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Abstract Since maps are widely available for many areas around the globe, they
provide a valuable resource to help understand other geospatial sources such as to
identify roads or to annotate buildings in imagery. To utilize the maps for under-
standing other geospatial sources, one of the most valuable types of information we
need from the map is the road network, because the roads are common features
used across different geospatial data sets. Specifically, the set of road intersections
of the map provides key information about the road network, which includes the
location of the road junctions, the number of roads that meet at the intersections
(i.e., connectivity), and the orientations of these roads. The set of road intersections
helps to identify roads on imagery by serving as initial seed templates to locate road
pixels. Moreover, a conflation system can use the road intersections as reference
features (i.e., control point set) to align the map with other geospatial sources, such as
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aerial imagery or vector data. In this paper, we present a framework for automatically
and accurately extracting road intersections from raster maps. Identifying the road
intersections is difficult because raster maps typically contain much information
such as roads, symbols, characters, or even contour lines. We combine a variety
of image processing and graphics recognition methods to automatically separate
roads from the raster map and then extract the road intersections. The extracted
information includes a set of road intersection positions, the road connectivity, and
road orientations. For the problem of road intersection extraction, our approach
achieves over 95% precision (correctness) with over 75% recall (completeness) on
average on a set of 70 raster maps from a variety of sources.

Keywords Raster map - Road layer - Road intersection - Imagery - Conflation -
Fusion - Vector data - Geospatial data integration

1 Introduction

Humans have a very long history of using maps. Fortunately, due to the widespread
use of Geographic Information System and the availability of high quality scanners,
we can now obtain many maps in raster format from various sources, such as
digitally scanned maps from USGS Topographic Maps on Microsoft Terraserver! or
computer generated maps from U.S Census Bureau? (TIGER/Line Maps), Google
Maps,® Yahoo Maps,* MapQuest Maps,’ etc. Not only are the raster maps readily
accessible compared to other geospatial data (e.g., vector data), but they provide very
rich information, such as road names, landmarks, or even contour lines. Consider
the fact that road maps are generally the most frequently used map type and the
road layers commonly exist across many different geospatial data sources, the road
network can be used to fuse a map with other geospatial data. In particular, instead
of extracting the whole road network, road intersection templates (i.e., the positions
of the road intersections, the road connectivity and orientations) provide the basic
elements of the road layout and are comparatively easy to extract. For example, the
road intersection templates can be used to extract roads from other sources, such as
aerial images [13]. As shown in Fig. 1, without using the whole road network, the
extracted road intersection templates can be used as seed templates to extract the
roads from the imagery of Tehran, Iran where we have limited access to the vector
data. Moreover, since the layout of a set of road intersections within a certain area is
usually unique, we can utilize the road intersections as the “fingerprint” of the raster
map to determine the extent of a map that is not georeferenced [9]; and further, the
road intersections can be used as feature points to align the raster map with other
geospatial sources [5]. For example, Fig. 2a shows a hybrid view of Tehran, Iran from
Google Map where only major roads are shown with labels. By matching the layout

Ihttp://terraserver-usa.com/
Zhttp:/tiger.census.gov/cgi-bin/mapsurfer
3http://map.google.com
4http://map.yahoo.com

Shttp://www.mapquest.com
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Fig. 1 Use the extracted road
intersections as seed templates
to extract roads from imagery

of road intersections from a tourist map found on the Internet shown in Fig. 2b to the
corresponding layout on the satellite imagery, we can create a enhanced integrated
representation of the maps and imagery as shown in Fig. 3.

Fig. 2 The integration of
imagery from Google Map and
a tourist map (Tehran, Iran).

a The Google Map hybrid
view. b The tourist map

in Farsi
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Fig. 3 The integration of imagery from Google Map and a tourist map (Tehran, Iran)

Automatic extraction of road intersections is difficult due(e.g., map geocoordi-
nates, scales, legend, original vector data, etc) and also the great complexity of maps.
For example, for a Google Map snapshot in an article or an evacuation map posted
on a wildfire news website, there is no uniform metadata or auxiliary information
that can be automatically found and parsed to help utilize the map without human
intervention. In addition, maps typically contain multiple layers of roads, buildings,
symbols, characters, etc. People interpret the maps by examining the map context
such as road labels or looking for the map legends, which is a difficult task for
machines. To overcome these problems, we present a framework, which works on
the pixel level and utilizes the distinctive geometric properties of road lines and
intersections to automatically extract road intersections from raster maps. The inputs
of our approach are raster maps from a variety of sources without any auxiliary
information such as the color of the roads, vector data, or legend information, etc.
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Fig. 4 Example input raster maps. a USGS Topographic Map. b TIGER/Line Map

Two examples of the input raster maps are shown in Fig. 4. The outputs are the
positions of the road intersection points, the number of roads that meet at each
intersection as well as the orientation of each intersected road.

For the problem of automatic extraction of road intersections from raster maps,
much of the previous work provides partial solutions [2], [6], [10], [11], [15]-[18],
[24]-[26]. A majority of the work [2], [6], [15], [26] focuses on extracting text from
maps and the road lines are typically ignored in the process. Others such as Salvatore
and Guitton [24] work on extracting and rebuilding the lines; however they rely
heavily on prior learned colors to separate the lines for specific data sets, which is not
generally useful in our automatic process. Habib et al. [11] assume the maps contain
only roads, and work on road lines directly to extract intersections. These previous
approaches require manual interactions as they provide only partial solutions; and we
build on some of the previous work in our framework to solve specific sub-problems.
For example, to extract road lines from the foreground pixels, we incorporate Cao
et al.’s algorithm [6] as the first step to remove small connected objects such as
characters from the map. Our approach is a complete solution that does not rely on
prior knowledge of the input raster maps.

This paper is based on our earlier paper [7] of this work, and the new contributions
of this paper are as follows:

1. We describe our approach in more detail (Section 2).

2. We describe how we utilize the Localized Template Matching (LTM) [4] to
improve our algorithm (Section 2.6.3). We also report the similarity value
generated by LTM to evaluate the quality of the extracted road intersection
templates (i.e., the road intersection, connectivity and orientations) (Section 3).

3. We present a more extensive set of experiments testing our approach on more
map sources, and we also report the computation time with respect to the number
of foreground pixels on a map (Section 3).
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We report our precision, recall, and F-measure on different positional accuracy
levels (Section 3).

We report the results of a comparison on the same set of map sources using the
approach in this paper against the approaches in our previous work [3] and an
earlier paper of this work [7] (Section 3).

The remainder of this paper is organized as follows. Section 2 describes our

approach to automatically extract road intersections. Section 3 reports on our
experimental results. Section 4 discusses the related work and Section 5 presents the
conclusion and future work.

2 Automatic road intersection extraction

The overall approach described in this paper is shown in Fig. 5. There are three major
steps in our approach:

1.

2.

Automatic Segmentation We first extract the foreground pixels from the raster
map as shown in Fig. 6a and Fig. 6b.

Pre-Processing — Extract and Rebuild Road Layer After we obtain the fore-
ground pixels, we further extract the road pixels by removing pixels which do
not hold the properties to constitute roads (e.g., pixels for labels, contour lines,
etc) as shown in Fig. 6¢c. Then we utilize a number of image processing operators
to rebuild the extracted roads as shown in Fig. 6d.

Determine Road Intersections and Extract Connectivity with Road Orientation
With the extracted roads, we detect possible road intersection candidates and
utilize the number of roads that meet at an intersection candidate (i.e., connec-
tivity) and the road orientations to determine an actual road intersection. The
extracted road templates are shown as black thick lines in Fig. 6e.

The following sub-sections describe each component in detail.

road intersections

Fig. 5 Approach to extract ‘ Raster Map

Module 1: Automatic Segmentation

Binary Map

Module 2: Pre-Processing: Extract and Rebuild Road Layer

¥ Road éaver

Module 3: Determine Road Intersections and Extract

Connectivity with Road Orientation

v

Road Intersection Points with Connectivity and Orientation
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Fig. 6 Remove the background then extract and rebuild the road layer from the raster map.
a Original map. b Foreground objects. ¢ Broken lines. d Restored lines. e Extract Intersections
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2.1 Automatic segmentation

In this step, the input is a raster map, and our goal is to extract the foreground
pixels from the map. We utilize a technique called segmentation with automatically
generated thresholds to separate the foreground from the background pixels. Many
segmentation methods are discussed and proposed for various applications [23],
and we implement a method that analyze the shape of the grayscale histogram and
classify the histogram clusters based on their sizes. Our implementation is based on
our observations of the color usage on raster maps, which are:

1. The background colors of raster maps have a dominant number of pixels; and
the number of foreground pixels are significantly smaller than the number of
foreground background pixels.

2. The foreground colors have high contrast against the background colors.

The first step is to convert the original input raster map to an 8-bit grayscale
(i.e., 256 luminosity levels) image as shown in Fig. 7a. The conversion is done by
computing the average value of the red, green and blue strength of each pixel for the
grayscale level. The grayscale histogram of Fig. 7a is shown in Fig. 8. In the histogram,
the X-axis represents the luminosity level; from 0 (black) to 255 (white), and the
Y-axis has the histogram values that represent the number of pixels for each
luminosity level. We then partition the histogram into luminosity clusters and label
the clusters as either background or foreground clusters.

Since the background colors have a dominant number of pixels, we start from
searching for the the global maximum on the histogram value to identify the first
background cluster. As shown in Fig. 8, we first find PEAK 1, then we check whether

g

a b

Fig. 7 Before and after automatic segmentation (USGS Topographic Map). a Before (grayscale
map). b After (binary map)
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PEAK 1 is closer to 255 (white) or 0 (black) in the histogram to determine which
part in the histogram (i.e., the portion of histogram to the left or right of PEAK 1)
contains the foreground colors. If the peak is closer to 255, such as PEAK 1, 255
(white) is used as the right boundary of the first background cluster. This is because
the foreground colors generally have high contrast against the background colors.
For example, if a light gray color of luminosity 200 is used as the background, it
is common to find the foreground colors spread in the histogram between 0 to 200
instead of between 200 to 255. As a result, for Cluster 1 in Fig. 8, we identify 255 as its
right boundary, and its left boundary is located using the triangle method proposed
by Zack [27], which will be discussed latter. On the other hand, if PEAK 3 is the
global maximum, we will use 0 as its left boundary, and its right boundary is then
located using the triangle method.

After we find the first cluster, we search for next peak and use the triangle method
to locate the cluster’s left and right boundaries until every luminosity level in the
histogram belongs to some cluster. Any clustering algorithm could be used to find
the cluster boundary, and we use the triangle method proposed by Zack [27] for
its simplicity. As shown in Fig. 8, to find the left or right boundary, we construct a
line called triangle line between the peak and the 0 or 255 end point and compute
the distance between each Y-value and the triangle line. The luminosity level that
has its Y-value under the triangle line and has the maximum distance is the cluster’s
left/right boundary as the dotted line indicates in Fig. 8. If every luminosity level has
its Y-value above the triangle line, then the 0 or 255 end point is used as the left or
right boundary of the cluster. For example, if we try to find the left boundary for
Cluster 3 using the triangle method, we will find that every Y-value on the left of
PEAK 3 is above the triangle line, so 0 is used for the left boundary of Cluster 3.
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Table 1 Number of pixels in

each cluster Cluster 1~ Cluster2  Cluster 3
Cluster pixels 316846 237876 85278
Cluster pixels / total pixels ~ 50% 37% 13%

In our example, Cluster 1 is first classified as the first background cluster. The
foreground colors usually have high contrast against the background colors, so the
cluster which is the farthest from the first background cluster in the histogram is
the first foreground cluster (i.e., Cluster 3 in our example). For the remaining clusters,
we compare the number of pixels in each cluster to the background cluster and
the foreground cluster. If the number of pixels of a cluster is closer to the number
of pixels of the background clusters than foreground clusters, it is classified as a
background cluster; otherwise it is a foreground cluster. For example, as shown in
Table 1, the number of pixels in Cluster 2 is closer to Cluster I(background) than
Cluster 3 (foreground), so Cluster 2 is classified as a background cluster. The idea
is, if a cluster uses as many pixels as any of the background cluster, we do not want
to include it in our result for two reasons. First, the cluster could be another color
used in the background. Second, the cluster could be the color used to fill up large
objects on the map such as parks, lakes, etc. Since our goal is to look for road lines
in the foreground pixels, the cluster should be discarded in either case. After each
cluster is classified as background or foreground, we remove the background clusters
(i.e., convert the color of pixels in background clusters to white). An example of the
resulting binary image is shown in Fig. 7b.

There is no universal solution for the automatic segmentation problem. An edge
detector is sometimes used instead of thresholding [11]; however, the edge detector
is sensitive to noise, which makes it difficult to use for our approach. Moreover, with
the presence of characters, the edge detector makes the resulting characters bigger
than the original ones since the edge detector produces two edges for a character
line segment. Big characters have more overlap with road lines and hence severely
sabotage the results of the next step that extract and rebuild the road layer. On the
other hand, a simple thresholding algorithm can be applied to a wide-range of map
sources.

2.2 Pre-processing—extracting and rebuilding road layers

After we separate the foreground from the background pixels, we have a binary
raster map that contains multiple layers such as roads, labels, etc. In this module, we
extract and rebuild the road layer from the binary map. In order to extract the road
layer, we need to remove the objects that do not possess the geometric properties of
roads. Without losing generality, our assumptions about roads on raster maps are:

1. Road lines are straight within a small distance (i.e., several meters).

2. The linear structures (i.e., lines) in a map are mainly roads. The majority of
the roads share the same road format—single-line roads or double-line roads,
and the double-line roads have the same road width within a map. Examples of
single-line and double-line maps are shown in Fig. 9
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Fig. 9 Single-line and double-line maps. a Single-line map from TIGER/Line Map. b Double-line
map from Google Map

3. Unlike label layers or building layers, which could have many small connected
objects, road lines are connected to each other as road networks and road
layers usually have a small number of connected objects or even only one large
connected object — the whole road layer is connected.

Based on these assumptions, we classify the map into two format, the single-line
map and double-line map, automatically by detecting the format of the majority
of the roads on the map. If a map is classified as double-line road format (e.g.,
Google Map in Fig. 9b), we trace the double-line roads and remove single-line
objects (e.g., contour lines, rivers, railroads, etc) from the map. For other maps that
have the majority roads in single-line format (e.g., TIGER/Line map in Fig. 9a), we
classify them as single-line maps and all linear structures on the maps are preserved
for further processing. Since we classify the maps into either double-line map or
single-line map, we might lose some roads in maps with mainly double-line roads
and some single-line roads. However, by identifying the major road format we
dramatically removed many unwanted lines such as the contour lines. After we detect
the road format and process the map, we remove text labels from the remaining
foreground pixels and reconnect the broken lines. The following subsections describe
our algorithm to automatically check the road layer format, to trace the road lines,
and to rebuild the road layer.

2.2.1 Double-line format detection and parallel-pattern tracing

To detect the road format, we need to differentiate the geometric properties of
single-line and double-line roads. We first define one-pixel width straight lines in
the grid domain (i.e., the raster format). As shown in Fig. 10, there are four possible
one-pixel width straight lines constituted by pixel C’s eight adjacent pixels, which
represent the lines of 0°, 45°, 90°, and 135° respectively. These four lines are the basic
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Fig. 10 Basic single-line road
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elements to constitute other straight lines with various slopes starting from pixel C.
For example, in Fig. 11, to represent a 30° line, one of the basic elements, a 45°
line segment, is drawn in black, then additional gray pixels is added to tilt the line.
Hence, by identifying these basic elements, we can identify straight lines in single-
line format.Based on the four basic elements, if the pixel C is on a double-line roads
shown in Fig. 12, there are eight different parallel-patterns of double-line roads (i.e.,
the dashed cells are possible parallel lines). If we can detect any of the eight patterns
for a given foreground pixel, we classify the pixel as a double-line road pixel. As
shown in Fig. 12, we draw a cross at the pixel C using the size of the road width; and
the cross locates at least two road line pixels on each pattern, one at the horizontal
direction and the other one at the vertical direction. Therefore, if we know the road

Fig. 11 A 45° basic element
(black) in the 30° line segment
(both black and gray)
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Fig. 12 Basic double-line road
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width, we can determine whether a foreground pixel is on a double-line road layer
by searching for the corresponding foreground pixels within a distance of road width
(RW)S in vertical and horizontal directions to find the parallel pattern. Two examples
are shown in Fig. 13. If a foreground pixel is on a horizontal or vertical road line
as shown in Fig. 13a, we can find two foreground pixels along the orientation of
the road line within a distance of RW and at least another foreground pixel on the
corresponding parallel road line in a distance of RW. If the orientation of the road

®RW is used in this paper as a variable representing the road width in pixels.
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Fig. 13 Double-line format checking and parallel-pattern tracing. a RW = 3. b RW =4

line is neither horizontal nor vertical as shown in Fig. 13b, we can find one foreground
pixel on both horizontal and vertical directions on the corresponding parallel road
line in a distance of RW as shown in Fig. 13b. By tracing the parallel pattern, we are
able to detect double-line road pixels; however, we still need to know:

1. The format (i.e., single-line or double-line format) of the input road layer. If it is
a single-line road layer, we skip this procedure.
2. The road width (RW).

To detect the road layer format, we apply the parallel-pattern tracing algorithm on
the binary map varying the road width from one to M pixels and remove foreground
pixels which are not classified as road line pixels for a given road width. M is the
maximum width in pixel of a double-line road we expect from the map. For example,
on a 2 m/pixel map given M as 10 pixels, 20 m wide double-line roads are the widest
double-line road we want to detect from the map. It is an input parameter for the
user to fine-tune the algorithm. A bigger M ensures that the roads on high resolution
maps can be found, but it requires more processing time. Since we do not know the
map resolution, we use M equal to 10 in the following examples in this section.

After we remove foreground pixels that are not detected as a road line pixel for
the road width 1 to M, we then compute the ratio of the remaining foreground pixels
divided by the original foreground pixels for each road width. For a given RW, if the
majority of foreground pixels possess the double-line property, we classify the raster
map as a double-line map and the road width is RW. Figure 14 shows the results
of this process of various double-line and single-line maps. At the beginning of this
process when the road width is one pixel, the remaining foreground pixel ratios are
close to one (100%). After RW increases, the ratio starts to decline. This is because
foreground pixels tend to be near each other, and it is easier to find corresponding
pixels even if the road width is incorrect or the map is not a double-line map. The
peaks in the chart shown in Fig. 14a imply that the input raster maps have double-line
road layer and the road width is correct since most of the road pixels are not removed
at the correct road width. For example, the high resolution ESRI Map has a peak
at two pixels, the high resolution MapQuest Map, high resolution Yahoo Map, and
USGS Topographic Map have a peak at four pixels in the chart as shown in Fig. 14a.
ESRI Maps, MapQuest Maps which are not high resolution, and the TIGER/Line
Maps are all single line maps, which do not have any peak as shown in Fig. 14b.
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Fig. 14 Double-line format
checking. a Double-line
format road layers.

b Single-line format road
layers
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Using this method, we detect road layers in double-line format automatically and
also obtain the road width by searching for the peak. For example, from Fig. 14a, we
know the USGS Topographic map is a double-line map with road width equal to 4
pixels. Hence, we apply the parallel-pattern tracing algorithm setting RW to 4 pixels.
The resulting image is shown in Fig. 15 with the contour lines removed.

There are some exceptions to use parallel-pattern tracing to trace double-line
pixels. As shown in Fig. 16, foreground pixels 1 to 8 are the example pixels which will
be classified as a road line pixel using our parallel-pattern tracing algorithm, while
pixels A to D are the example pixels which belong to the double-line road layer but
will not be classified as a road line pixel. In Fig. 16, gray pixels are the corresponding
pixels of pixels 1 to 8 in horizontal/vertical direction or on the corresponding parallel
lines. Although after the parallel-pattern tracing, pixels A to D will be removed
resulting in gaps between line segments, the majority of road pixels are detected and
the gaps will be fixed later when we rebuild the whole road layer.

2.2.2 Text/graphics separation

After we detect the road format and process the map according to its format, the
remaining noise comes from the small connected objects, e.g. buildings, symbols,
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Fig. 15 USGS Topographic Map before and after parallel-pattern tracing. a Before. b After

characters, etc. The small connected objects tend to be near each other on the raster
maps, such as characters that are close to each other to form strings, and buildings
that are close to each other on a street block. The text/graphics separation algo-
rithms [2], [6], [10], [15]-[18], [25], [26] are very suitable for grouping and removing
these types of objects. The text/graphics separation algorithms start by identifying
small connected objects and then use various algorithms to search neighborhood
objects in order to build object groups [25].

We apply Cao et al.’s algorithm described in [6] for text/graphics separation.
Their algorithm first removes small connected objects that do not overlap with other
objects in the raster map as shown in Fig. 17b and then checks the length of each
remaining line segment to determine if the line segment belongs to a graphic object.
If a line segment is longer than a preset threshold, it is considered a graphic object
(i.e., a line); otherwise, it is a text object (i.e., not a line). The identified text objects
are shown in Fig. 17c, and the final result after text/graphics separation is show in
Fig. 17d. The broken road lines are inevitable after the removal of those objects
touching lines, and we can reconnect them when rebuilding the road layer.

With Cao et al.’s algorithm, we need to specify several parameters for the
geometric properties of the characters, such as the size of one character and the
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Fig. 16 The exceptions in double-line format checking and parallel-pattern tracing (white cells are
background pixels)

maximum length of a word. Since we do not have the information to setup the
algorithm for different maps, we first conduct several initial tests on a disjoint set of
maps and select a set of parameters to be used in our experiments. Our experiment
shows that Cao et al.’s algorithm is very robust since the input parameters do not
have to be exact. Also, the characters sizes of many computer generated raster maps
vary in a small range for users to read the map comfortably. For example, the maps
from Google Map at different zooming level and maps from Yahoo Map have similar
sizes of street labels. For the scanned maps, the characters could be enormously
enlarged/shrunk depending on the scan resolution; and the text/graphics separation
algorithm will fail given that no additional geometric properties of the characters are
provided. However, scanned maps usually are scaled down for user-friendly viewing
or to be displayed on the Internet, so it is not common that the input map is a
scanned maps with a extremely high/low scan resolution and enormously large/small
characters.

2.2.3 Rebuilding road layers: binary morphological operators

In the previous steps, we extracted the road layer and created broken lines during the
extraction. In this step, we utilize the binary morphological operators to reconnect
the lines and fix the gaps. Binary morphological operators are easily implemented
using hit-or-miss transformations with various size masks [19], and are often used in
various document analysis algorithms as fundamental operations [1]. The hit-or-miss
transformation is performed in our approach as follows. We use 3-by-3 binary masks
to scan over the input binary images. If the masks match the underlying pixels, it is a
“hit”; otherwise, it is a “miss”. Each operator uses different masks to perform hit-or-
miss transformations and performs different actions as a result of a “hit” or “miss”.
We describe each operator in turn.

2.3 Binary dilation

The basic effect of a binary dilation operator is to expand the region of foreground
pixels [19] and we use it to thicken the lines and reconnect adjacent pixels. As
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Fig. 17 TIGER/Line map before and after text/graphics separation. a Binary TIGER/Line map.
b Remove small connected components. ¢ Identify non-line objects. d After text/graphics separation

shown in Fig. 18, if a background pixel has any foreground pixel in its eight adjacent
pixels (i.e., a “hit”), it is filled up as a foreground pixel (i.e., the action resulting
from the “hit”). For example, Fig. 19 shows that after two iterations, the general
dilation operator fixes the gap between two broken lines. Moreover, if the roads are
in double-line format, the two parallel lines are combined to a single line after the

Fig. 18 Dilation (black cells
are foreground pixels)
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Fig. 19 The effect of the binary dilation operators (black cells are foreground pixels)

general dilation operator as shown in Fig. 19. The resulting image after performing
three iterations of the binary dilation operator on Fig. 20a is shown in Fig. 20b. The
number of iterations determines the maximum gap size that we can fix; the gaps
smaller than six pixels are reconnected after performing three iterations of binary
dilation operator and all road lines have become thicker. For double-line raster maps,
the number of iterations is selected based on the width of the roads in order to merge
the two parallel lines. For single-line maps, we utilize three iterations to fix gaps
smaller than six pixels, which is chosen based on our initial experiments. Smaller
number of iterations prevent two different roads from merging together but result in
more broken lines; while larger number of iterations fix wide gaps but have the risk
of merging two different roads.

2.4 Binary erosion

The idea of a binary erosion operator is to reduce the region of foreground pix-
els [19]. We use it to reduce the thick lines and maintain an orientation similar to
the original orientation prior to applying the binary morphological operators. If a
foreground pixel has any background pixel in its eight adjacent pixels (i.e., a “hit”),

a b

Fig. 20 TIGER/Line map before and after the binary dilation operator. a After text/graphics
separation. b After the binary dilation operator
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Fig. 21 Erosion operator
(black cells are foreground
pixels)

.

a b

Fig. 23 TIGER/Line map before and after erosion. a After dilation. b After erosion
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Fig. 24 The thinning operator (black cells are foreground pixels)
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it is converted to a background pixel (i.e., the action resulting from the “hit”) as
shown in Fig. 21. For example, Fig. 22 shows that after two iterations, the general
erosion operator reduces the width of the thick lines. The resulting image after
performing two iterations of the binary erosion operator on Fig. 23a is shown in
Fig. 23b.

2.5 Thinning

After applying the binary dilation and erosion operators, we have road layers
composed from road lines with various widths. But we need the road lines to have
exactly one pixel width to detect interest points and the connectivity in the next
step, and the thinning operator can produce the one pixel width results. The effect
of the thinning operator is shown in Fig. 24. We do not use the thinning operator
right after the binary dilation operator because the binary erosion operator has
the opposite affect to the binary dilation operator, which prevent the orientation
of road lines near the intersections from being distorted, as shown in Fig. 25. We
utilize a generic thinning operator that is a conditional erosion operator with an
extra confirmation step [19]. The first step of the thinning operator is to mark every
foreground pixel that connects to one or more background pixels (i.e., the same idea
as the binary erosion operator) as candidate to be converted to the background.
Then the confirmation step checks if the conversion of the candidate will cause any
disappearance of original line branches to ensure the basic structure of the original
objects will not be compromised. The resulting image after performing the thinning
operator on Fig. 26a is shown in Fig. 26b.

2.6 Determine road intersections, connectivity, and orientation

In this step, we automatically extract road intersections, connectivity (i.e., the
number of roads that meet at an intersection), and the orientation of the roads inter-
secting at each intersection from the road layer. In addition, we utilize the extracted
information (i.e., the position of the extracted intersection point, connectivity, and
orientation) and the original map to verify and improve the results in the last step of
this module.

a b c

Fig. 25 The results after thinning with and without erosion. a After dilation. b Without erosion.
¢ With erosion
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Fig. 26 TIGER/Line map before and after thinning. a After erosion. b After thinning

2.6.1 Detection of road intersection candidates

With the roads from the preprocessing steps, we need to locate possible road
intersection points. A road intersection point is a point at which more than two lines
meet with different tangents. To detect possible intersection points, we start by using
an interest operator. As the name interest operator implies, it detects “interest points”
from an image as starting points for other operators to further work on. We use the
interest operator proposed by Shi and Tomasi [22] and implemented in OpenCV’ to
find the interest points as the road intersection candidates.

The interest operator checks the color variation around every foreground pixel to
identify interest points, and it assigns a quality value to each interest point. If one
interest points lies within the predefined radius R of some interest points with higher
quality value, it will be discarded. For example, consider Fig. 27, where pixels 1 to 5
are all interest points. With the radius R defined as 5 pixels, salient point 2 is too
close to salient point 1 which has a higher quality value. As a result, we discard
salient point 2 while salient point 1 is kept as a road intersection candidate. Salient
point 4 is also discarded, because it lies within the 5 pixels radius of salient point 3.
Salient point 5 is considered as a road intersection point candidate, since it is not
close to any other interest points with higher quality value. The radius R of 5 pixels
is selected through experimentation. If we select a smaller radius, we will have more
road intersection candidates; otherwise we will have fewer candidates. Consider the
fact that road intersections are not generally near each other, the radius of 5 pixels is
reasonable for processing maps. These road intersection candidates are then passed
to the next module for the determination of the actual road intersections.

2.6.2 Filtering intersections, extracting road connectivity and orientation

An interest point could be detected on a road line where the slope of the road
suddenly changes. One example is the point 5 shown in Fig. 27. So we have to filter

http://sourceforge.net/projects/opencvlibrary, GoodFeaturesToTrack function.
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Fig. 27 The interest points (black cells are foreground pixels)

out the interest points that do not have the geometric property of an intersection
point. Every road intersection point should have more than two line segments which
meet at that point. The definition of intersection connectivity is the number of line
segments intersecting at an intersection point, and it is the main criteria to filter road
intersection points from interest points.

We assume roads on raster maps are straight within a small distance (i.e., several
meters). For each of the interest points detected by the interest operator, we draw
a rectangle around it as shown in Fig. 28. The size of the rectangle is based on the
maximum length in our assumption that the road lines are straight. In our example
shown in Fig. 28, we use an 11-by-11 rectangle on the raster map with resolution
2 m/pixel, which means we assume the road lines are straight within 5 pixels or 10 m
(e.g., on the horizontal direction, a line of length 11 pixels is divided into 5 pixels
to the left, one center pixel and 5 pixels to the right). Although the rectangle size
can vary for different raster maps with various resolutions, we use a small rectangle
size to assure even with lower resolution raster maps, the assumption that road lines
within the rectangle are straight is still valid.

The connectivity of an interest point is the number of foreground pixels that
intersects with this rectangle since the road lines are all single pixel width. If the
connectivity is less than three, we discard the point; otherwise it is identified as a
road intersection point. Subsequently, we link the interest points to the intersected
foreground pixels on the rectangle boundaries to compute the slope (i.e., orientation)
of the road lines as shown in Fig. 29.

In this step, we do not trace the pixels between the center pixel and the intersected
pixels at the rectangle boundaries. In general, this step could introduce errors if the

|

a b c

Fig.28 The intersection candidates (gray circles) of a portion of the TIGER/Line Map. a The interest
points. b Not an intersection. ¢ An intersection
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Fig. 29 Construct lines
to compute orientation

intersected pixels are from other road lines which do not intersect at the center pixel
or if the road lines within the rectangle are not straight. This usually happens in low-
resolution maps; however, in the general case, the rectangle is much smaller than the
size of a street block, and it is unlikely to have other road lines intersect or have non-
straight road lines. Moreover, we save significant computation time by avoiding the
tracing of every possible road line between the center and the rectangle box.

2.6.3 Localized template matching

LTM [5] is the last step in our approach, which enhances the accuracy of the extracted
position, connectivity, and orientation. During the preprocessing steps to rebuild the
road layer (i.e., the binary morphological operators), we might shift the road lines
from their original position or even create false branches. In order to ensure accurate
results, we utilize the LTM to compare the extracted results with the original raster
map and return a similarity value.

For every extracted road intersection, we construct a template based on the road
layer format, connectivity, and road orientation. For example, Fig. 30a shows a road
intersection point with connectivity equal to 4, and the orientations of the intersected
roads are 0, 90, 180, and 270 degree, respectively. If the raster map is a double-line
map, we use the road width RW from the parallel-pattern tracing step with one pixel
wide lines (i.e., the black lines in the figures) to construct the template as shown in
Fig. 30b; otherwise, we use one pixel width lines to construct a single-line template
as shown in Fig. 30c (i.e., the line width is the road width for single-line roads). After
we have the template, we utilize the LTM function implemented in [5] to search
locally from the position of the extracted intersection point as shown in Fig. 31.
LTM will locate regions in the binary raster map that are most similar in terms of
the geometry to the generated template. The outputs of LTM are the position of
the matched template and a similarity value. If the similarity is larger than a pre-set
threshold, we adjust the position of the intersection point; otherwise we discard the
intersection point. As shown in Fig. 32, LTM adjusts the circled intersection points
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Fig.30 Templates for different road format. a Extracted intersection. b Double-line format. ¢ Single-
line format

to the precise location on the original raster map, and the arrows show the directions
of the adjustments. The differences are only a few pixels, so the figures need to
be studied carefully to see the differences. For example, in the upper-left circle of
Fig. 32a, LTM adjusts the intersection several pixels lower and makes it match the
exact intersection location on the original map; for the three circles on the bottom,
LTM moves the intersections to their right for exact matches.

3 Experiments

In this section, we evaluated our approach by conducting experiments on raster maps
from various sources. Section 3.1 explains the test datasets and the initial parameter
settings. Section 3.2 presents our evaluation methodology. Section 3.3 analyzes the
experimental results and provide a comparison to our previous work [3] and an
earlier paper of this work in [7]. Section 3.4 describes the execution platform and
discusses the computation time.
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Fig. 31 LTM (TIGER/Line Map). a Search within a local area. b Find a match
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3.1 Experimental setup

We experimented with computer generated maps and scanned maps from 12 sources®
covering cities of the United States and some European countries. We first arbi-
trarily selected 70 detailed street maps with a resolution range from 1.85 m/pixel
to 7 m/pixel.’ In addition, we deliberately selected 7 low-resolution abstract maps
(resolutions range from 7 m/pixel to 14.5 m/pixel) to test our approach on more
complex raster maps that have significant overlap between lines and characters.

We did not use any prior information about the input maps. Instead we used a
set of default parameters for all the input maps based on practical experience on a
small set of data (disjoint with our test dataset in this experiment), which may not
produce the best results for all raster map sources but demonstrate our capability
to handle a variety of maps. The size of small connected objects to be removed in
the text/graphics separation step is set to 20-by-20 pixels. The number of iterations
for the binary dilation and erosion operators on a single-line map are three and
two respectively (i.e., a gap smaller than six pixels can be fixed). In the intersection
filtering and connectivity and orientation extracting step, we used a 21-by-21 pixel
rectangular box (10 pixels to the left, 10 pixels to the right plus one center pixel). The
similarity threshold for the LTM is 50%. We could optimize these parameters for
one particular source to produce the best results if we incorporate prior knowledge
of the sources in advance.

3.2 Evaluation methodology

The output of our approach is a set of road intersection positions along with the
road connectivity and the orientations. We first report the precision (correctness)
and recall (completeness)'” for the accuracy of the extracted intersection positions.
For the displacement quality of the results, we randomly selected two maps from
each source to examine the positional displacement. We also report the geometry
similarity between the intersection templates we extracted and the original map to
analyze the quality of the road connectivity and orientation.

The precision (correctness) is defined as the number of correctly extracted road
intersection points divided by the number of extracted road intersection points.
The recall (completeness) is defined as the number of correctly extracted road
intersection points divided by the number of road intersections on the raster map.
The positional displacement is the distance in pixels between the correctly extracted
road intersection points and the corresponding actual road intersections. Correctly
extracted road intersection points are defined as follows: if we can find a road
intersection on the original raster map within a N pixel radius of the extracted
road intersection point, it is considered a correctly extracted road intersection point.
Based on our practical experience, if an extracted intersection is within five pixel
radius to any road intersections on the original map, it usually corresponds to

8ESRI Map, MapQuest Map, TIGER/Line Map, Yahoo Map, A9 Map, MSN Map, Google Map,
Map24 Map, ViaMichelin Map, Multimap Map, USGS Topographic Map, Thomas Brothers Map.

9Some of the sources do not provide resolution information.

10The terms precision and recall are common evaluation terminologies in information retrieval and
correctness and completeness are often used alternatively in geomatics and remote sensing [12].
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an actual intersections on the original map but was shifted during the extraction;
otherwise it is more likely a false-positive generated during our process to rebuild
the roads. Thus, N equal to five is used as the upper bound to report our results.
We report the precision and recall as we vary N from 0 to 5 for a subset of testing
data in Section “3.3;” and we use N equal to 5 for any other places in the paper
when precision and recall are mentioned. N represents the maximum positional
displacements an application can tolerate. Different usages of the extracted inter-
sections have different tolerance levels on the value of N. For example, consider an
application that utilizes the extracted intersections as seed templates to search for
neighborhood road pixels on aerial imagery [13], it needs as many intersections as
possible; however, it is likely to have a lower requirement on the positional accuracy
of the intersections (i.e., N can be larger). On the other hand, a conflation system
such as [5] requires higher positional accuracy (i.e., a smaller N) to match the set
of road intersections to another set of road intersections from another source. Road
intersections on the original maps are defined as the intersection points of two or
more road lines for single-line maps or any pixel inside the intersection areas where
two or more roads intersect for double-line maps.

The geometric similarity represents the similarity between the extracted intersec-
tion template and the binary raster map, which is computed with LTM as described
in Section 2.6.3 and used in [4]. For an intersection template T with w x h pixels and
the binary raster map B, the geometric similarity is defined in as:

Y XY T y)B(X +x,Y +y)
L S Ty T S BOX 4, Y o+ yp?

where T(x,y) equals one, if (x,y) belongs to the intersection template; otherwise
T(x,y) equals zero. B(x,y) equals one, if (x,y) is a foreground pixels on the binary
raster map; otherwise B(x,y) equals zero. In other words, the geometric similarity is
anormalized cross correlation between the template and the binary raster map which
ranges from zero to one [4].

GS(T) =

M

3.3 Experimental results

We report the results with respect to the map sources as shown in Table 2. The
average precision is 95% and the recall is 75% under the set of parameters discussed
in Section 3.1. In particular, for map sources like the A9 Map, the Map24 Map, and
the ViaMichelin Map, the precision is 100% because of the fine quality of their maps
(i.e., less noise, same width roads etc.). In our experiments the USGS Topographic
Maps have the lowest precision and recall besides the low-resolution raster maps.
This is because USGS Topographic Maps contain more information layers than
other map sources and the quality of USGS Topographic Maps is not as good as
computer generated raster maps due to the poor scan quality. The average geometric
similarity of the extracted intersection template generated from LTM is 72%. We
can improve the similarity if we track the line pixels when filtering the intersections
to generate the templates, but it will require more computation time. Our approach
generates a set of representative features for applications that require high quality of
corresponding features for their matching process. In [5], a map to imagery conflation
system proposed by Chen et al. build on the results of our approach (i.e., the set of
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Table 2 Average precision, recall, and F-measure with respect to various sources

Map source (number of test maps) Precision (%) Recall (%) F-Measure (%)
ESRI map (10) 93 71 81
MapQuest map (9) 98 66 79
TIGER/Line map (9) 97 84 90
Yahoo map (10) 95 76 84
A9 map (5) 100 93 97
MSN map (5) 97 88 92
Google map (5) 98 86 91
Map24 map (5) 100 82 90
ViaMichelin map (5) 100 98 99
Multimap map (5) 98 85 91
USGS Topographic map (10) 82 60 69
Thomas Brothers map (2) 98 65 79

road intersection templates) and achieved their goal to identify the geospatial extent
of the raster map and to align the map with satellite imagery.

The value of positional displacements for two randomly selected maps from each
source is 0.25 pixels on average; and the Root Mean Squared Error (RMSE) is 0.82,
which means the majority of extracted intersections are within one pixel radius of
the actual intersections on the map. Some extracted intersections are still not on the
precise original position since we construct the LTM template using 1-pixel width
roads instead of using the original road line width, which is unknown. As shown in
Fig. 33, we also report the recall and precision with the positional displacement, N,
varies from 0 pixels (i.e., we extract the exact position) to 5 pixels. Intuitively, the
precision and recall are higher when the N increases. For applications that do not

O Precision

ERecall o o
100% 7 | OF-Measure 93% 95% %% o
90% - 86% 88%
50% | 80%

74%
70% A 65%
60%
50% -
40% A
30% A
20% A
10% A
0% - T T T
0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 5 pixels

Fig. 33 The precision and recall with respect to the positional displacement
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Table 3 Experimental results with respect to the resolution

Precision (%) Recall (%)
Resolution higher then 7 m/pixel (70 maps) 95 75
Resolution lower then 7 m/pixel (7 maps) 83 27

require finding the exact location of the intersections, we can achieve higher precision
and recalls.

For comparison, we selected 7 low-resolution abstract maps (resolutions range
from 7 m/pixel to 14.5 m/pixel) to test our approach on more complex raster maps
that have significant overlap between lines and characters. The experimental results
of the 7 low-resolution abstract maps compared to the set of 70 high-resolution maps
are shown in Table 3. The low-resolution maps (i.e., resolutions lower than 7 m/pixel)
have significantly lower average recall. This is because the characters and symbols
touch the lines more frequently as shown in Fig. 34. During the preprocessing steps,
we use a text/graphics separation program to remove the characters and labels, and
it removes many of the road lines in a low-resolution map. Moreover, the size of
street blocks on the low-resolution map are usually smaller than the window size
we use in the intersection filter, which leads to inaccurate identification of the road
orientations.

Finally, we tested our approach in this paper against an earlier paper of this work
in [7] and the previous work of Chen et al. [3] using maps from the same map sources
(i.e., ESRI, TIGER/Line, MapQuest, and Yahoo). The results are shown in Fig. 35.
To our best knowledge, besides [7] and [3], the closest work we found is from Habib
et al. [11], but they have very different assumptions of the input maps than us (they
assume the maps contain only roads) and also there was no numeric results reported
in the paper. We also conduct significance tests on the comparison with the precision
and recall of our previous work in [7] and this paper using T-distribution at p < 0.05
with the 95 test maps. The precision is significantly improved from [3] and slightly
improved from our earlier paper on this work [7] (the difference is statistically
significant) resulting from the usage of LTM. The F-measure is also slightly improved
from the previous work. For the quality of the intersection positions, we picked two
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Fig. 34 A low-resolution raster map (TIGER/Line Map,7.99 m/pixel)
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Fig. 35 Comparison with O Precision .
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maps for each source to calculate the positional displacement. The RMSE of the
positional displacement using the approach in this paper is 1.01, which is improved
from 1.37 in [7] due to the use of LTM. The recall in [7] is slightly higher than the
recall of this paper (the difference is not statistically significant) since the LTM filters
some correct intersections with incorrect orientation and connectivity templates.
Two example results from our experiments are shown in Fig. 36. In these figures,
an “X” marks the one road intersection point extracted by our system.

3.4 Computation time

Our test platform is an Intel Xeon 1.8 GHz Dual Processors server with 1 GB
memory and the development tool is Microsoft Visual Studio 2003. The efficiency

Fig. 36 Road intersectiorextraction. a TIGER/Line map. b USGS Topographic map
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Fig. 37 Computation time is related to the number of foreground pixels

of our approach depends on the computation time for each component, and the
dominant factors are the map size and the number of foreground pixels in the raster
maps. As shown in Fig. 37, the computation time increases when the number of
foreground pixels increases. Raster maps that contain more information need more
time than others. USGS Topographic Maps are the most informative raster maps in
our experiments, and it took less than one minute to extract the road intersections
from an 800 x 600 topographic map with around 120 k foreground pixels on our
testing platform. Other sources require fewer than 20 s on images of size less than
500 x 400. The LTM algorithm takes about 0.25 s to match an intersection point.

4 Related work

There is a variety of research on object recognition from raster maps, such as road
intersection extraction [11], contour line extraction [24], general object recogni-
tion [17], [21], and text/graphics separation [2], [6], [10], [15]-[18], [25], [26].

Habib et al. [11] utilize several image processing algorithms to automatically
extract road intersections from raster maps. To extract the road layer, Habib et
al. simply assume there are only road lines on the input raster maps, and use an
edge detector to separate the roads from the background. With the extracted road
lines, Habib et al. utilize an interest operator to detect the corner points (i.e., interest
points in our paper) on the road edges and then search for corner point groups.
The centroids of the resulting groups are the road intersection points. In this case,
false-positive corner points or intersections of T-shape roads significantly shift the
centroids away from the correct locations. After the intersections are extracted, they
extract the connectivity and orientations using manually identified knowledge of the
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road format and the road width. In comparison, our approach detects the road layer
format and road width automatically to rebuild the road layer. Moreover, the usage
of LTM with the road width ensures the extracted intersections are on the original
positions without manually verifying the results.

Salvatore and Guitton [24] use a color classification technique to extract contour
lines from the topographic maps. Their technique requires prior knowledge to
generate a proper set of color thresholds for a specific set of maps. However,
in reality, the thresholds for different topographic maps covering different areas
may vary depending on the quality of the raster map. With our approach, we
separate the contour lines from the roads by distinguishing their different geometric
representations. In addition, the previous work has the goal to ensure the resulting
contour lines have continuity similar to the original while our focus is on the road
lines that are close to the intersections.

Samet et al. [21] use the legends in a learning process to identify objects on the
raster maps. Meyers et al. [17] use a verification based approach with map legends
and specifications to extract data from raster maps. These approaches both need
prior knowledge (i.e., legend layer and map specification) of the input raster maps,
and the training process needs to be repeated when the map source changes.

Finally, much research work has been performed in the field of text/graphics
separation from documents and maps [2], [6], [10], [15]-[18], [25], [26], which is
related to one of our step to extract and rebuild the road layer. Among the text/
graphics separation research, [2], [10], [26] assume that the line and character
pixels are not overlapping and they extract characters by tracing and grouping
connected objects. Cao et al. [6] detects characters from more complex documents
(i.e., characters overlap lines) using the differences of the length of line segments in
characters and lines. Li et al. [15, 16] and Nagy et al. [18] first separate the characters
from the lines using connected component analysis and then focus on local area to
rebuild the lines and characters using various methods. Generally, the text/graphics
separation research emphasize on extracting characters, hence it provides a partial
solution to our goal to extract the intersection templates. In Section 2.2.2, we describe
how we incorporate the algorithm from [6] to remove the characters before we utilize
the binary morphological operators to rebuild the roads.

The main difference between our approach and the previous work on map
problems is that the previous work requires additional information hence they
provide partial solutions to the problem of automatic road intersection extraction.
We assume a more general scenario to handle various map sources [9]; and our
approach requires no prior knowledge while it still can be tuned with additional
information, if available.

5 Conclusion and future work

The main contribution of this paper is to provide a complete framework to automati-
cally and accurately extract the intersections from raster maps. We also identify other
valuable information such as the road format (i.e., single-line format or double-line
format) and road width to help the extraction process.

Our approach achieves 95% precision and 75% recall on average when auto-
matically extracting road intersections from raster maps with resolution higher than
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7m/pixel without any prior information. The result is a set of accurate features that
can be used to exploit other geospatial data or to intergrate a raster map with other
geospatial sources, thus creating an integrated view. For example, in [5], Chen et al.
used the extracted intersections to align the maps to imagery. Moreover, for a
road extraction application, the georeferenced road intersections can be used as
seed templates to extract the roads from imagery [13]. In the work in [9], Desai
et al. applied our automatic intersection extraction technique on maps returned
from image search engines and successfully identify the road intersection points for
geospatial fusion systems to identify the geocoordinates of the input maps.

There are three primary assumptions of our current approach. First, the back-
ground pixels must be separable using the difference in luminosity level from the
foreground pixels. This means that the background pixels must have the dominant
color in the raster maps. On certain raster maps that contain numerous objects
and the number of foreground pixels is larger than that of the background pixels,
those foreground objects seriously overlap with each other making the automatic
processing nearly impossible. Even if we can remove the background pixels on
these raster maps, removing noisy objects touching road lines results in too many
broken road segments that are difficult to reconnect. Second, although our approach
works with no prior knowledge of the map scales, low-resolution raster maps (i.e.,
in our experiments, above 7 m/pixel) may result in low precision and recall. Third,
as mentioned in Section 2.2.2, if the characters on the input map are significantly
different than our preset value, we cannot remove the character from lines and the
results will have many incorrectly identified intersections.

In future work, we plan to address these issues. First, we plan to exploit texture
classification methods [20] to handle those raster maps in which the background color
is not the dominate color such as tourist maps. Second, although the text/graphics
separation program performs well with one set of default parameters in our exper-
iments, we still need to specify these parameters for each map to achieve the best
results. Instead of tuning for every map, we want to utilize classification methods
in the frequency domain [8], [14] to separate line and character textures, which
do not require any geometric parameters. Third, we want to further enhance the
extracted road layer. In our approach, we do not focus on repairing the road network,
but rather on rebuilding the roads close to the intersections. Hence we generate
a comparatively coarse road layer from the original raster map. With the help of
vectorization algorithms, we can further repair the road layer and generate the road
vector data from the raster maps.
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