accomplish local adjustments, the domain space is 

partitioned into small pieces based on accurately identified control point pairs.  Then, 

local adjustments are applied on each individual piece.  Triangulation is an effective 

strategy to partition the domain space into triangles to define local adjustments. 
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There are different ways to utilize the 

control points to partition the space into 

triangles. One particular type of 

triangulation, Delaunay triangulation, is 

especially suited for conflation systems 

[35].  A Delaunay triangulation is a 

triangulation of the point set with the 

property that no point falls in the interior 

of the circumcircle of any triangle (the 

circle passing through the three triangle 

vertices). The Delaunay triangulation 

maximizes the minimum angle of all the 

angles in the triangulation, thus avoiding 

triangles with extremely small angles [5]. 

My system performs the Delaunay 

triangulation with the set of control points 

on the vector data, and makes a set of 

equivalent triangles with corresponding 

control points on the imagery. Figure 2.11 

shows an example of a resulting Delaunay 

triangulation on some detected control 

points. 

 

a) The original road network and detected control 
point pairs (one is marked by rectangle and the 
corresponding point is represented as circle) 

 

b) Delaunay triangulation based on detected control 
points on road vector data 

 

c) Corresponding Delaunay triangulation based on 
detected control points on image 

Figure 2.11: An example of Delaunay 
triangulation 
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The Delaunay triangulation can be performed in O(n*log n) time in worst case, 

where n is the number of control point pairs.  The details of the triangulation 

algorithms are discussed in [5, 26, 35]. 

2.3.2 Piecewise Linear Rubber-sheeting 

Imagine stretching a vector map as if it were made of rubber.  My system deforms 

algorithmically, forcing registration of control points over the vector data with their 

corresponding points on the imagery.  This technique is called “Piecewise linear 

rubber sheeting” [45].  There are two steps to rubber sheeting. First, the 

transformation coefficients (i.e., the affine transformation that is composed of 

translation, rotation and scaling) to map each Delaunay triangle on vector data onto 

its corresponding triangles on the imagery are calculated.  Second, the system applies 

the same transformation coefficients to transform the endpoints of each vector line 

segment within each Delaunay triangle to the imagery. Consider the example shown 

in Figure 2.12(a). White lines represent the road network. The rectangles are the 

control points on the road vector data and the circles are the corresponding control 

points on the imagery. The two triangles shown are Delaunay triangles formed by 

three corresponding control point pairs and one endpoint A of the original road 

segments is located within the triangle on the road vector data. The rubber sheeting 

technique transforms endpoint A to the point B on the imagery (B becomes an road 

endpoint on the image). The conflated road network is constructed by connecting 

these transformed endpoints (see Figure 2.12(b)).  
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Piecewise linear rubber sheeting based on triangles with extremely small angles 

(i.e., long and thin triangles) results in distorted conflation lines.  Since the Delanuay 

triangulation avoids triangles with extremely small angles, it alleviates the problem. 

The detailed piecewise linear rubber-sheeting algorithms can be found in [35, 45]. 

2.3.3 Region Expansion 

I developed a technique named “Region Expansion” to reduce the spatial 

inconsistencies for the regions where there are no feature points (e.g., intersection 

point) on the vector data and imagery to perform conflation. From the boundary of 

the conflation area (the convex hull formed by control points, as the polygon 

ABDEFGHI in Figure 2.13(a)), the system estimates new control points based on 

existing control points. Using these new control points, the original conflation area 

where the control points are found can be expanded. The key computation of region 

expansion is estimating the new control points from the Delaunay triangles closest to 

 
 a) The endpoint A on the original road segments 
(white lines) will be transformed to the point B on 
the imagery, after applying rubber-sheeting  

 b) Partial conflated roads after applying rubber-sheeting to 
Figure 2.11(a) 

Figure 2.12: An example of rubber-sheeting 
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the boundary of the conflation area. Intuitively, the estimation is based on the 

assumption that the displacements between intersections in the vector and the 

corresponding points in the imagery are similar in a small area. 

Consider the example shown in Figure 2.13. The Delaunay triangle vertices are 

the control points on the vector data, and the dash lines represent a partial road 

network. The gray Delaunay triangle ∆ABC is a boundary triangle (i.e., a triangle 

with at least one edge that is not shared with any adjacent triangles). Figure 2.13(b) 

focus on the control point distributions of the three vertices of triangle ∆ABC, where 

Av, Bv and Cv are the control points on vector data and Ai, Bi and Ci are the 

corresponding control points on the underlying image, respectively. Pv (within 

∆ABC) is an endpoint of road segment vvQP  on the road network (i.e., dashed lines), 

and Pi is the corresponding point on imagery after applying the rubber-sheeting 

transformation. To generate a new control point out of the control point convex hull, 

the system has to find a point on the road network and its corresponding point on the 
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a) Convex hull formed by existing control points  
(dash lines: partial roads, points: control points on 
vector data; triangles: Delaunay triangles ) 

b) New control point pair Qv and Qi  
(focus on a boundary triangle ∆ABC) 

Figure 2.13: Generate new control point pairs based on existing control points 
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imagery. Qv (another endpoint of the segment vvQP ) is a good candidate as a control 

point on the vector data. Furthermore, since in a small area the displacements 

between intersections in the vector and the corresponding points in the imagery are 

similar, the corresponding point of Qv on the imagery (i.e., Qi) can be estimated by 

adding the same displacement (noted as d in Figure 2.13(b)) as that between Pv and 

Pi. Hence, the system obtains a new control point pair (i.e., Qv and Qi). Then, the 

system can further apply Delaunay triangulation and rubber-sheeting based on the 

original and these new-added control point pairs. Region expansion works 

effectively for the areas where the positional discrepancies between vector data and 

imagery are similar. However, if the existing control points are not accurate, the new 

control points will not be accurate either. 

2.4 Performance Evaluation 

In this section, I evaluated my approaches by conducting several experiments on 

various real world data. The tested datasets are described in detail in Section 2.4.1. 

The purpose of the experiments is to evaluate the utility of my algorithms in 

integrating real world data. I am interested in measuring the improvement in the 

accuracy of the integration of road vector and imagery using my techniques. To that 

end, I performed experiments to validate the hypothesis: using AMS-conflation, we 

can automatically improve the alignment of different accuracy level road vectors 

with orthoimagery. Section 2.4.1 describes the experimental setup and the datasets 

used to evaluate my approach. Section 2.4.2 presents my evaluation methodology to 
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measure the performance improvement. Section 2.4.3 discusses the experimental 

results. 

2.4.1 Experimental Setup 

I used the following two datasets for the experiments: 

(1) Orthoimagery 

The imagery used in the experiments is the geo-referenced USGS high resolution 

color orthoimagery (with 0.3 m/pixel resolution) and geo-referenced USGS gray-

scale DOQ imagery with 1 m/pixel resolution. In particular, I tested the color 

imagery that covers a partial area of the county of St. Louis, MO, and the gray-scale 

imagery that covers a partial area of the city of El Segundo, CA. This imagery is 

available online and can be queried from the Microsoft TerraService web service [4]. 

(2) Vector data (road networks) 

Three road networks from different data providers were used as the vector data: 

• TIGER/Lines from U.S. Census: The TIGER system was developed by the 

U.S. Bureau of Census. The Census Bureau has developed the TIGER/Line 

files, which are extractions of selected geographic and cartographic 

information from the TIGER database. In particular, I focus on the road 

networks queried from TIGER/Line files (called TIGER/Lines henceforth). 

• NAVSTREETS from NAVTEQ: NAVSTREETS is a commercial product 

consisting of high quality vector data with highly accurate geometry. It is 

regularly updated by NAVTEQ using base maps acquired from a variety of 
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sources including local governments, commercial mapping agencies, and 

other public agencies. It is primarily used for car navigation systems and road 

route planning. Many online street map services, such as MapQuest, utilize 

NAVSTREETS as the base dataset for route planning. 

• Road network data (called MO-DOT henceforth) from the Missouri 

Department of Transportation [42]: MO-DOT is also a high quality dataset. 

In general, all the road network data listed above have rich attribution; however, 

TIGER/Lines has both poor positional accuracy and road geometry. With 

TIGER/Lines and MO-DOT, the number of lanes can be inferred from the attribute 

“CFCC (Census Feature Class Codes)” associated with each road segment, while 

the number of lanes can be obtained from the attribute “LANE_CAT” in 

NAVSTREETS. Furthermore, the locations of road intersections and the road 

directions around each intersection are calculated by analyzing these road networks 

using the algorithms described in Section 2.1.1. In general, NAVSTREETS and MO-

DOT are high quality road vectors, but with various accuracy levels. Figure 2.14 

 
a) Original TIGER/Lines with 
imagery 

 b) Original NAVSTREETS  with 
imagery 

c) Original MO-DOT with  
imagery 

Figure 2.14: Original road vector (white lines) superimposed with imagery 
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shows some sample images to indicate that there are various spatial inconsistencies 

between the USGS high resolution color imagery and the three different vectors. 

My automatic conflation system was developed in C#.  The algorithm allows the 

user to specify the following parameters: the two datasets to conflate (e.g., “imagery 

and TIGER/Lines”, “imagery and NAVSTREETS” or “imagery and MO-DOT”) and 

the type of filtering techniques. The output of my conflation system was a set of 

conflated roads for the three different types of vector datasets. The experiments were 

conducted on a Pentium III 1.2GHz processor with 512MB memory and Windows 

XP (with .NET framework installed). In order to evaluate my approach on various 

real world data, I applied AMS-conflation to the diverse areas as summarized in 

Table 2.1. In addition, I manually plotted the real road axes (called reference roads) 

as the ground truth with which I compare the conflated roads. 

2.4.2 Evaluation Methodology 

In order to evaluate the performance of my conflation algorithm, I manually drew 

reference roads to compare with conflated roads, and I also developed an evaluation 

schema to measure: (1) The percentage of the reference roads in imagery for which 

the system generated conflated roads, (2) The percentage of correctly conflated 

roads with respect to the total conflated roads, (3) The percentage of the total length 

of the conflated roads that is within a specific distance of the reference roads. 

Toward that end, I compared the conflated road network with the reference road 

network. 
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In the computer vision literature on automatically extracting roads from imagery, 

there are many methodologies proposed to evaluate the extracted roads against real 

roads [22, 46]. Due to the natural similarity between the problem of evaluating 

extracted roads and my problem of evaluating conflated roads, I can utilize these 

existing algorithms to evaluate the conflation results. In particular, I adapted the 

“road-buffer method” proposed in [46]. The road-buffer method is utilized to 

Table 2.1: Tested datasets used in the experiments 
 Test area 1 Test area 2 Test area 3 Test area 4 
Area covered* Latitude: 

38.5808 to 
38.5947 

Longitude: 
-90.4049 
to -90.388 
 
Width: 1.5 km 
Height: 1.5 km 

Latitude: 
38.5703 to 38.5842 
Longitude: 
-90.543 to -90.526 
 
Width: 1.5 km 
Height: 1.5km 

Latitude: 
38.5962 to 
38.6101 

Longitude: 
-90.490 to -90.473 
 
Width: 1.5 km 
Height: 1.5km 

Latitude: 
33.914 to 33.932 

Longitude: 
-118.4209  
to -118.399 
Width: 2 km 
Height: 2 km 

Total road length 
of TIGER/Lines 
(m) 

23534.52 21443.96 7966.62 46580.64 

Total road length 
of NAVSTREETS 
(m) 

24360.00 21921.29 9876.02 N/A** 

Total road length 
of MO-DOT (m) 

24759.30 21796.92 9431.68 N/A** 

Total road length 
of reference 
roads(m) 

25471.63 21999.00 9252.01*** 46660.20 

Area features 0.3 m/pixel color 
imagery. Suburban 
area (covering 
some urban area) 
with high road 
density (11.3 
km/km2) and high 
house density 

0.3 m/pixel color imagery. 
Suburban area with high 
road density (9.7 km/km2) 
and high house density. 
Perceptually, the majority 
of road color in this area 
is different from the road 
color in test area 1. 

0.3 m/pixel color 
imagery. Rural 
area with medium 
road density (4 
km/km2). 12% of 
the roads are 
highways. 
 

1 m/pixel gray-scale 
imagery. Urban area 
with high road 
density (12.83 
km/km2) and high 
house density. 

 
* Test area 1, 2, and 3 cover partial areas of the county of St. Louis, MO. Test area 4 covers a partial area of 
the city of El Segundo, CA. 
** These road vector datasets were inaccessible at the time the experiments were performed. 
*** These reference roads are shorter than vector data because some straight reference roads are depicted as 
curves in vector datasets.  
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measure the accuracy of automatically extracted roads with respect to real roads. I 

revised this method to measure the accuracy of conflated roads with respect to real 

roads. 

According to the algorithm proposed in [46], to compare two road networks (in 

my case, they are the reference road network and the conflated road network), the 

first step is to split both networks into short pieces of equal length. Then, a constant 

predefined buffer width is constructed around the reference road network (as the 

examples shown in Figure 2.15). Every portion of the conflated road network within 

the given distance (i.e., the buffer width) from the reference road network is 

considered to be matched. Furthermore, the direction difference between the 

matched and reference road axes must be less than a pre-defined threshold d (d was 

set to 20 degree in [46]). The drawback of this procedure is that the performance is 

highly affected by the predefined constant buffer width. Instead of using the constant 

buffer width for each road segment, I used the real road widths in the imagery as the 

buffer. Hence, the roads with different widths have different buffer widths. The 

   Conflated roads 

Buffer width x

Reference roads 

degree < 20 A 
B

C
Conflated roads 
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a) Segment AB: matched conflated road b) Segment AB: matched reference road 

Figure 2.15: Buffer method for evaluating completeness and correctness 
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pieces of the conflated roads within the buffer to the reference roads with consistent 

direction are considered as matched. 

Figure 2.15(a) shows the example of matched conflated roads with respect to 

reference roads. Segment AB is calculated as matched conflated road, while BC is 

not. Figure 2.15(b) shows the example of matched reference roads with respect to 

conflated roads. Segments AB is categorized as matched reference road, since the 

conflated road segment A’B’ can be used to “complete” the reference road segment 

AB. Segment BC is unmatched reference road. 

Using this term, two measurements, completeness and correctness, are defined as 

follows [46]. 

roads  reference  oflength    Total
roads  reference  matched  ofLength  ssCompletene =    Eq.(2.4) 

roads  conflated  oflength    Total
roads  conflated  matched  ofLength  sCorrectnes =    Eq.(2.5) 

Basically, the completeness is the percentage of the reference roads in imagery 

for which the system generated conflated roads. On the other hand, correctness is the 

percentage of correctly conflated roads with respect to the total conflated roads. 

However, the other measurement, RMS (root-mean-square error), described in [46] 

does not meet the requirements to compute how far the conflated road network is 

from the reference road network, since it only measures how far the matched 

conflated road network is from the reference road network. Instead of computing a 

number (e.g., average distance) to illustrate how far from each other the two 

networks are, I would like to measure the percentage of the total length of the 
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(conflated) roads that is within a specified distance x relative to the reference roads 

(e.g., 95% of the conflated roads are within five meters of the reference roads or 50% 

of the conflated roads are within 3-6 meters of the reference roads). The method 

proposed in [20] is a technique to assess positional accuracy. In the example shown 

in Figure 2.16, I consider a buffer with width x around the reference road network, 

then compute the proportion p of the conflated roads that lies within the buffer [20]. 

Using this technique, only the 

distance difference between two 

roads is considered. The errors due 

to the difference of directions 

between roads are captured by 

completeness and correctness. 

I conducted the experiments as 

follows for test area 1, 2 and 3: 

• Step 1: Learn the histogram (as shown in Figure 2.4) from nearly 500 

manually labeled rectangles21 from some color orthoimages covering partial 

areas of the County of St. Louis, MO. 

• Step 2: Apply AMS-conflation algorithm to conflate each area (image) with 

TIGER/Lines, NAVSTREETS and MO-DOT respectively. 

                                                 
21 There are 50,000 pixels covered by these rectangles and it took about 2.5 hours to perform the labeling 
process.  

x x

Roads to 
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Reference roads
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of buffer width x

x x

Roads to 
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Reference roads

Buffer zone
of buffer width x

 
Figure 2.16: Positional accuracy evaluation 
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As shown in Figure 2.17, for test area 1, 2 and 3, I conducted experiments to 

measure the accuracy of the original road vectors and conflated road vectors 

generated by AMS-conflation. Then, I compare the evaluation results for conflated 

road vectors with the results for original road vectors. In addition, I also measured 

the quality of the detected control points (before and after applying filtering 

techniques) by the precision and recall metrics defined in Section 2.1.2.2 (Eq.(2.2) 

and Eq.(2.3)). For the fourth test area (covering part of the city of El Segundo, CA), 

basically, I repeated the same process as above, but the system learned road color 

information from black-white images that cover some areas of El Segundo and I only 

conflated TIGER/Lines. I discuss the detailed experimental results in the following 

section. 

2.4.3 Experimental Results and Interpretations 

I obtained similar conflation performance for the two filtering techniques, VMF and 

DB(p,D)-outliers detector (under the setting that 50% was assigned to p and D was 
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Figure 2.17: Performance evaluation of vector-imagery conflation 
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15 m). Therefore, in this section, I will take the VMF as the filtering technique to 

illustrate the conflation results. 

2.4.3.1 Results of precision and recall of identified intersections 

Finding accurate control point pairs is a very important step in the conflation process 

as all the other points in both datasets are aligned based on the control point pairs. 

Hence, I evaluated the LTM performance by calculating the precision and recall (the 

metrics are defined in Eq.(2.2) and Eq.(2.3) of Section 2.1.2.2) of the detected 

control points (before and after applying filters). The results are listed in Table 2.2. I 

also included the precision/recall of original road network in Table 2.2 to 

Table 2.2: Results of identified intersections 
 Test area 1 Test area 2 Test area 3 Test area 4 

Precision 7.1% 8.7% 4.8% 3.8% Original road network 
Recall 6.7% 7.7% 4.5% 3.7% 
Precision 72.3% 82.1% 57.9% 78.9% Without filtering 
Recall 68.1% 24.2% 52.4% 52.1% 
Precision 87.1% 83.1% 69.2% 94.8% Using VMF filtering 
Recall 45.4% 21.2% 42.9% 34.0% 

a). Precision/recall of identified intersections for TIGER/Lines 
 
 Test area 1 Test area 2 Test area 3 

Precision 15.6% 23.3% 19.1% Original road 
network Recall 15.2% 23.1% 18.2% 

Precision 87.7% 82.1% 64.7% Without filtering 
Recall 76.2% 40.7% 52.4% 
Precision 97.1% 92.6% 83.3% Using VMF 

filtering Recall 54.1% 27.5% 47.6% 
b). Precision/recall of identified intersections for NAVSTREETS 

 
 Test area 1 Test area 2 Test area 3 

Precision 57.1% 32.2% 28.6% Original road 
network Recall 55.2% 31.9% 27.2% 

Precision 83.8% 82.1% 83.3% Without filtering 
Recall 73.9% 50.5% 71.4% 
Precision 98.1% 97.1% 90% Using VMF 

filtering Recall 42.9% 37.3% 43% 
c). Precision/recall of identified intersections for MO-DOT 
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demonstrate that LTM technique improved both precision/recall of original vector 

data. 

As shown in Table 2.2, LTM performed differently for various real world 

scenarios. This is because these vectors have different qualities and the orthoimagery 

has various levels of complexity. Hence, I obtained high precision (up to 98%) 

control points in some areas (such as test area 1), while medium precision (about 

70%) in other areas (such as the alignment of TIGER/Lines and imagery in test area 

3). In general, I improve the precision after applying filtering techniques, although 

this step reduces the recall. However, for the conflation process higher precision is 

more important than higher recall, since my approach is not trying to correct 

individual errors, but rather to determine the local transformations that allow the 

system to integrate vector datasets and imagery. 

2.4.3.2 Results of completeness and correctness of conflated roads 

The experimental results of completeness and correctness for each vector dataset are 

listed in Figure 2.18(a)-(f). Intuitively, the completeness corresponds to the users’ 

demands:  how much is missing in the original road network or in the conflated road 

network with respect to the reference road network. The correctness, on the other 

hand, is related to the percentage of the original or conflated road segments that 

could be considered as reference road segments. I showed the completeness (and 

correctness) for each utilized vector dataset respectively. In addition, the 

completeness (and correctness) values are grouped by tested areas as the X-axis of 
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Figure 2.18.  The Y-axis in Figure 2.18(a)(c)(e) shows the completeness for original 

road vector and conflated road vectors using VMF-filtered intersections as control 

points. Furthermore, in Figure 2.18(b)(d)(f), the Y-axis depicts the correctness.  For 

example, as shown in Figure 2.18(a) and (b), when utilizing VMF-filtered 

intersection points to generate conflated TIGER/Lines for test area 1 (on color 

images of the county of St. Louis, MO), my approach improved the completeness 

from 19% to 59%, and correctness from 25% to 55%. Another example, as the 

results for test area 4 shown in Figure 2.18(a)(b), my approach improved the 

completeness and correctness 2.5 times over the original TIGER/Lines (on black-

white images of the city of El Segundo, CA). In addition, there are some immediate 

observations from this figure: 

• The data quality of MO-DOT is superior to NAVSTREETS and much better 

than TIGER/Lines, which is consistent with our prior knowledge about these 

three different datasets. Moreover, from the diverse completeness and 

correctness in each vector dataset for different test areas, I concluded that 

each vector dataset itself has various accuracies. This is also consistent with 

the vector data quality statements quoted by the data providers. 
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Figure 2.18: Evaluation results for completeness and correctness 
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• Consider TIGER/Lines as the vector data source. The shapes (and geometry) 

of the original TIGER/Lines are often inconsistent with the corresponding 

roads in the imagery. Hence, as shown in Table 2.2 and Figure 2.18, I 

obtained low completeness/correctness for original TIGER/Lines and low 

precision/recall for the intersections of original TIGER/Lines. For a particular 

road segment, if the shape of the original vector data is inconsistent with 

roads in the imagery (as in the example of TIGER/Lines), my approach may 

not align them well, although the majority of intersections might be aligned. 

This is mainly because my matching is at the point level, not at the edge 

level. As illustrated by the TIGER/Lines in test area 1 (see Table 2.2(a)), my 

approach improved the node (intersection) alignment (as the precision 

improved from original 7% to 87.1%), while it achieved completeness from 

19.1% to 55% and correctness from 20.6% to 55%. However, recently, not 

only is the imagery quality enhanced, the quality of vector data is also 

significantly improved. Consider the conflation of high quality imagery and 

high quality vector dataset, such as NAVSTREETS. The road shapes of 

NAVSTREETS are very similar to the road shapes in the imagery. Hence, the 

major issue is that there are some local inconsistencies between them. AMS-

conflation can capture these local transformations (based on intersection to 

intersection matching information) and maintain the road shapes. 

• On average, good improvements were achieved for TIGER/Lines (as shown 

in Figure 2.18(a)(b)). For NAVSTREETS, my approach performed 1.3 to 1.9 
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times better than the original data (as in Figure 2.18(c)(d)), while the 

approach only gained marginal improvements for MO-DOT data on test area 

1 and 3 (see Figure 2.18(e)(f)). This is due to high completeness  (92.54%) 

and correctness (93.38%) of the original MO-DOT data in test area 1. Some 

roads are not aligned well around highways in test area 3. The road widths of 

highways vary and are difficult to predict. The problem could be addressed 

by integrating other information sources with those details. In fact, after 

visual examination, I found many misaligned road segments are close to the 

margins of road buffers (i.e., roadsides). When relaxing the “buffer-widths”, I 

can obtain higher completeness and correctness. This kind of assessment is 

illustrated by the “positional accuracy” evaluation described next. 

2.4.3.3 Results of positional accuracy of conflated roads 

The experimental results of “positional accuracy” categorized by road vectors for 

each test area are illustrated in Figure 2.19(a)-(c). Intuitively, the “positional 

accuracy” corresponds to the users’ demand: how far is the conflated road network 

from the centerlines of the real (reference) road network. I evaluated these 

displacements between two networks by gradually increasing the buffer-widths 

constructed around the reference road network. The buffer-width was increased by 

3.6 m (i.e., the U.S. standard lane width). As shown in the X-axis of Figure 2.19, the 

displacement values are grouped every 3.6 m. The Y-axis shows the percentage of 

conflated roads lying within the displacement range represented by the X-axis. For 



  
54

example, as shown in Figure 2.19(a), when utilizing VMF-filtered intersection points 

to generate conflated NAVSTREETS for the first test area, about 75% of the 

conflated roads are within 3.6 m from the reference roads, and only 35% of the 

original NAVSTREETS are within 3.6 m displacement. Although my approach did 

not achieve significant improvements on completeness/correctness for MO-DOT 

data (as stated earlier), it achieved better positional accuracy: On average, 91% of the 

conflated MO-DOT roads are within 7.2 m of the reference roads compared to 80.3% 

of the original MO-DOT. 

Even higher improvements were achieved for TIGER/Lines and NAVSTREETS. 

On average, 76% of conflated NAVSTREETS are within 7.2 m displacement versus 

54.6% of original NAVSTREETS and 53.9% of conflated TIGER/Lines are within 

7.2 meters versus 25.9% for the original TIGER/Lines. In particular, compared to 

NAVSTREETS and MO-DOT data, TIGER/Lines have poor positional accuracy and 

poor geometry, because large portions of curve-shaped roads were simplified as 

straight lines. For such severely distorted original TIGER/Line segments, our 

approach is limited in aligning imagery curves and vector lines, although the 

detected intersections are matched (as shown in Table 2.2). Hence, only about 47% 

of conflated TIGER/Lines in test area 2 and 3 are within 7.2 m of the reference 

roads, while 70% to 85% of conflated NAVSTREETS and MO-DOT are within 7.2 

m. However, compared to the original TIGER/Lines, my approach significantly 

improved the positional accuracy. 
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a) Positional accuracy assessment for test area 1
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b) Positional accuracy assessment for test area 2 
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c) Positional accuracy assessment for test area 3 

Figure 2.19: The percentage of original/conflated roads lying within the buffer versus the buffer width 
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In the first test area, there are about 25% of the streets in grid shape and all three 

road vectors provide accurate road shapes over these street grids. Therefore, my 

approach obtained better performance in test area 1. The issue of quality of the 

vector data can be addressed by starting with higher quality data such as 

NAVSTREETS or MO-DOT data. However, there are small portions of the 

conflated roads not aligning well to the imagery. This is mainly because the color of 

these misaligned roads are very different from what the system learned or the roads 

are close to the conflation area margins where long and thin Delaunay triangles were 

constructed. These issues could be alleviated by doing more training to recognize a 

wider range of road colors and applying the conflation on larger areas. 

In the fourth test area, the approach achieved high improvement for 

TIGER/Lines. 85% of conflated TIGER/Lines are within 8 m displacement versus 

43% of original TIGER/Lines (see Figure 2.20). 

This demonstrates the utility of my approach to 

conflate vector data with black-white and lower 

resolution imagery. 

2.4.3.4 Results of using filtered control 

points vs. using unfiltered control 

points 

Finally, I also compared the performance of running 

the conflation algorithm with filtered and unfiltered 
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control points. I conducted experiments to measure positional accuracy for the 

original MO-DOT and conflated MO-DOT in test area 2. 

The results shown in Figure 2.21 indicate that the conflated roads generated by 

filtered control points 

outperformed those generated 

by unfiltered control points, 

especially for displacements 

greater than 7.2 m. This is 

because the conflation process 

does not require a large number 

of control point pairs to 

perform an accurate alignment. In fact, a set of control points with higher accuracy 

would serve better for the conflation process, which is what my filtering techniques 

do. Therefore, I only consider the conflation performance (as illustrated in Figure 

2.18 and Figure 2.19) by utilizing the filtered control points. 

2.4.3.5 Execution time and summary 

Since the running time of AMS-conflation was mainly dominated by the LTM 

routine to detect road intersections, I used the running time of LTM as the overall 

execution time (the query time for retrieving online images or vector datasets was 

not included). On average, the execution time for locating an intersection in a 

localized area was about three to five seconds (it depends on the radius setting for 
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Figure 2.21: Comparison of filtered vs. unfiltered conflation 
results for test area 2 
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LTM). For example, the total running time for generating conflated roads for a small 

area of 900 m by 900 m with 20 intersections is about one minute. 

In sum, these experimental results indicate that my approach automatically and 

efficiently improves the alignments of various vector datasets with orthoimagery. 

This validates my experimental hypothesis. Figure 2.22 shows some sample images, 

after applying conflation to each of the three road vectors, respectively. 

 

 
a) Conflated TIGER/Lines with color imagery 

 
b) Conflated NAVSTREETS with color imagery 
 

  
c) Conflated MO-DOT with color imagery d) Conflated TIGER/Lines with black-white 

imagery 

Figure 2.22: Vector-Imagery conflation results (white lines: original road network; black lines: after 
applying conflation ) 



  
59

Chapter 3   

 

Automatic Conflation of Street Maps and Orthoimagery 
 

 

In addition to road vector datasets and orthoimagery, raster maps are another type of 

geospatial dataset that is readily available from online map services, such as Yahoo 

Map Service, MapQuest, and Microsoft TerraService. Some services, such as 

TerraService, can display the imagery and related maps in separate frames. However, 

there is no service with the capability to automatically align imagery and maps in a 

single framework. Furthermore, to the best of my knowledge, there is no research 

that addresses the problem of automatic conflation of maps and orthoimagery. 

In this section, I present an approach to automatically conflate streets maps with 

high resolution georeferenced orthoimagery [9]. I also present the experimental 

results of conflating various real world street maps and orthoimagery. Figure 3.1 

shows the overall approach for conflating imagery and maps22. First, my approach 

automatically conflates the road vector data with the orthoimagery to find the 

intersections in the image. Next, the approach finds the road intersection points on 

the street map. Then, it computes the alignment between the two point sets to obtain 

a commom point pattern as the set of control point pairs. Finally, it deforms one of 

                                                 
22 A pseudo code in Appendix B presents the map-imagery conflation algorithm. 
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the datasets (e.g., maps) to align the other (e.g., imagery) utilizing these identified 

control point pairs. 

3.1 Identifying Feature Points (Road Intersections) 

Similar to vector-imagery conflation, the essential task of map and imagery 

conflation is to find accurate control point pairs from both datasets. In addition to the 

similar challenges as vector-imagery conflation, aligning maps with imagery is a 

more difficult problem. Mainly, this is because neither map nor imagery has 

reference points (such as road intersections or landmarks) established in advance for 

a matching problem. A straight forward method is analyzing the map and imagery to 

identify common and corresponding spatial objects (such as road segments or road 

intersections) from both datasets as control points. However, this process requires 

significant CPU time to process an image in its entirety and still may result in 

inaccurate results. Moreover, it is unclear which kinds of features are good 
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candidates to be identified from both datasets, especially when the system does not 

know the context (and the geo-coordinates) of the maps or imagery in advance. 

Since I focus on street maps and imagery conflation, I can utilize the road 

intersections detected from both datasets as control points [11, 17, 18, 21]. However, 

as stated in Section 2.1.2, automatic extraction of road intersection points from 

imagery as feature points is a difficult task due to the complexity that characterizes 

natural scenes. Furthermore, it is also difficult to detect road intersections from maps 

and discover the matched intersections from both datasets. I propose a solution to 

address these issues in this section. Basically, the proposed solution for map-imagery 

conflation conforms to that of vector-imagery conflation. That is, I exploit 

information from each of the sources to be integrated to assist the automatic feature 

detection and alignment process.  

3.1.1 Identifying Intersections on Imagery 

Although automatic extraction of road intersection points from imagery is a 

challenging task [1, 22, 23], I can take full advantage of my vector-imagery 

conflation algorithm described in Section 2 to overcome the issue. The idea is to 

utilize auxiliary information sources (i.e., road vector data) that are not part of a map 

or an image, but have information relevant to both sources. In other words, I utilize 

the road vector data as “glue” to align maps and imagery. First, I align road vector 

data with imagery using vector-imagery conflation. As a result the conflated 

intersection points on the road network are aligned with the intersection points on the 
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imagery. I can then use the conflated intersection points as intersection points on the 

imagery. Figure 3.2 shows an example illustrating the detected intersection points on 

an image before and after conflating the image with a road network. 

3.1.2 Identifying Intersections on Street Maps 

Since there are few online street maps with known geo-coordinates, I cannot apply 

the same localized image processing (i.e., LTM), described in Section 2.1.2, to find 

intersection points on maps. This is because I cannot find the corresponding vector 

data for the map, since the map geo-coordinates are unknown. Hence, for those maps 

whose geo-coordinates are unknown in advance, I utilize automatic map processing 

and pattern recognition algorithms described below to identify the intersection points 

on maps. 

Ideally, intersection points on street maps could be extracted by simply detecting 

road lines. However, due to the varying thickness of lines on diverse maps, accurate 

extraction of intersection points from maps is difficult [13, 31, 38]. In addition, there 

 

  
a) Imagery with road network, before conflation b) Detected intersection points on imagery, 

after conflation 

Figure 3.2: Intersection points automatically detected on imagery 
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is often noisy information, such as symbols, contour lines and alphanumeric 

characters on the map, which make it even harder to accurately identify the 

intersection points.  

To overcome these problems, I adapted the automatic map processing algorithm 

described in [31] to skeletonize the maps for extracting intersection points. The basic 

idea is to detect intersection points only on the map that has been pre-processed by 

line thinning algorithms and noise-removal procedures. In particular, the process can 

be divided into the following subtasks: (1) isolate map data by a threshold, (2) 

decrease line width by thinning algorithms, such as [2], (3) recognize intersection 

points by crossing number (CN), the number of lines emanating from an intersection 

point [2], (4) remove misidentified intersections caused by noisy information (such 

as symbols and text). The details of the line intersection detection algorithm are 

discussed in [31]. However, this algorithm assumes that the roads are illustrated as 

multiple single-lined segments on the maps. Therefore, it is not appropriate for the 

maps where roads are depicted as double lines. In particular, from my experiments 

with diverse single line online street maps, this algorithm achieved 65% to 95% 

precision in identifying road intersections, while it worked poorly (with 20% to 30% 

precision) for double line street maps. 

To overcome this problem, instead of using “crossing number (CN)” (for an 

intersection, its CN must be greater than two) to detect intersections, I utilize feature-

detection functions implemented in OpenCV23 to detect promising points, such as 

                                                 
23 http://sourceforge.net/projects/opencvlibrary 
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corners and distinct points. Then, a verification process is conducted to check 

whether there is any linear structure around each detected corner point. If so, the 

detected point will be characterized as an intersection point. I found that my revised 

approach can achieve 76% precision (on average) on my tested street maps 

(including both single line and double line street maps). 

My above-mentioned map intersection detection algorithm [9] is further 

improved by the approach proposed in [13] to deal with more complicated maps, 

such as USGS topographic maps,24 which illustrate not only roads, but also other 

features, such as contour lines, railroads, etc. Chiang et al. [13] enhanced my 

algorithm in several ways: (1) separating the linear structures from the maps by 

dynamically investigating thresholds and using the text/graphics separation 

techniques proposed in [6], (2) using morphological operators (e.g., erosion and 

dilation operators) to reconnect and clarify the potential road segments. On average, 

this method [13] can achieve 92% precision and 67% recall to detect map 

intersections.25 Moreover, it has the capability to compute the number of road 

segments that are incident to an intersection (called the degree of an intersection 

[35]) and the directions of those incident segments. This additional information can 

help to improve my point pattern matching algorithm (described next). 

Figure 3.3 shows an example illustrating the detected intersection points on a 

topographic map queried from Microsoft TerraService. Although the algorithm 

                                                 
24 http://topomaps.usgs.gov/drg/ 
25 A map intersection is characterized as an accurately detected point if and only if its location is less 
than five pixels from the exact position of the actual map intersection. 
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described above can significantly reduce the rate of misidentified intersection points 

on the maps, it is still possible that both noisy points are detected as intersection 

points and some intersections may be missed. For example, the points near the lower 

left corner (e.g., the detected points in “NDO”) were mistaken for some road 

intersections. However, my point pattern matching algorithm can tolerate the 

existence of misidentified intersection points. 

3.2 Generating Control Points by Point Pattern Matching  

So far I have identified a set of intersections on both the street map and the imagery. 

Figure 3.4 shows an example of the two point sets on a map and an image, 

respectively. The remaining problem is to match these points in order to generate a 

set of control point pairs.  

Let M= {mi | mi= (xi, yi ), where (xi, yi ) is the location of detected intersections 

on the map} and  S= {si | si= (loni, lati), where (loni, lati) is the location of identified 

intersections on the imagery}. 

 

   
Figure 3.3: Intersection points detected on a map (each detected intersection is marked as a cross) 
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Our objective is to locate the set: RelPat={(mi,si) | where mi is the accurately 

detected point on the map and si is the corresponding point on the imagery. That is, 

point mi and si, are formed by the same incident roads.}.  

This set RelPat would be utilized as control point pairs to align maps and imagery. 

If the system can recognize the names of road segments that are incident to 

intersections, it can use these road names to infer the set RelPat. However, it is 

difficult to recognize the road names automatically from the raster maps [6]. In 

addition, road vector data may not be associated with the attribute, road name. 

Instead, my approach relies on some prominent geometric information, such as the 

distribution of points, the degree of each point and the direction of incident road 

segments, to locate the matching point pattern. In other words, the problem of point 

pattern matching is at its core a geometric point sets matching problem. 

The basic idea is to find the transformation T between the layout (with relative 

distances) of the intersection point set M on the map and the intersection point set S 

on the imagery. The key computation of matching the two sets of points is 

 

 

a) A map with some detected intersections b) An image with detected intersections 

Figure 3.4: Intersection points detected on a map and an image 
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calculating a proper transformation T, which is a 2D rigid motion (rotation and 

translation) with scaling. Because the majority of map and imagery are oriented such 

that north is up, I only compute the translation transformation with scaling. Without 

loss of generality, I consider how to compute the transformation where I transform 

from a fraction α of the points on maps to the points on imagery. The reason why 

only a fraction α of the points on the maps is considered is that there are 

misidentified points arising from the processes of image recognition (i.e., identifying 

intersection points on maps). Moreover, there may be some missing intersection 

points or noisy points on the imagery as well. 

The transformation T brings at least a fraction α of the points of M into a subset 

of S on the imagery. This implies:  

∃ T and M’ ⊆ M , such that  T(M’) ⊆ S , where | M’ | ≥  α| M | and T(M’) denotes 

the set of points that results from applying T to the points of M’. Or equivalently, for 

a 2D point (x, y), in the point set M’ ⊆ M, ∃ T in the matrix form 
















1
00
00

TyTx
Sy

Sx
 (Sx and 

Sy are scale factors along x and y direction, respectively, while Tx and Ty are 

translation factors along x and y directions, respectively), such that 

[x, y, 1] * 
















1
00
00

TyTx
Sy

Sx
 = [longitude, latitude, 1], where | M’ | ≥  α| M | and the 2D 

point (longitude, latitude), belongs to the intersection point set S on the imagery. 

With this setting, I do not expect point coordinates to match exactly because of 
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finite-precision computation or small errors in the datasets. Therefore, when 

checking whether a 2D point s belongs to the point set S, I declare that s ∈ S, if there 

exists a point in S that is within Euclidean distance δ of s for a small fixed positive 

constant δ, which controls the degree of inaccuracy. The minimum δ such that there 

is a match of M’ into S is called the Hausdorff distance. Different computations of 

the minimum Hausdorff distance have been studied in great depth in the 

computational geometry community [12]. I do not seek to minimize δ but rather 

adopt an acceptable threshold for δ. The threshold is relatively small compared to the 

average inter-point distances in S. In fact, this sort of problem was categorized as the 

“Nearly Exact” point matching problem in [7].  

Given the parameters α and δ, to obtain a proper transformation T, my approach 

needs to compute the values of the four unknown parameters Sx, Sy, Tx and Ty. This 

implies that at least four different equations are required and my approach needs to 

locate matching point pairs to resolve these four equations. A straight forward (brute-

force) method (as the pseudo code shown in Figure 3.5) to resolve the point pattern 

matching problem is generating all possible matching point pairs from both point 

Function BruteForcePPM (MapPointSet M, ImagePointSet S) 
1. for each pair m1, m2 ε M 
2.    for each pair s1, s2 ε S                                                                  //pair-generation phase 
3.       Compute the transformation T’ mapping m1 � s1, m2 � s2, if one exists  
4.       Compute T’(M)                                                                           //apply T to all map points 
5.       if (more than α% of the points in T’(M) match points in S)  //transformation-exam phase   
6.             Store the point pair ((m1, s1), (m2, s2)) in the matching point pair record 
7. Pick one point pair from the matching point pair record to compute the transformation T 
8. return T 

Figure 3.5: Pseudo code of brute force algorithm 
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sets (called as the “pair-generation” phase) and examining the computed 

transformations generated by these potential matching point pairs (called as the 

“transformation-examination” phase). More precisely, the brute-force method is first 

choosing a point pair (x1, y1) and (x2, y2) from M, Then, for every pair of distinct 

points (lon1, lat1) and (lon2, lat2) in S, the transformation T’ that maps the point pair 

on M to the point pair on S is computed by solving the following four equations: 

Sx* x1  + Tx = lon1        Eq.(3.1) 

Sy* y1  + Ty = lat1        Eq.(3.2) 

Sx* x2  + Tx = lon2        Eq.(3.3) 

Sy* y2  + Ty = lat2        Eq.(3.4) 

Each transformation T’ thus generated is applied to the entire set of points in M 

to check whether there are more than α|M| points that can be aligned with some 

points on S within the threshold δ. The above-mentioned process is repeated for each 

possible point pair from M, which implies that it could require examining O(|M|2) 

pairs in the worst case. Since for each such pair, the algorithm needs to try all 

possible point pairs on S (i.e., O(|S|2 )) and spends O(|M| log|S|) time to examine the 

transformation T’ generated. This method has a worst case running time of O(|M|3 

|S|2 log|S|). The advantage of this approach is that I can find a mapping (if the 

mapping exists) with a proper threshold δ, even in the presence of very noisy data. 

However, it suffers from high computation time. One obvious way to improve the 

efficiency of the algorithm is to utilize randomization in choosing the pair of points 

from M as proposed in [27], thus achieving the running time of  O(|S|2 |M| log|S|). 
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However, their approach is not appropriate for our datasets because the extracted 

intersection points from maps or imagery could include a number of misidentified 

intersection points. In addition, there could be some missing intersections on both 

point sets. Instead, I developed efficient techniques discussed in the following 

sections to prune the search space of possible point pattern matches (by reducing the 

numbers of potential matching points needed to be examined). 

Table 3.1 summarizes the notations that I use through this section. 

3.2.1 Enhanced PPM Algorithm: GeoPPM 

Due to the poor performance of the brute-force point pattern matching algorithm 

mentioned above, I developed a number techniques to improve its performance by 

exploiting auxiliary information, such as map scale (or map resolution26), the degree 

of intersections (i.e., the number of intersected road segments) and the density of 

these intersections. The basic idea is to exclude all unlikely matching point pairs. For 

example, given a point pair (x1, y1) and (x2, y2) of M, I need to only consider pairs 
                                                 
26  We can determine the map resolution for a raster map from the known map scale.  

Table 3.1: Summary of notations 
Symbol Meaning 
M the set of detected intersections on the map 

|M| number of detected map intersections = number of items in M 

S the set of identified intersections on the imagery 

|S| number of identified imagery intersections = number of items in S 

T the computed transformation that transforms some points from one point set to 
the corresponding points on the other point set 

δ a distance threshold used to determine whether a transformed map point 
(image point) matched to an image point (map point).  

α a pre-defined fraction threshold used to define the least percentage of map 
points (image points) should be mapped to image points (map points), when 
applying the computed transformation T. 
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(lon1, lat1) and (lon2, lat2) of S, such that the real world distance between (x1, y1) and 

(x2, y2) is close to the real world distance between (lon1, lat1) and (lon2, lat2). In 

addition, (x1, y1) and (lon1, lat1) would be considered as a possible matching point if 

and only if they have similar road degrees and road directions. The entire process27 

to determine potential matching pairs by exploiting map scale, road directions, and 

intersection density is shown in Figure 3.6. I will discuss this in detail in the 

following sections. Since the geometric point set matching in two or higher 

dimensions is a well-studied family of problems with application to different areas 

such as computer vision, biology, and astronomy [12, 27], I do not intend to invent a 

novel algorithm to resolve the general point pattern matching problem. Instead, I 

focus on the datasets I am conflating and particularly design efficient and accurate 

matching algorithms for the application domain to match the geospatial point 

patterns. I termed the specialized point pattern matching algorithm as GeoPPM28.  

3.2.1.1 Improvement by Exploiting Map Scale 

If the map scale is provided, I can improve the (brute-force) point matching 

algorithm by exploiting information on direction and relative distances available 

from the vector sets and maps.  The information on direction and distance is used as 

prior knowledge to prune the search space of the possible mapping between the two 

datasets. More precisely, for any point pair (x1, y1) and (x2, y2) on the map, I need to 

only consider pairs (lon1, lat1) and (lon2, lat2) in the imagery, such that the ground 

                                                 
27 A pseudo code in Appendix B presents the algorithm. 
28 I assume that map and imagery are oriented such that north is up. 
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distance between (x1, y1) and (x2, y2) is close to the ground distance between (lon1, 

lat1) and (lon2, lat2). The ground distance between (x1, y1) and (x2, y2) is calculated 

by multiplying their Euclidean distance by map scale. Furthermore, the orientations 

of  (x1, y1) and (x2, y2) should also be close to the orientations29 of (lon1, lat1) and 

(lon2, lat2). There are |S|1.33 such pairs in S [43]. Hence, this enhanced algorithm runs 

in O(|M|3 |S|1.33 log|S|). 

I can further improve the performance by transforming the points on maps and 

imagery to a 2D Euclidean space, where the distance measurement is ground 

distance. The real world distance is used between points in the transformed space. 

Therefore, I only consider translation transformation without scaling in such space. 

                                                 
29 The orientation consistency is also valid for maps with unknown map scale. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6:Pruning search space by exploiting geospatial information 
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In particular, the process (as shown in Figure 3.7) can be divided into the 

following subtasks: (1) consider the points on the maps: choose one point P as the 

origin (0,0), then determine the coordinates of other points Qi (Xi, Yi) as follows. Xi is 

the ground distance between P and Qi in east-west orientation, while Yi is the ground 

distance between P and Qi in north-south orientation. Note Xi is negative, if Qi is 

west of P. Yi is negative, if Qi  is south of P. (2) repeat the similar transformation to 

the points on imagery. (3) compare the two point patterns from these two 

transformed spaces: I now only consider the translation transformation T between the 

two transformed point patterns. The revised algorithm runs in O(|M|2 |S| log|S|). 

Hence, the running time is significally improved by at least two orders of magnitude. 

For example, consider |M| equals 57 and |S| equals 1059. The system needs to 

examine about 3.6*109 (i.e., 572 * 10592) potential matching point pairs, whereas it 
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Figure 3.7: Enhanced point pattern matching process using map scales 
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only has to examine 6*104 (i.e., 57 * 1059) potential matching points while using 

map scale.30  

3.2.1.2 Improvement by Exploiting the Geometric Information 

In addition to utilizing map scales, I also exploit the degree of a road intersection and 

directions of road segments. More precisely, for any point p on the map, I need to 

only consider point q in the imagery, such that the numbers of intersected road 

segments (i.e., degree) at both points are the same. Furthermore, the direction 

difference between the road axis intersected at p and the corresponding road axis 

intersected at q must be less than a pre-defined threshold d (d was set to 20 degrees 

in my experiments). 

3.2.1.3 Improvement by Exploiting Point Density and the Localized 

Distribution of Points  

Although both map scales and geometric information are useful to prune the search 

space of possible matching point pairs, there are two major issues I need to address: 

• There are some online maps with unknown map scales, such as the maps 

available from ESRI’s ArcWeb Map Viewer Application.31 

• Based on roads degree and directions, the system may still need to examine 

large numbers of potential matching point pairs. Particularly, in some urban 

                                                 
30 The assumed numbers of points are based on some of the experiments described in Section 3.4. 
31 http://arcweb.esri.com/sc/viewer/index.html 
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areas, roads could follow a grid such that most road degrees equal to 3 or 4 

and have similar angles. 

Hence, I further exploit other information, such as the density of points and 

localized distribution of points, to reduce the search space further.  

For imagery with resolution lower than 16 m/pixel, it is difficult to identify small 

spatial objects. Hence, it is not practical to conflate a map with images of resolution 

lower than 16 m/pixel resolution. Furthermore, most of online maps depict detailed 

and more accurate road network geometry (without simplification or generalization) 

under certain resolution levels (about 1 to 15 m/pixel) and start to do generalization 

after about 16 m/pixel. This implies that for medium and high resolution maps, the 

road networks are depicted with almost all intersections noticeable (as in the Yahoo 

map examples shown in Figure 3.8). Hence, whether there are any intersections not 

being identified mainly depends on the map intersection detector performance, and 

not the map itself. Fortunately, the utilized map intersection detector discussed in 

Section 3.1.2 works well on medium and high resolution maps. 

a) A map with resolution 4.2 
m/pixel 

b) A map with resolution 14 
m/pixel 

c) A map with resolution lower 
than 16 m/pixel (roads are 
simplified to abstract level) 

Figure 3.8: Some sample Yahoo maps with different resolutions 
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Because there are not many missing points or noisy points in medium or high 

resolution maps, I can exploit the density of points and localized distribution of 

points to find the matched point pattern. Without loss of generality, I consider the 

scenario that the points on the imagery cover a subset of the points on the map and 

the map scales are unknown in advance. I describe the methods to exploit point 

density and localized distribution of points in turn. 

(1) Point density: The density of the points in the map should be similar to the 

density of the matched points in the imagery. As an example shown in Figure 3.9, 

given a point pair P1 and P2 of M, I do not need to consider pairs Q1 and Q2 of S. 

This is because the number of points (about 40 points in this example) included in 

the bounding box Bm (formed by P1 and P2) is significantly different from the 

number of points (about 800 points) in the bounding box Bs (formed by Q1 and Q2). 

(2) Localized distribution of points: Not only do I consider the point density, but also 

exploit the point distribution in a localized area.  When looking at a real data set, I 

 
Figure 3.9: An example of utilizing point density to prune the search space 
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notice that it is not necessary to evaluate the whole search space in one step but it is 

sufficient to partition the search space into smaller sub-parts and evaluate each 

independently. The reason is that the points of the matched pattern tend to scatter in 

neighboring (or localized) areas. Hence, the desired transformation can be computed 

from some potential matching point pairs locally without considering all pairs from 

the entire data set. In addition, my objective is not to find the best common point 

pattern from the map and imagery point sets. In fact, finding any correct matching 

point pair to form the transformation that can transform the majority of map points to 

some image points is good enough to solve the point pattern matching problem. 

Consider the example shown in Figure 3.10. There are 57 detected intersections on 

the map and there are 1059 intersections on the image32. The image space is 

partitioned into 16 equi-sized cells (e.g., cells AFQB, BQTC, etc). In order to explain 

my algorithm, the matched point pattern on the imagery is highlighted by a dashed 

rectangle and I also mark some matching point pairs (e.g., the points m1, m2 ,m3, m4, 

m5 and m6 on the maps correspond to the six points s1, s2 ,s3, s4, s5 and s6 shown in 

the enlarged dashed-area of Figure 3.10(c)). 

There are two steps to locate matching point pairs using this grid structure: 

Step 1: The system first chooses a point pair P1 (x1, y1) and P2 (x2, y2) from M. Then, 

for every pair of distinct points Q1 (lon1, lat1) and Q2 (lon2, lat2) in the same cell 

(e.g., cell AFQB), the system computes the transformation T, if  

                                                 
32 I removed the background imagery in order to clearly display the distribution of points on the 
imagery. 
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• there is similar point density in the bounding boxes formed by (P1, P2) 

and (Q1,Q2), respectively.  

• the road directions of P1 (P2) are similar to the road direction of Q1 (Q2). 

The system then applies transformation T to the entire points in M to check 

whether there are more than α|M| points that can be aligned with some points on S 

within the threshold δ. The above-mentioned process is repeated for each possible 

point pair from M. 

 
a) Partition the image space (with 1059 intersections) into 16 equi-sized cells. The corresponding area to the 
map is highlighted. 

 

b) 57 detected intersections on a map c) The enlarged overlapping area in the imagery  

Figure 3.10: An example of utilizing localized point distribution to prune search space 
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With proper settings of α and δ, it is very likely that my approach can obtain 

some correct matching point pairs, such as ((m2,s2), (m5,s5))33 or ((m3, s3),(m4, s4)) in 

cell QRUT or ((m1,s1),(m6, s6)) in cell TUXW. This saves running time, because the 

approach does not need to examine the point pairs that are located in different cells 

(e.g., the image points s1 and s4). 

Step 2: In the worst case, the approach may not be able to locate any matching point 

pair after examining each cell. It then repeats the first step, but checks the points in 

the cells of one level higher (e.g., cells AGUC, CUOE, etc). If it still fails to find any 

matching point pair, it searches in an even higher level (i.e., grid AIME). The 

process stops whenever the approach finds some matching point pairs or whenever it 

reaches the highest level (i.e., the entire point set). Since 

the points of the matched pattern tend to scatter in localized 

areas, it has higher possibility that my approach can find 

some matching point pairs in the cells of lower levels. 

Hence, it can avoid searching matching point pairs in cells 

of higher levels. 

I developed a hierarchical grid structure (called HiGrid) 

to implement the above-mentioned idea. An example of 

HiGrid where the system recursively subdivides the space 

into four sub-spaces to the depth 3 is shown in Figure 3.11. 

                                                 
33 The matching point pairs notation ((mi, si),(mj, sj)) implies that mi matches si and mj matches sj. 

 
Figure 3.11: An example 

of HiGrid 
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In practice, my algorithm maintains a table to record matching results. The 

example reproduced in Table 3.2 shows a matching point pair table that stores the 

matching results for all possible matching point pairs examined so far in each cell. 

Note that the algorithm not only records the number of map intersections that can be 

aligned with some intersections on imagery within the threshold δ (i.e., the number 

45, 46, etc. in Table 3.2), but also records the number under different threshold 

settings (i.e., different di in Table 3.2). The values of these thresholds vary from d0 m 

to 2*δ m (In my experiments, I set d0 to 3 m. di+1 equals to di +3 and δ is 30 m). This 

additional information can be utilized in a dynamic threshold adjustment algorithm 

described in Section 3.2.2. Using this table, the algorithm can avoid performing any 

redundant examination of matching point pairs in higher-level cells. The remaining 

problem is how to determine the depth k (the highest level has the depth zero) of 

HiGrid, during its construction. k is calculated based on the number of points in the 

imagery. Assume that I have |S| points in the image and I partition the grid into b 

sub-grids when building the HiGrid structure. In addition, assume that the points are 

Table 3.2: An example of matching point pair record 
di (meters)* 

Matching  
point pairs 

d0 d1 d2 …… dj ** 
(i.e., δδδδ) 

dj+1 …… dl 
(i.e., 2* δδδδ) 

[(m2, s2), (m5,s5)] 5*** 13 25  45 47  49 
[(m3, s3), (m4, s4)] 4 12 22  46 48  50 
[(m1, s1), (m6, s6)] 5 12 24  46 47  49 

: 
: 

        

* In my experiments, I set d0 to 3 m. di+1 equals to di +3. 
** Note: dj (i.e., δ ) is set to 30 meters, based on experiments with some random sample datasets. 
***Note: The numbers in the gray cells are the amount of matched points using specific threshold di. For 
example, consider the number “5” in the cell ([(m2, s2), (m5, s5)], d0), where the potential matching [(m2, s2), 
(m5,s5)] is used to generate transformation T. After applying T to all map points, there are five points belongs 
to some image points within the distance threshold d0 meters. 
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uniformally distributed over the space and I intend to have n points (on average) for 

each cell of the lowest level. Using this term, I infer the inequality: 

n*bk  ≤  |S|  < n*bk+1       Eq.(3.5) 

This implies that the depth k of the HiGrid structure is 







n
S

b
||log . 

Utilizing HiGrid results in an efficient, systematic and hierarchical way to search 

for matched point patterns in local (i.e., small) regions. Furthermore, each cell of the 

same level is independent (i.e., there is no overlaps) and can be processed in parallel. 

The disadvantage of HiGrid is that it employs equi-sized cells at the same level, and 

the point density of each cell may vary (because the real world data may not obey a 

uniform distribution) and it may not have a similar point density to that of the map. 

However, if the approach does not find any matching point pairs in the lower levels, 

it will search the upper levels. Hence, I can avoid these problems by utilizing the 

hierarchical structure. In the worst case, the system may need to search for the 

pattern in the entire space. Under this extreme scenario, the approach still can reduce 

the running time by applying the point density checking in bounding boxes (as the 

example shown in Figure 3.9). From my experiments discussed in Section 3.4, this 

approach significantly reduces the execution time and locates the accurate pattern. 

In sum, my approach utilizes these exploited geospatial information (e.g., map 

scale, road directions and density of intersections) simultaneously to prune search 

space. More precisely, if the map scale is known in advance, the approach utilizes 

map scale and road intersection directions to identify the common point pattern. 

Otherwise, it locates the point pattern by using the HiGrid structure, point density 
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and road intersection directions. That is, in my current implementation for GeoPPM, 

I do not use HiGrid for maps with known map scales (due to the fact that I have 

derived good performance by using just the map scale, as described in Section 

3.4.3.1). In general, I can also utilize HiGrid structure and point density for maps 

with known map scales. 

3.2.2 Other Enhancements for GeoPPM 

So far I have described how to exploit additional information to improve GeoPPM. 

In this section, I will discuss the issues that will affect the accuracy of GeoPPM and I 

describe my solutions to overcome these issues.  

There are three major reasons why it may fail to locate the matched point pattern 

(if such pattern exists). 

• Intersection consistency issue: Some road intersection degree and directions are 

inconsistent between the map points and the corresponding imagery points. 

Although degree and directions are helpful information, sometimes they may 

mislead the matching process, due to this kind of data inconsistency. This 

inconsistency occurs because of the various resolutions of diverse geospatial 

datasets, the ways of computing road directions and noisy information of each 

dataset. With some random samples tested in my experiments, I found that 10.2% 

of the map intersections have different degrees from the corresponding imagery 

points. Moreover, considering the road direction dissimilarity as well, more than 

18.3% of the map intersections have different directions from the corresponding 
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imagery points. This is even worse with low resolution maps (e.g., less than 10 

m/pixel) and imagery. In particular, this is because the map intersection detector 

does not perform well on low resolution maps. Therefore if the GeoPPM 

algorithm cannot locate the matched pattern using degree and directions, it will 

relax the degree and directions constraints and search again. 

• Similar point distribution issue:  The examples of similar point distribution over 

the neighboring regions could be found in urban areas where some roads are in a 

grid shape with similar block distances, similar intersection degrees and 

directions. This is a challenging situation. Without knowing any other attribution 

information (e.g., road names), my approach can only alleviate this problem by 

focusing on larger maps where there is more likely to have a unique pattern of 

points. 

• Setting of the thresholds α and δ: For each type of map, the parameters α and δ, 

two fixed constants used in the point pattern matching algorithm, are determined 

by trying a few values and examining the results. However, these parameters 

cannot be formulated in a general way, since these values are dependent on the 

datasets, data quality, and resolutions. Using the same thresholds for different 

resolution maps or even different types of maps may result in either finding 

multiple matching point pairs or not finding any matching point pairs at all.  

For the first scenario (i.e., finding multiple matching point pairs), I perform a 

refinement process to obtain the best matching point pair among them. For 

instance, Table 3.2 (an example of the matching point pair record) includes a list 
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of all possible matching point pairs. Among these possible matching point pairs, 

I only consider the matching point pairs that meet the threshold requirements 

(i.e., the settings of α and δ). I define a weighted score for these matching point 

pairs that meet the threshold settings: 

WeightedScore = ( )∑
=

−−
j

i
iii nnw

0
1* , where ni is the number34 of matched 

points when the threshold is set to di (e.g., the number in gray cells of Table 3.2). 

dj equals to δ and nj is greater than or equals to α*|M|. wi is the weight which is 

inversely proportional to di (i.e., smaller di has higher weight wi). 

My system calculates the weighted score for these matching point pairs that 

meet the threshold settings of α and δ. Subsequently, the system uses the 

weighted score to sort these possible matches and picks the one with the highest 

score (then computes the transformation). By calculating weighted scores, I can 

overcome this issue of ambiguity (because multiple candidate matching point 

pairs are found). 

For the second scenario (i.e., not finding any matching point pairs), I utilize a 

threshold adjustment algorithm. I fix the parameter α and dynamically adjust the 

threshold δ. More precisely, if GeoPPM cannot find a match under the initial 

value of δ and α, it would increase δ, and then search again. This process repeats 

until GeoPPM finds a matching point pair or reaches the upper bound of possible 

thresholds, which then will return with no match found. This may seem that it 

                                                 
34 Note that nk = 0, if k<0. 
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increases the running time due to the adjustments. However, the numbers of 

matched points due to the different threshold settings are stored in the matching 

records (as in the example shown in Table 3.2) when GeoPPM is first executed. 

Hence, if a potential point pair is examined and stored in the matching records, 

the algorithm does not have to examine that point pair again. The computation 

first becomes a table-lookup. If there is no such record, then GeoPPM examines 

this new possible matching point pair. 

3.3 Aligning Map with Imagery  

Now that I have a set of control point pairs for the map and imagery (as in the 

example shown in Figure 3.12), I can deform one of the datasets (the source image) 

to align the other (the target image) utilizing these identified control point pairs. 

Without loss of generality, I assume that the map is the source image, while the 

orthoimage is the target image. 

To achieve overall alignment of an image and a map, the system must locally 

adjust the map to conform to the image. To accomplish local adjustments, the system 

 

 

a) A map with matched point pattern 
heightened as black circles 

b) An image with corresponding point pattern heightened as 
black circles 

Figure 3.12: A sample result of GeoPPM 
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partitions the domain space into small pieces. Then, it applies local adjustments on 

each single piece. Similar to the vector-imagery conflation, the system performs the 

space partition technique, Delaunay triangulation, with the set of control points on 

the map, and makes a set of equivalent triangles with corresponding control points 

on the imagery. Then, it uses the “Rubber sheeting” technique to deform the map 

pixels algorithmically, forcing registration of control points on the map with their 

corresponding points on the imagery.  As discussed in Section 2.3.2, the system first 

calculates the transformation coefficients to map each Delaunay triangle on the map 

onto its corresponding triangle on the imagery. Second, for each pixel in each 

triangle on the imagery, the system replaces it semi-transparently with the 

corresponding pixel on the map by using the computed transformation coefficients. 

Figure 3.13 shows an example of Delaunay triangulation, and the arrow 

illustrates that the pixels of the triangle on the imagery would be (semi-transparently) 

overlaid by the corresponding pixels on the map (i.e., rubber-sheeting). In practice, if 

the conflation area (i.e., the convex hull formed by control points) of the source 

 
Figure 3.13: Delaunay triangulation on imagery and a map, using matched point pairs as control point 

pairs 
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image is much larger than that of the target image, the rubber-sheeting results will be 

distorted because the sampling frequency is insufficient. I solve this problem by 

rescaling (resampling) the conflation area on the map and imagery to identical sizes 

before applying triangulation and rubber-sheeting. 

3.4 Performance Evaluation 

I utilized a set of online street maps and imagery to evaluate my approach. The 

purpose of the integration experiment was to evaluate the utility of my algorithms in 

integrating real world data.  I am interested in measuring the accuracy of the 

integration of maps and imagery using my techniques.  To that end, I performed 

several experiments to validate the hypothesis that using my techniques we can 

automatically and accurately align maps and imagery. 

3.4.1 Experimental Setup 

Table 3.3 summarizes the datasets and test sites used for my experiments. I described 

these datasets in turn. 

Table 3.3: Tested datasets used in experiments 
 Test data set 1 (El Segundo, CA) Test data set 2 (St. Louis, MO) 
Imagery Geo-referenced USGS DOQ 

orthoimagery with 1m/pixel resolutions 
Geo-referenced USGS high resolution color 
orthoimagery with 0.3m/pixel resolution 

Maps (with 
various 
sizes/scales) 

5 ESRI maps, 5 MapQuest maps, 5 
Yahoo maps, 5 TIGER maps, 5 USGS 
Topographic maps,  

5 ESRI maps, 5 MapQuest maps, 5 Yahoo 
maps, 5 TIGER maps, 5 USGS 
Topographic maps 

Vector data U.S. Census TIGER/Lines 
Length: 84.32km 
About 300 intersections 

USGS MO-DOT road vector 
Length: 364.28km 
About 1130 intersections 

Area covered Latitude:33.9164 to 33.9301 
Longitude:-118.4351 to -118.3702 
Width: 5.2km 
Height: 1.6km 

Latitude: 38.5534 to 38.6091 
Longitude: -90.4389 to -90.3720 
Width: 6 km 
Height: 6 km 
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(1) Orthoimagery 

The imagery used in the experiments is the same as that used for vector-imagery 

conflation evaluation. That is, I tested the 0.3 m/pixel color imagery that covers 

some areas of the county of St. Louis, MO, and the 1 m/pixel gray-scale imagery that 

covers some areas of the city of El Segundo, CA. Figure 3.14 shows about 0.6% of 

the imagery used in test data set 2. 

(2) Street maps 

I used streets maps queried from five different online map services. They are 

ESRI map,35 MapQuest map,36 Yahoo map,37 U.S. Census TIGER map38 and USGS 

                                                 
35 ESRI provides various online map services. In order to evaluate my proposed map-imagery 
conflation technique for maps with unknown map scale, I used the ESRI maps available at 
http://arcweb.esri.com/sc/viewer/index.html in the experiments. Neither map scale nor geo-
coordinates of ERSI maps are provided from this web site. 
36 http://www.mapquest.com 
37 http://maps.yahoo.com/ 
38 http://tiger.census.gov/cgi-bin/mapsurfer 

 
Figure 3.14: Sample imagery in test area 2 
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topographic map.39 Although these street maps mainly depict roads, sometimes they 

also show and name prominent natural and cultural features, such as rivers, parks and 

schools. I described these street maps (e.g., the sources of the road information) as 

follows. 

• ESRI map used in the experiments is generated based on the GDT data from 

Geographic Data Technology (GDT). It is high quality street map data with 

highly accurate street geometry. Neither map scale nor geo-coordinates for ESRI 

maps are provided online. 

• MapQuest map and Yahoo map are produced based on NAVTEQ 

NAVSTREETS. They are also high quality street map data with highly accurate 

street geometry and they illustrate street maps in diverse map scales, sizes and 

colors. 

• U.S. Census TIGER map is generated from U.S. Census TIGER/Line files 

(discussed in Section 2.4.1). TIGER map has both poor positional accuracy and 

road geometry. 

• USGS topographic map depicts roads, prominent natural and cultural features of 

an area. It also depicts contour lines to show elevation differences. Such detail is 

useful for local area planning and helpful to hikers (because this map can show 

elevation changes along a trail). 

Note that only TIGER map server provides the map geo-coordinates. The maps 

evaluated in these experiments involve various map resolutions (or map scales) 

                                                 
39 http://terraserver-usa.com/ 
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ranging from 1.2 m/pixel to 14.08 m/pixel. Figure 3.15 shows some examples of 

these street maps. 

(3) Vector data (road networks) 

Two different road networks were used as “glue” to align maps with imagery: 

U.S. Census TIGER/Lines is utilized in test data set 1, while USGS MO-DOT data is 

used in test data set 2. Figure 3.16 shows the road networks utilized. 

3.4.2 Evaluation Methodology 

The evaluation of map-imagery conflation has not been studied before. Hence, I 

developed a novel evaluation method to measure how well the features on the map 

align to the corresponding features on the imagery. In particular, I consider how well 

the conflated map roads align to the corresponding roads on the imagery. Toward 

that end, I “vectorize” the conflated map road pixels, and utilize the same evaluation 

  
a) An ESRI map with unknown map scale b) A MapQuest map with resolution 4.8 m/pixel 

 
 

c) A TIGER map with resolution 4.17 m/pixel d) A topographic map with resolution 2 m/pixel 

Figure 3.15: Samples of different street maps used in the experiment 
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schema described in vector-imagery conflation (i.e., Section 2.4.2) to compare the 

conflated (and vectorized) map road network with the reference imagery road 

network by measuring (1) Completeness: the percentage of the reference roads in 

imagery for which my approach generated conflated map roads, (2) Correctness: the 

percentage of correctly conflated map roads with respect to the total conflated map 

roads, (3) Positional accuracy: the percentage of the total length of the conflated 

map roads that is within a specific distance of the reference roads.  

Additionally, I developed two metrics, precision and recall, to measure the 

performance of our GeoPPM technique, since the accuracy of matched points 

significantly affects the conflation results.  

Let the point pattern generated by GeoPPM defined as a set: 

RetPat={(mi, si) | where mi is the point on the map and si is the corresponding 

imagery point located by GeoPPM.} 

 

 
a) TIGER/Line road network used in test area 1 b) MO-DOT road network used in test area 2 

Figure 3.16: The road networks used in experiments 
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To measure the performance of GeoPPM, I need to compare the set RetPat with 

respective to the real matched point pattern set RelPat (defined in Section 3.2). 

Using this term, I define 

||
||

 Precision 
pat

patpat

Ret
RelRet c

=       Eq.(3.6) 

||
||

 Recall
pat

patpat

Rel
RelRet c

=        Eq.(3.7) 

In my experiments, the set RetPat qualifies as a matched point pattern if and only 

if precision is greater than 80% and recall is higher than 60%. I set higher precision, 

because the conflation process does not require a large number of control point pairs 

to perform accurate alignment. In fact, a smaller set of control points with higher 

accuracy would be sufficient for the conflation process. 

I conducted the following experiments. I first obtained online orthoimages 

covering the experimental areas and identified road intersection points on the images 

by utilizing information inferred from the vector dataset (as described in Section 

3.1.1 and the performance evaluation illustrated in Section 2.4). Then, I randomly 

downloaded various street maps (with diverse sizes and map scales) within these 

areas from the above-mentioned five map services and extracted an intersection point 

set for each map. Then, GeoPPM computed the alignment between the point set on 

each map with the point set on the image. Finally, my system aligned each map and 

imagery based on the matched point pattern. I evaluate the conflation results by the 
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evaluation methodology discussed and acquired the experimental results as described 

in the following section. 

3.4.3 Experimental Results and Interpretations 

I discuss the performance of GeoPPM algorithm and the performance of the overall 

map-imagery conflation as follows.  

3.4.3.1 Performance of GeoPPM  

After conflating road vector data with imagery, the system identified 281 intersection 

points on the image of test data set 1 (with 88.6% precision and 86.1% recall) and 

1059 intersections on the image of test data set 2 (with 91.6% precision and 88.3% 

recall40). Because the tested maps are of diverse sizes and scales, the number of 

points detected on each map is different. On average, there are about 60 points on 

each map and the system achieved 92% precision and 67% recall (on average) for 

identifying road intersections on different maps. 

When applying GeoPPM to these detected point sets, my system exploited 

additional information to improve the performance. In particular, if the map scale is 

known in advance, the system utilized map scale and road intersection directions to 

identify the common point pattern. Otherwise, the system located the point pattern 

by using the HiGrid structure and road intersection directions. That is, in the 

experiments, my system did not use HiGrid for maps with known map scales (due to 

                                                 
40 The precision and recall of intersection points on the imagery are computed based on Eq.(2.2) and 
Eq.(2.3). Since most of the intersections on the imagery have corresponding intersections on road 
vector data, there is only slightly difference between precision and recall. 
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the fact that the system has derived good performance by using just the map scale). 

In general, my approach can also utilize HiGrid for maps with known map scales. In 

addition, for the identified point pattern, my system applied a post-filter to eliminate 

the matched points that have different degrees or significantly different angles. 

Higher precision of control points is more important than higher recall for the 

conflation process. By utilizing the post-filter, I improved the precision at the cost of 

reducing the recall. Since the map intersection detector did not perform well to 

compute road directions in low resolution maps (e.g., less than 10 m/pixel), GeoPPM 

cannot rely on this direction information. Hence, for low resolution maps, GeoPPM 

examined only point degree and did not check the directions. Moreover, GeoPPM 

did not apply the post-filter to low resolution maps either, due to the same reason. 

Table 3.4 shows the performance of GeoPPM with respect to different scenarios. 

There is only one of our fifty tested maps (i.e., 2%) where the intersection point set is 

not accurately aligned with the corresponding point pattern on the image. This map 

is a 1.85 m/pixel resolution TIGER-map with 13 detected intersections (see Figure 

3.17(a)). As shown in Figure 3.17(c),41 the identified point pattern on the image was 

shifted one block to the right. We can notice that this misalignment is because the 

roads on this mis-aligned map is in grid shape with similar block distances and it 

covers a smaller area compared with other maps. 

 

                                                 
41 I removed the background imagery in order to clearly display the distribution of points on the 
imagery. 
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a) Detected map intersections 
(white circles) 

 b) Identified point pattern on the 
map after applying GeoPPM (point 
pattern marked as black circles) 

 c) Identified point pattern on 
the imagery after apply 
GeoPPM (point pattern marked 
as black circles) 

Figure 3.17: The map whose point pattern does not align with the corresponding point pattern on the 
imagery 

Table 3.4: The performance of GeoPPM 
 ESRI map MapQuest map Yahoo map TIGER 

map 
Topographic map 

Precision 96.0% 95.2% 94.0% 84.2%* 93.9% 

Recall 80.2% 84.8% 88.3% 75.6%* 80.94% 

a). GeoPPM performance with respect to different map services 
 

 Test data set 1 (El Segundo, CA) Test data set 2 (St. Louis, MO) 

Precision 91.9% 93.4%** 

Recall 84.6% 77.4%** 

b). GeoPPM performance with respect to different regions 
 

 Precision Recall 

Resolution  ≤  2 m/pixel (15 maps) 87.4%*** 78.2%*** 

2 m/pixel  <  Resolution  ≤  4 m/pixel (7 maps) 92.9% 84.0% 

4 m/pixel  <  Resolution  ≤  7 m/pixel (13 maps) 96.4% 88.6% 

Resolution  > 7 m/pixel (5 maps) 91.6% 77.1% 

c). GeoPPM performance with respect to different resolution maps 
 

* If we exclude the misaligned TIGER-map, the precision is 93.6% and recall is 84.2%. 
** If we exclude the misaligned TIGER-map, the precision is 97.2% and recall is 80.6%. 
*** If we exclude the misaligned TIGER-map, the precision is 93.2% and recall is 82.5%. 
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The maps available on TIGER map service and MapQuest are in fixed 

dimensions. The covered area becomes smaller whenever one zooms in the area of 

interest. If these small maps contain a unique point pattern across the dataset, 

GeoPPM can still identify the matched pattern from the maps even with very few 

points (as in the MapQuest example shown in Figure 3.18). However, sometimes, 

there is no unique pattern in the points of such large-scale, very small maps (as 

Figure 3.17(a)). My approach can achieve higher accuracy by focusing on larger 

maps where there is more likely to be a unique pattern of points. 

In general, I make the following observations from Table 3.4: 

• GeoPPM performs well with respect to maps queried from diverse online 

map services. It has the worst performance over TIGER maps because it 

found a mis-aligned point pattern from one of the TIGER maps (i.e, with 

precision 0% and recall 0%). 

• There is no significant difference in the performance over various resolutions 

of maps. Even for low resolution maps, GeoPPM still obtained high precision 

   
a) Detected 16 map intersections 
(white circles) 

 b) Identified point pattern after 
apply GeoPPM (point pattern 
marked as black circles) 

 c) Identified point pattern on 
the imagery after apply 
GeoPPM (point pattern marked 
as black circles) 

Figure 3.18: The map whose point pattern aligns with the corresponding point pattern on the 
imagery 
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and recall. However; there are four low resolution maps (lower than 7 

m/pixel) with very low recall rates for detected map intersections (with 

precision 79.4% and recall 21.2%, on average), due to the poor performance 

of the map intersection detector on low resolution maps. This will affect the 

conflation results, even though GeoPPM obtained high precision and recall 

from these detected map points. 

Moreover, there are two major reasons why GeoPPM did not achieve 100% 

precision for the high to medium resolution maps: 

• GeoPPM can tolerate the existence of misidentified intersections in the maps. 

In the example shown in Figure 3.19(a), GeoPPM filtered the misidentified 

points in the lower left corner (as shown in Figure 3.3). However, for the 

intersection points that are very close to the map intersections, it is difficult to 

filter out those points. The point, as highlighted in Figure 3.19(c), was 

identified as a matched point, since it is very close to the real map 

intersection and it even has similar degree and directions as the 

corresponding imagery point.  

• Similarly, GeoPPM may detect some points that are misaligned with the 

imagery points, but very close to the real imagery intersections. 

3.4.3.2 Performance of overall map to imagery conflation 

After applying GeoPPM, the system generated an accurate control point pair set for 

each map. Then, my approach used these control points to conflate the maps with 
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imagery. To demonstrate the accuracy of my conflation techniques, some results are 

shown in Figure 3.20. As shown in these aligned images, the system can annotate 

spatial objects (e.g., streets) on imagery with the attribution information contained in 

maps. 

I also conducted a quantitative analysis to the conflation results. Towards that 

end, I randomly selected a set of TIGER maps and imagery from the test data set 2. 

These selected maps and imagery cover 8.3% of the tested area. Furthermore, after 

 

a) Identified point pattern after apply GeoPPM (point pattern marked as cross). If we compare 
this figure with Figure 3.3, the noisy map points at the left lower corner are filtered out. 

 

 
b) Identified point pattern on the imagery after 
apply GeoPPM (point pattern marked as black 
circles) 

c) The point of identified pattern could be 
very close to a map intersection (after 
zooming in the left lower corner of (a)) 

Figure 3.19: An example of matched point pattern 
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applying GeoPPM against the tested TIGER maps and imagery, GeoPPM accurately 

obtained aligned control point sets (with 100% precision and 82.7% recall). The 

reasons why I choose TIGER maps are: 

• The geographic coordinates are provided by the data source. Therefore, I can 

simply combine the TIGER maps with the corresponding imagery based on 

the provided geographic coordinates. The integration results were then 

compared with the conflation results by utilizing my approach. 

• I do not have to specify (i.e., vectorize) the streets on TIGER maps manually 

for the evaluation purpose, since I can utilize road vector dataset 

TIGER/Lines as the vectorized map roads. The roads on the TIGER maps 

  
a) MapQuest map to imagery conflation (semi-
transparent map) for El Segundo, CA 

b) TIGER map to imagery conflation ( semi-transparent 
image) for El Segundo, CA 

 
c) ESRI map to high resolution imagery conflation 
(semi-transparent map) for St. Louis, MO 

d) MapQuest map to high resolution imagery conflation 
( semi-transparent map) for St. Louis, MO 

Figure 3.20: Examples of map-imagery conflation results 
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align well with the TIGER/Lines, because they are generated from 

TIGER/Lines. 

Using these vectorized map roads and applying map-imagery conflation, I then 

evaluate the results by measuring completeness, correctness and positional accuracy 

against the same reference roads used in the vector-imagery conflation experiments. 

The experimental results are shown in Figure 3.21. My approach improved the 

original TIGER map alignment about 2.5 times for completeness and correctness. 

There are three reasons why the completeness and correctness are not that high: 

• The errors from original TIGER-maps: For a particular road segment, if the 

shape of the original TIGER map road is inconsistent with roads in the 

imagery, my approach may not align them well (although the intersections 

might be aligned using GeoPPM). 
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a) Completeness and Correctness assessment b) Positional accuracy assessment 

Figure 3.21: Map-imagery conflation performance measurement 
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• The errors from the resizing: The TIGER-map used in my experiment is 4.17 

m/pixel, while the imagery is 0.3 m/pixel. After finding the matched point 

pattern, the system deformed and resized the map to align the imagery. Due 

to the large difference in resolution for the two datasets, some errors will be 

amplified after resizing. Consider the detected road intersection point shown 

in Figure 3.22(a) and (b). This point is characterized as an accurately detected 

 
 

a) Detected point pattern on the map (one point 
is highlighted by dash rectangle) 
 

b) The location of detected point is marked as “X”, 
after zooming in the highlighted area of (a). It is 
two pixels away from the actual intersection 
location. 

  

c) The black circle represents the matched 
imagery point. Its location is very accurately 
(the solid lines are road vector data and the dash 
lines are road sides)  

d) The two pixels displacement will be amplified 
due to resizing (the solid regions are map roads and 
the dash lines are road sides) 

Figure 3.22: Explanations of the conflation errors 
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map point, because it is two pixels away from the exact position of 

intersection  (less than the threshold five pixels). Although the imagery 

intersection is so accurately identified (see Figure 3.22(c)), the resizing 

process will make the “2 pixels” displacement become “30 pixels” (as in 

Figure 3.22(d)). 

• The errors from the vectorization process: Although the road vector 

TIGER/Lines align well with the map road, there are still a few pixels 

difference between them. When utilizing TIGER/Lines as the map roads and 

resizing to the imagery size, the small errors will also be amplified. 

When relaxing the “buffer-width” used to measure completeness/correctness, I 

can obtain higher completeness/correctness. This kind of assessment is illustrated by 

the positional accuracy shown in Figure 3.21(b). Intuitively, the “positional 

accuracy” corresponds to the users’ demand: how far is the conflated road network 

on the map from the centerlines of the real (reference) road network. I evaluated 

these displacements between two networks by gradually increasing the buffer-widths 

constructed around the reference road network. The buffer-width was increased by 

3.6 m. As shown in the X-axis of Figure 3.21(b), the displacement values are 

grouped every 3.6 m. The Y-axis shows the percentage of conflated map roads lying 

within the displacement range represented by the X-axis. Although my approach did 

not achieve high completeness/correctness (as stated earlier), it achieved better 

positional accuracy: 85.2% of the conflated map roads are within 10.8 m of the 

reference roads compared to 51.7% of the original TIGER map. Furthermore, there 
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are very few road pixels (0.7%) have more than 32.4 m displacement for conflated 

roads, compared with 7.5% for the original map. This implies that the conflated map 

roads are very close to the real roads, although they might not be within the road 

sides (i.e., road buffer widths). 

3.4.3.3 The execution time 

Finally, I present the running time of my conflation algorithm. Since the running 

time of my techniques is mainly dominated by the point matching routine, I use the 

running time of the GeoPPM routine as the overall execution time (the query time 

for retrieving online images or maps was not included). In addition, the running time 

of the GeoPPM algorithm mainly depends on the number of road intersections on the 

maps, not on the maps sizes or map scales. Therefore, I evaluated the time by 

gradually increasing the number of points on the imagery. In order to compare the 

time for maps with known map scales and those without known map scales, I 

randomly selected a Yahoo map (with 57 detected points that is close to the average 

number of intersections of our tested maps) from my test data set 2. I executed the 

GeoPPM against the Yahoo map using the known map scale and then I repeated the 

same process but assumed that the map scale is unknown. In addition, I recursively 

partition the imagery space into four sub-grids when building the HiGrid structure. I 

also adjust the parameter n in Eq.(3.5) to examine the performance due to different 

values. This parameter implies the average number of points in the lowest level. 

Hence, it controls the depth of HiGrid. Because the number of points on each tested 
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map is rather small compared with the entire set of points in the imagery, I only 

consider the partition of the image space but not the map space. In general, my 

approach can consider the partition for both spaces. 

I conflated the Yahoo map with images of different area sizes (i.e., there are 

different number of image points). The execution time is shown in Table 3.5. There 

are some immediate conclusions from this table: 

• Using map scale information, GeoPPM improves the execution time. 

• For the map with known scale, the performance of using road directions is 

better than just using map scale information.  

Table 3.5: The execution time of GeoPPM 
 Using map scale only Using map scale and road 

directions 

402 imagery points 171 seconds 16 seconds 
591 imagery points 317 seconds 26 seconds 

800 imagery points 540 seconds 42 seconds 

1059 imagery points 934 seconds 70 seconds 

a) First scenario: map scale is known (there are 57 map points) 
 

 Brute force algorithm Using road directions Using HiGrid and road 
directions 

402 imagery points 5 hours 58 minutes 503 seconds 11 seconds 

591 imagery points N/A* 1049 seconds 17 seconds 

800 imagery points N/A* 2449 seconds 26 seconds 
1059 imagery points N/A* 5298 seconds 38 seconds 

b) Second scenario: map scale is unknown (there are 57 map points) 
 

 Using HiGrid and road 
directions 

n =  10 38 seconds 

n= 28 (i.e., half of map 
point number) 

104 seconds 

n= 57 (i.e., map point 
number) 

106 seconds 

c) The running time of using different HiGrid parameter n 
 
* Due to the poor performance of brute-force algorithm, we did not collect the running time. 
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• Although my approach did not utilize the HiGrid structure for the map with 

known map scale, it shows similar performance with respect to the one whose 

map scale is unknown and utilizes HiGrid. Hence, exploiting the map scale is 

an effective way to detect matched point pattern. 

• Although the road direction information significantly improves the brute-

force algorithm, it still may need to examine a large number of potential 

matching point pairs. This results in long running time for datasets with large 

number of points. 

• GeoPPM utilizing HiGrid outperforms the algorithm that just utilizes road 

directions. 

• Using small HiGrid parameter n (i.e., HiGrid with large depth), my approach 

can efficiently locate the matched point pattern without losing accuracy. This 

implies that the points are scattered in local areas. In addition, as shown in 

Table 3.5(c), there is no performance difference for the value 28 (half of map 

point number) and 57 (map point number), because they result in the same 

HiGrid depth (according to Eq.(3.5)).  
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Chapter 4  

 

Related work 
 

 

Conflation was first proposed and implemented in 1988 by Saalfeld [36], and the 

initial focus of conflation was to eliminate the spatial inconsistency between two 

overlapping vector maps in order to improve the spatial accuracy of vector maps. 

Once the spatial discrepancy is eliminated, it is possible and easier to transfer 

attributes among datasets to achieve geospatial data fusion. Several important 

application domains that can benefit from such data fusion are the crisis 

management, city traffic planning, and military intelligence applications. 

Automatic conflation of geospatial datasets is a complex process that may utilize 

work from a broad range of disciplines that include GIS, cartography, computational 

geometry, graph theory, image processing, pattern recognition, and statistics. In 

general, based on the types of geospatial datasets dealt with, the conflation 

technologies can be categorized into the following three groups: 

• Vector to vector data conflation: For example, the integration of two road 

networks of different accuracy levels. 

• Vector to raster data conflation: For example, the integration of road network 

and imagery or road network and raster maps. 
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• Raster to raster data conflation: For example, the integration of two images 

with different resolutions or the integration of raster maps and imagery. 

I review some related research on these in turn. 

4.1 Vector to Vector Data Conflation 

There have been a number of efforts to automatically or semi-automatically 

accomplish vector to vector conflation [14, 35, 44, 47]. These approaches are 

different, because of the different methods utilized for locating the counterpart 

elements from both vector datasets. Most of the proposed approaches focus on 

handling the integration of two road networks. Saalfeld [35] discussed different 

strategies to partition space based on the matched entities and concluded that 

Delaunay triangulation is the most appropriate partition mechanism used for 

conflation (because the Delanuay triangulation avoids triangles with extremely small 

angles). Walter and Fritsch [44] proposed a relational matching approach to find 

matched spatial objects based on the similarity of spatial objects at the geometry 

level (e.g., node to node matching based on distance) and based on the relations 

between the elements in a data set.  They investigated the “similarity” of spatial 

objects based on statistical information derived from a random sample of the vector 

datasets to be integrated. However, their approach requires human intervention to 

perform an initial affine transformation between datasets. Their approach was 

utilized in NEXUS [33], an open platform for spatially aware applications, to support 

the interoperability between datasets. In addition to performing feature matching at 
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the geometry level, Cobb et al. in [14] proposed an approach to perform feature-

matching at the object level. For example, when comparing two road segments, their 

approach not only matches the road endpoints, but also matches the non-spatial 

properties such as street names and widths. Yuan and Tao [47] pointed out the 

necessity to model common conflation steps (such as feature-matching, match-

checking, triangulation and rubber-sheeting) as separate components to speed up the 

development of GIS applications for integrating diverse types of geospatial datasets. 

They described how to develop conflation components and demonstrated their 

approach for vector to vector data conflation. Various commercial products, such as 

MapMerger and Conflex42, support automatic vector to vector data conflation with 

limited human intervention to consolidate multiple vector datasets. 

4.2 Vector to Raster Data Conflation 

Compared with vector to vector conflation, there are fewer research activities on 

vector to raster data conflation. In particular, in this section, I review some related 

research about vector to imagery conflation. Due to recent advances in remote 

sensing technology to capture high resolution imagery, vector to imagery conflation 

has become one of the central issues in GIS. In fact, various vector datasets (e.g., 

NAVSTREETS from NAVTEQ) are routinely revised using satellite imagery or 

aerial photographs. Utilizing automatic conflation techniques, this accurate imagery 

can be used to update vector datasets. Moreover, the abundant information often 

                                                 
42 http://www.digitalcorp.com/conflex.htm 
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contained in diverse vector data can be utilized to annotate objects, such as roads and 

buildings, in the imagery. Traditionally, these problems of integration of vector and 

raster data have been in the domain of image processing and GIS.  

In Section 4.2.1, I review some techniques that detect counterpart elements in the 

datasets and apply the traditional conflation algorithm (i.e. establishing the 

correspondence between the matched entities and transforming other objects 

accordingly). Section 4.2.2 describes the approaches that utilize active counter 

models [29] to align each vector road segment to the corresponding road edge in the 

imagery. 

4.2.1 Aligning vector data and imagery using identified features 

Hild and Fritsch [24] processed vector data to extract vector polygons and performed 

image segmentation on imagery to find image polygons. Then, a polygon matching 

(or shape matching) algorithm is applied on both images and vector polygons to find 

a set of 2D conjugate points. In order to obtain a successful matching between an 

image and vector data, the datasets must contain polygonal features like forest, 

villages, grassland or lakes.  This approach will fail when polygonal features cannot 

be found, such as in high resolution urban areas. 

Filin and Doytsher [17] propose a linear conflation algorithm to align vector and 

imagery. First, all edges (such as road edges and building edges) are detected from 

the imagery (without using the existing vector data as prior knowledge) and 

converted to vector format. Then, their approach matches the detected edges with 
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vector data to identify real road edges. For those detected edges where there is no 

corresponding edge detected in the imagery, they will be transformed according to 

the influence regions formed by matched edges. However, extracting features 

directly from imagery and converting to vector format is a challenging task. There 

are several algorithms for extracting roads utilizing the characteristics of roads and 

context of imagery as prior knowledge [25, 34], but none of them give good results 

in all circumstances [1, 23] and most of them are heavily CPU intensive. 

Flavie et al. [18] try to find the junction points of all detected lines in the 

imagery, then match the junction points of the road vector with the image junctions. 

Then, the vector lines are moved according to the matched junctions (i.e., no space 

partition method, such as Delaunay triangulation, is used to build the influence 

regions of matched junctions). Finally, their system applies the active contour 

models technique [29] (discussed next) to refine the matched road segments. 

However, their method suffers from the high computation cost of finding all possible 

junctions of detected lines on images. 

My AMS-conflation for automatic vector to imagery alignment significantly 

differs from the work mentioned above in terms of my approach to locate matched 

entities. AMS-conflation is the first that automatically exploits auxiliary structured 

data (such as image color, image metadata, road vector directions, road intersections 

and road coordinates provided by vector data) to improve the feature recognition 

techniques on imagery. In addition, my approach performs a template matching 
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around each road intersection (i.e., a localized area, instead of the entire image). This 

will improve both the accuracy and efficiency. 

4.2.2 Aligning vector data and imagery using Snakes-related techniques 

In the computer vision literature on automatically aligning vector lines with imagery 

edges, the active contour models (i.e., Snakes [29]) is one of the most prevalent  

methods to “attach” vector datasets (e.g., road segments) to the corresponding 

features (e.g., road edges) in the imagery (often with the objective to detect changes 

of roads or detect real road edges to update pre-existing vector data). Snakes is a 

parametric curve and it is often modeled as a spline linked by multiple control points. 

The active contour models evolve their shape by moving their control points towards 

the image features and maintaining their smoothness at the same time. The evolution 

is based on the principle of energy (including internal and external energy) 

minimization. The “internal energy” enforces geometric constraints, such length and 

smoothness of the Snakes, while the “external energy” pushes the Snakes towards 

images features. By minimizing internal and external energy simultaneously, image 

information and geometric properties are fused to accomplish the evolution of the 

Snakes. The Snakes method requires some seed points as control points to start the 

evolution and these seed points should be close to the real roads. One option is 

utilizing pre-existing vector data as the (initial) approximate outline of the roads. 

However, the Snakes method is not appropriate for aligning roads in highly textured 

areas such as forests or urban areas, due to the following weaknesses: (1) Noisy edge 
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pixels might make the Snakes attach to these noisy pixels − this prevents the Snakes 

from converging on the desired edges; (2) It is a greedy algorithm and demands a lot 

of calculations when trying all possible (and local) solutions and picking the best 

one; (3) If the placement of the Snakes is not well initialized, the Snakes will 

diverge; and (4) Relaxing the internal energy tends to destroy the shape of the 

Snakes. Furthermore, each vector road segment needs to perform the Snakes 

evolution to accomplish the alignment.  

Compared my AMS-conflation with the Snakes method, my matching 

mechanism is not based on entire road segments (lines) but on partial road segments 

around the intersections. For a particular road segment, if the shape of the original 

vector data is inconsistent with roads in the imagery, my approach may not align 

them well (although the intersections might be aligned).  Considering the Snakes 

techniques, this type of poorly aligned original vector will also harm the evolution of 

Snakes. In the worst case, it may cause the Snakes to diverge. However, recently, not 

only the imagery quality is enhanced (up to 0.3 m/pixel), the quality of vector data is 

also significantly improved. Consider the conflation of high quality imagery and a 

high quality vector dataset, such as NAVSTREETS. The road shapes of 

NAVSTREETS are very similar to the road shapes in the imagery. Hence, the major 

issue is that there are some local inconsistencies between them. AMS-conflation can 

capture these local transformations and maintain the road shapes, while the Snakes 

method may change the road shapes. Hence, AMS-conflation saves computation 

time by only detecting some (salient) feature points and transforming other points 
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(and lines) utilizing Delaunay triangulation and rubber-sheeting. In fact, my 

conflated roads are very close to the road axes on the imagery (based on my 

experiments) and they can be utilized as good seed points for a more robust Snakes-

related algorithm43 in the future. 

4.3 Raster to Raster Data Conflation 

With the improvement of mapping technologies to geospatial raster data and with the 

enhancement of rendering capabilities of personal computers, more and more 

geospatial datasets are represented as imagery to display the ground truth and as 

raster maps to display abundant attributes. Using a raster to raster conflation 

technique, we can generate a super-image that either has the best features or attribute 

information from each of the individual images or highlights the changes across 

multiple images. There have been a number of efforts to automatically or semi-

automatically accomplish raster to raster conflation. However, most of these studies 

are dedicated to register imagery with imagery [15, 16, 39]. Many commercial GIS 

products, such as Able R2V and Intergraph I/RASC provide the functionality of 

conflating imagery and maps (i.e., raster to raster registration) using different types 

of transformation methods. However, these products do not provide automatic 

conflation, so users need to manually pick control points for conflation. To the best 

of my knowledge, there is no research work dedicated to the automatic conflation of 

raster maps and orthoimagery.  
                                                 
43 Many variants of the active contour models are developed to improve the efficiency and accuracy to 
make it appropriate for different scenarios. This proposed improvement of the active contour models 
is a different research topic that is beyond the scope of this thesis. 
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I review some related work on imagery to imagery conflation. In [37], Sato et al. 

describe how an edge detection process can be used to determine a set of features 

that can be used to conflate two image data sets. However, their work requires that 

the coordinates of both image data sets be known in advance.  My work does not 

assume that coordinates for the maps are known in advance, although I do assume 

that we know the general region. Dare and Dowman [15] proposed a feature-based 

registration technique (based on multi-feature extraction and matching techniques) to 

integrate two images. However, their approach requires users to manually select 

some initial control points to align two images at the first stage. Seedahmed and 

Martucci [39] proposed an approach, named GIPSC, to extract features from imagery 

by Moravec feature detector and obtain transformation parameters by investigating 

the strongest clusters in the parameter space. They assume that there are certain 

overlapping real spatial objects from both images. Hence, their approach is not 

appropriate for raster maps and imagery registration. In addition, their approach 

requires significant CPU time, due to the examination of all potential matching point 

pairs to solve registration parameters. They also did not address the performance 

issues. Furthermore, none of the techniques mentioned above proposed a way to 

evaluate the registration results, while I proposed a novel way to evaluate raster map 

and imagery conflation. 

Although I only discuss the automatic vector-imagery and map-imagery 

conflation capabilities of AMS-conflation approach in this thesis, it can be easily 

utilized to support imagery-imagery conflation. Similar to map-imagery conflation, I 
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can utilize a common road vector data as “glue” to align both images. The idea is 

utilizing vector-imagery conflation to align the common road vector data with the 

first and second image separately, and then use these image-aligned intersections to 

conflate two images. If I cannot find a common road vector dataset for both images, I 

may utilize different but appropriate road vector datasets to align each image, then 

utilize GeoPPM technique to find the transformation between the two images. 
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Chapter 5  
 

Conclusions and Future Work 
 

 

In this dissertation, I showed that we can achieve automatic and accurate conflation 

of road vector data, street maps and orthoimagery by exploiting multiple sources of 

geospatial information.  My approach, AMS-conflation, accomplishes the integration 

of multiple geospatial datasets in a single visualization by eliminating the spatial 

discrepancies between them. This integrated view of various geospatial datasets then 

can be utilized to annotate spatial objects in the imagery, update legacy vector data, 

or highlight the changes across multiple images. Many important application 

domains can benefit from such geospatial data integration are crisis management, 

city planning, and military intelligence applications. 

Moreover, compared to existing approaches and commercial products, my 

approach is the first that exploits the metadata, attributes, and inferred knowledge 

from road vector data, maps, orthoimagery and relevant datasets to achieve the 

automatic feature detection. 

Furthermore, rather than processing each source of information separately in 

isolation, AMS-conflation processes the sources and utilizes information obtained 

from one source to help the processing of the other source. In particular, in this 
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dissertation, I considered two cases, vector-imagery conflation and map-imagery 

conflation. 

Vector and imagery conflation: My approach finds the approximate location of 

intersections on the images from the inferred knowledge of the corresponding vector 

data. For each intersection point, the approach performs image processing in a small 

area around the intersection point to find the corresponding point in the image.  In 

addition to the approximate location of intersections, to locate the intersections on 

the images, my approach also utilizes other information inferred from vector data 

such as road-directions, road-widths and road-shapes.  More precisely, the approach 

generates a template inferred from vector data and then matches it against the small 

area in the image to find the corresponding intersection point on the imagery.  The 

running time for this technique (called LTM) is dramatically lower than traditional 

image processing techniques due to the localized image processing.  Furthermore, 

the road direction and width information makes detecting roads in the image a much 

easier problem, thus reducing the running time even more. However, due to the 

complexity that characterizes natural scenes in imagery, LTM may detect noisy 

points as control points.  To address this issue, I exploit the fact that there is a 

significant amount of regularity in terms of the relative positions of the nearby 

control points across data sets.  This is due to the fact that my approach is not trying 

to correct individual errors, but rather to determine some local transformations that 

allow the system to integrate two separate data sources. Thus, my approach explored 

a set of filtering techniques and found that they were very effective at eliminating 
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noisy control points in our data sets.  The system can then use these accurate control 

points to align road vector data with imagery. Based on my experimental results, 

these automatic conflation techniques demonstrate the utility to automatically align 

the road vector data to orthoimagery, such that in one of my experiments, 85% of the 

conflated roads were within 4.5 m from the real road axes compared to 55% for the 

original roads for partial areas of the county of St. Louis, MO. 

Map and imagery conflation: My approach automatically aligns a map and an 

image by utilizing an auxiliary information source (i.e., road vector data) that is part 

of neither a map nor an image, but is related to both sources. The approach can take a 

map of unknown coordinates and automatically align it with an image. First, it aligns 

road vector data with imagery using my vector-imagery conflation techniques. As a 

result the conflated intersection points on the road network are aligned with the 

intersection points on the imagery. It can then use the conflated intersection points as 

control points on the imagery. For the maps, my approach utilizes image processing 

techniques to detect road intersections as control points. Furthermore, I developed an 

efficient technique (called GeoPPM) to compare the distributions of the two point 

sets by exploiting road direction, map scale, and point density to determine the 

transformation between the map and imagery. This transformation results in a set of 

control point pairs to align maps with imagery. The experimental results showed that 

GeoPPM only misidentified one point pattern from the fifty tested maps. The 

experimental results also showed that my approach aligned a set of TIGER maps for 

an area in St. Louis, MO to the corresponding orthoimagery such that in one of my 
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experiments, 85.2% of the conflated map roads are within 10.8 m from the real road 

axes. This is a significant improvement considering that simply combining the 

TIGER maps with the corresponding imagery based on geographic coordinates 

provided by the sources places 51.7% of the conflated map roads within 10.8 m from 

the real road axes. 

Although I focus on vector-imagery and map-imagery conflation in this 

dissertation, AMS-conflation can be also utilized to achieve automatic imagery-

imagery, map-map and vector-map alignments: 

Imagery and imagery conflation: The alignment of multiple images can 

generate a super-image that either has the best features of each of the individual 

images or highlights the changes across multiple images.  In the former case, the 

images are available from the same area but with different qualities, and in the latter 

case multiple images are taken at different time points from the same area. Similar to 

map-imagery conflation, I can utilize common road vector data as “glue” to conflate 

to each image separately, and subsequently conflate the two target images. 

Map and map conflation: The alignment of multiple maps can generate a super-

map that integrates the attribution information from each of the individual maps. I 

can utilize map intersection detection technique to identify road intersections from 

each map. Then, I can align the two point sets by using GeoPPM technique. Finally, 

the two target maps can be aligned based on identified matched point pattern. 

Vector and map conflation: The alignment of maps and road vector dataset can 

also generate a super-map that integrates the attribution information from each of the 
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individual datasets.  I can utilize map intersection detector to identify road 

intersections from the map.  Then, I can align this map point set with road 

intersections on the vector data by utilizing GeoPPM technique. Subsequently, these 

control point pairs are used to align vector and maps. 

5.1 Future Directions 

The directions for future work from this research fall in two main categories. First 

are directions for further improving or enhancing the existing functionalities of 

AMS-Conflation. Second are directions for generalizing AMS-conflation to handle 

other types of geospatial datasets. I discuss each of these in turn. 

5.1.1 Improvement of AMS-Conflation to address remaining challenges 

There are a number of challenges remaining for vector-imagery conflation and map-

imagery conflation, respectively. I describe these challenges as follows. 

Vector to imagery conflation: In order to match an intersection template 

extracted from the vector data to image, I need to identify the corresponding road 

intersection on the image.  So far, I have utilized a learning algorithm based on 

Bayes classifiers to soft-classify image pixels into on-road and off-road classes.  The 

classifier is trained based on sample imagery tiles and manual identification of on-

road and off-road pixels. In order to generalize my technique for imagery of any 

arbitrary area, I need to develop an approach to learn the road color on the image.  In 

other words, I need to devise an automatic approach to decide whether new training 

is needed for a given image or whether the current learning is sufficient for the 
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classification of the new area.  I cannot avoid human input in the training process, 

but I plan to simplify the human task to a simple approval or disapproval of decisions 

on only a small set of training tiles and only if needed. 

Map to imagery conflation: First, I intend to use OCR-related techniques to 

extract textual information from the maps in order to reduce the impact of these 

alphanumeric characters. In addition, this pre-extracted textual information (such as 

road names) can be used to label the detected intersections. Therefore, I can even 

further prune the search space of possible point pattern matching by using these 

labeled intersections. Second, I would like to apply my technique to other types of 

maps besides just street maps.  This includes a wide variety of maps that are 

available from various government agencies, such as property survey maps and maps 

of oil and natural gas fields. Finally, an interesting direction with respect to 

integrating maps is to be able to take arbitrary maps with unknown map scale and/or 

geo-coordinates and determine their map scale and/or location anywhere within a 

city, state, country, or even the world. Road vector data covering most of the world is 

available, so the real challenge is enhancing the HiGrid technique for the point 

pattern matching to make such a search tractable. 

5.1.2 Generalization of AMS-Conflation to handle other geospatial data 

The AMS-conflation approach can also be generalized to a wide variety of geospatial 

data sources. The basic idea is to exploit and augment whatever information is 

available about different geospatial products to automatically determine an accurate 
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set of control points. Thus, I can apply this approach to conflate a combination of 

image, map, vector, point and elevation datasets. I focus on two potentially very 

useful types of alignments for which I believe AMS-conflation can be utilized 

efficiently. 

• Point to map conflation: Consider the case of conflating a database of oil well 

points with a map of the oil fields where the precise coordinates of the map 

are unknown.  In an example I explored, certain types of oil wells were 

shown on the map and some of these points were also in the database.  Since 

I need to find a set of common control point pairs, I ran a simple image 

processing algorithm over the map to identify the location of the oil wells on 

the map.  I then used an algorithm similar to GeoPPM for finding the 

mapping between the layout (with relative distances) of two sets of points, 

where there are possibly missing points in both datasets.  Once the mapping 

was found, the database of oil wells could be used to determine the geo-

coordinates of some of the points, which could in turn be used to determine 

the geo-coordinates of the map.  Given this information, the database of oil 

well points can now be superimposed on the map.  Now given the geo-

coordinates of the maps, other layers such as road vectors could be easily 

integrated with these maps. 

• Elevation data conflation: Consider the case of conflating high-resolution 

elevation data (e.g. data represented by spot heights) with lower resolution 

data (e.g., USGS DEM data represented by raster format).  This can be 
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performed using a technique similar to GeoPPM to map two feature point 

sets.  For each of the two elevation data sets, I could identify the highest 

and/or lowest points. Even though the low resolution data may be missing the 

highest or lowest points, I can still use GeoPPM because this is similar to the 

missing intersections in the maps.  Using the points identified in each data 

set, I would then search for the mapping between the highest/lowest points in 

each data set.  Of course, because of the difference in resolution, the current 

GeoPPM algorithm would need to be extended to support the mapping of 

points within some threshold. Once the mapping is found, then the two data 

sets can be conflated. The conflated dataset can show the DEM elevation 

surface with prominent points (e.g., highest/lowest points) annotated with 

higher accurate spot height data. Hence, it can be used for subsequent 

decision-making processes that are based on the elevation information. 

Similarly, I can utilize the same idea to conflate hydrographic data in vector 

format with hydrographic in raster format by matching the points with 

largest/smallest curvatures.  Moreover, I could utilize additional elevation 

information (e.g., USGS DEM) to prune the search space, since the 

hydrographic data usually have lower elevations. 
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Appendix A 
 
 
In this appendix, I present the pseudo code for vector and imagery conflation. 

 

Input:  
VectorData[], Imagery   /* VectorData[] stores the road vector segments */ 
Output:  
ConflatedVectorData[]  /* ConflatedVectorData [] stores the conflated  road vector segments */ 
Descriptions: 
  
               /* Step 1: Analyze vector data to get all road intersections */ 
               for each road-segment roadi in VectorData[] 
                     Add the end points of roadi to the array endpoints[] 
               end for 
               for each point pointi in endpoints[] 
                     if (there are more than three road segments in VectorData[] intersecting at pointi)                    
                     Add pointi and the directions of intersected roads to the array VectorInt[] 
               end for 
               /* Step 2: For each intersections on vector data, use LTM to find the corresponding intersection in
                   the imagery */ 
 for each intersection v in VectorInt[]  
                         iv = LTM(v, Imagery)                           /* LTM is presented in Figure A.2 */ 
                                 if  ( iv != null ) Add the control point pair (v, iv ) to CPs[] 
 end for 
 
 /* Step 3: Filter out inaccurate control points (outliers)*/ 
 filteredCPs[] = Filtering (CPs[])           /* Filtering is presented in Figure A.3 */ 
 /*Step 4: Apply Delaunay triangulation (see reference [35]) based on filtered CPs to partition  
                   space*/ 
 DT[] = DelaunayTriangulation(filteredCPs[]) 
               /*Step 5: Apply rubber-sheeting (see reference [35]) to align other points*/ 
                ConflatedVectorData[]= RubberSheeting (VectorData[],DT[]) 
   
 
 return  ConflatedVectorData[] 

Figure A.1: The pseudo code for vector and imagery conflation 
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Input:  
VectInt, Imagery   /* VectInt stores an intersection on road vector data */ 
Output:  
CorrespondingImagePoint=null   /* CorrespondingImagePoint is the identified corresponding intersection 
                                                           on  the imagery */ 
Descriptions: 
  
               /* Step 1: Determine a localized area around the intersection on the vector dataset */ 
               Generate a bounding square Box around the center point VectInt  
                
               /* Step 2: Pre-classifying the imagery pixels */ 
               Classify each pixel on the Box as on-road or off-road pixel, save the results to roadImg[] 
 
               /* Step 3: Generate a road template from road vector data*/ 
               Generate a road template roadTemp[] around the point VectInt, based on road-widths and road  
               directions 
 
 /* Step 4: Match the road template with classified imagery, using normalized cross correlation*/ 
               /* The function NormalizedCrossCorrelation computes the best match between roadImg[] and  
                   roadTemp[] */ 
               Similarity =  NormalizedCrossCorrelation(roadImg[],roadTemp[] ) 
               if (Similarity > 0.5) 
                    CorrespondingImagePoint = the matched image point based on the calculated Similarity 
 
 return  CorrespondingImagePoint 

Figure A.2: The pseudo code of Localized Template Matching (LTM) 

Input:  
CPs[]                                              /* CPs[] stores the unfiltered control point pairs*/ 
Output:  
FilteredCPs[]                                 /* FilteredCPs [] stores the VMF-filtered control point pairs. That is, the 
                                                            accurate control point pairs */ 
 
Descriptions: 
  
               /* Step 1: Convert the control point pairs to control point pair vectors*/ 
               for each control point pair (v, iv) in CPs[] 
                     Add the vector (iv-v) to ControlPointPairVector[] 
               end for 
 
               /* Step 2: Perform VMF to control point pair vectors*/ 
               for each control point pair vector cpv in ControlPointPairVector[] 
                     Find all Control Point Pair Vectors in ControlPointPairVector[] that are close to cpv, store  
                                  these vectors as NearByControlPointPairVector[] 
                     VectorMedian= Median(NearByControlPointPairVector [])    /* Find the vector median */ 
                     If cpv is within the k-th closest control point vector to VectorMedian  
                        Add cpv to FilteredCPs[] 
               end for 
 
 return  FilteredCPs[] 

Figure A.3: The pseudo code of Vector Median Filter (VMF) 
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Appendix B 
 
 
In this appendix, I present the pseudo code for map and imagery conflation. 

Input:  
VectorData[], Imagery, Map   /* VectorData[] stores the road vector segments */ 
Output:  
ConflatedMapImagery 
Descriptions: 
  

/* Step 1: Conflate vector data with imagery using the algorithm in Figure A.1 */ 
/* S[]  stores the imagery aligned intersections */ 
S[] = VectorImageryConflation(VectorData[], Imagery) 
 
/* Step 2: Find intersections on the map. The detailed algorithm can be found in [13] */ 
/* M[] stores the intersections on the map*/ 
PreprocessedMap = Thresholding(Map)             /* Remove background pixels from the map */ 
PreprocessedMap = RemoveText(PreprocessedMap) /* Remove Text */ 
PreprocessedMap = MophOperatior(PreprocessedMap)    /* Reconnect and enhance road 

pixels*/ 
PreprocessedMap = Thinning(PreprocessedMap)    /* Make single width road pixels */ 
TempInt[] = DetectSalientPoints(PreprocessedMap) /* Find corner points as potential 

intersections*/ 
for each point pointi in TempInt[] 
      if (there are more than three intersected road segments at pointi) 
          Add pointi and the directions of intersected roads to the array M[] 
 
/* Step 3: Find the matched point pattern from S[] and M[] using GeoPPM described in Figure 
B.2 */ 
/* CPs[] stores the matched point pairs */ 

 CPs[] = GeoPPM (M[],S[])    
 
 /*Step 4: Apply Delaunay triangulation (see reference [35]) based on CPs[]  to partition space*/ 
 DT[] = DelaunayTriangulation(CPs[]) 
                /*Step 5: Apply rubber-sheeting (see reference [35]) to align other points*/ 
                ConflatedMapImagery = RubberSheeting (Map,Imagery,DT[]) 
 
 return  ConflatedMapImagery 

Figure B.1: The pseudo code for map and imagery conflation 
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Input:  
M[], S[]      / * M means Map Points, S means Imagery Points */ 

Output:  
MatchedPointPattern 

Descriptions: 
 MatchedPointPattern = null 
 UpperThBound = 2 * original setting of δ 

/* Step 1: Check whether map scale is known*/ 
if (map –scale is known) 
     M’ =TransformMapPoints(M) /* transforms map points based on map-scale. See Figure B.3*/ 
     S’  =TransformImageryPoints(S) /* transforms image points based on image resolution */ 
  repeat 
    Found = false 
      /* For all the points in M’ and S’, generate the corresponding transformation then examine 

whether the transformation meets the threshold α and δ */ 
    for each map point m in M’ 
         for each image point s in S’ and m has the same directions with s 
                 if  ExamineTheTransformation(M’, S’, m, s, α, δ)   /* See Figure B.3 */ 
                      Found = true 
    δ = δ+ ∆   /* automatic threshold adjustment and search again */ 
  until (Found or δ  ≥  UpperThBound)  
  if (Found)  

Pick one matching point to compute the transformation T and then generate 
MatchedPointPattern 

else  /* map –scale is unknown */ 
  /* Partition the imagery space S into sub-space PS using HiGrid*/ 
  PS=PartitionSpaceByHiGrid(S)                          /* See Figure B.3 */ 
  Set PSi  as the set of partitioned space in the lowest level 
  repeat  
   repeat  
    Found = false 
    for each sub-space PSi 
       for each point pairs mi and mj in M 
            for each si and sj in the same sub-space PSi and mi(mj) has the same directions with si(sj) 
                 /* examine whether the transformation formed by mi ,mj, si ,sj meets the threshold α 

and δ */ 
                 if  ExamineTheTransformation2(M , S, mi ,mj, si ,sj ,α, δ)      /* See Figure B.3 */ 
                      Found = true 
    δ = δ+ ∆   /* automatic threshold adjustment and search again */ 
   until (Found or δ  ≥  UpperThBound) 
   δ = original setting of δ 
   Set PSi as the sub-space of one level higher than current level 
  until (Found or in the highest level of HiGrid) 
  if  (Found )  
     Pick one matching point to compute the transformation T and then generate 

MatchedPointPattern 
         return MatchedPointPattern 

Figure B.2: The pseudo code for GeoPPM 
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Function TransformMapPoints (input MapPointSet M, output TransformedMapPointSet M’) 
  Randomly pick a map point pnt from M as origin (0,0) 
  for each point m in M 
        Using map-scale, Find the real-world-distance between m and pnt in north-south and west-east 
        directions, respectively. Then use these distance to determine the coordinate of m 
        Store the coordinate of m to M’ 
   end for 
End Function 

Function TransformImageryPoints (input ImagePointSet S, output TransformedImagePointSet S’) 
  Randomly pick a image point pnt from S as origin (0,0) 
  for each point s in S 
        Using image-resolution, Find the real-world-distance between s and pnt in north-south and west-east 
        directions, respectively. Then use these distance to determine the coordinate of s 
        Store the coordinate of s to S’ 
   end for 
End Function 
Function Boolean ExamineTheTransformation (input mapPtSet, imagePtSet, m, s, threshold α, δ) 
  Matched = false 
  if (m, s) not in matching point pair record table 
      Compute the transformation T mapping m � s, if one exists  
      Compute T(mapPtSet)                                                           /* apply T to all map points */ 
      Store the point pair (m, s) and the matching results to the matching point pair record 
      if more than α% of the points in T(mapPtSet) match points in S within the threshold δ Matched = true 
  else 
      if (for the matching record entry with the potential matching point pair (m, s) that has more than α%  
                                matched points within the threshold δ ) 
          Matched = true       
   end for 
return Matched 
End Function 
Function Boolean ExamineTheTransformation2 (input mapPtSet, imagePtSet, m1, s1, m2, s2, threshold α,δ) 
  Matched = false 
  if ((m1, s1), (m2, s2)) not in matching point pair record table 
      Compute the transformation T mapping m1 � s1 and m2 � s2, if one exists  
      Compute T(mapPtSet)                                                           /* apply T to all map points */ 
      Store the point pairs ((m1, s1), (m2, s2)) and the matching results to the matching point pair record 
      if more than α% of the points in T(mapPtSet) match points in S within the threshold δ 
          Matched = true 
  else 
      if (for the matching record entry with the potential matching point pairs ((m1, s1), (m2, s2)) that has more 
                 than α% matched points within the threshold δ ) 
          Matched = true       
   end for 
return Matched 
End Function 
Function PartitionSpaceByHiGrid (input ImageSpace S, output PartitionedSpace PS) 
            Let b= 4                                       /* Assume recursively the grid into 4 sub-grids */ 
            Let n=10                                      /* Assume there are n points for each cell of the lowest level k */ 
            k= 








n
S

b
||log                         /* k is the depth of HiGrid*/ 

            PS = Partition the image space S into 4k equi-seized cells and construct the hierarchical relationships 
            between the space of adjacent levels  
End Function 

Figure B.3: The subroutines used in GeoPPM 


