Extracting Road Vector Data from Raster Maps

Yao-Yi Chiang and Craig A. Knoblock

University of Southern California,
Department of Computer Science and Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, USA
{yaoyichi, knoblock}@isi.edu

Abstract. Raster maps are an important source of road information.
Because of the overlapping map features (e.g., roads and text labels)
and the varying image quality, extracting road vector data from raster
maps usually requires significant user input to achieve accurate results.
In this paper, we present an accurate road vectorization technique that
minimizes user input by combining our previous work on extracting road
pixels and road-intersection templates to extract accurate road vector
data from raster maps. Our approach enables GIS applications to exploit
the road information in raster maps for the areas where the road vector
data are otherwise not easily accessible, such as the countries of the
Middle East. We show that our approach requires minimal user input
and achieves an average of 93.2% completeness and 95.6% correctness in
an experiment using raster maps from various sources.

Key words: GIS, raster maps, road vectorization, map processing

1 Introduction

Humans have a long history of using maps. In particular, paper maps have
been widely used since the early years for documenting geospatial information.
Because of the availability of low cost and high-resolution scanners and the
Internet, we can now obtain a huge number of scanned maps in raster format
from various sources. Since maps commonly contain road networks, raster maps
are an important source of road vector data for areas where road vector data are
not readily available. Moreover, we can use the road vector data as features to
register maps to other geospatial data, such as imagery, and create an integrated
view of heterogeneous geospatial data sets [3].

Extracting road vector data from raster maps is a challenging task. First, the
extraction of road pixels is difficult since raster maps very often contain noise
from image compression and scanning processes and roads often overlap with
other map features. Further, for converting the road pixels to vector format,
the previous work commonly uses the thinning operator [11] or line grouping
and parallel-line matching techniques [1] to identify the road centerlines. The
thinning operator can produce distorted lines around intersections and hence
the extracted road vector data are not accurate without manual adjustment [1].
The line grouping and parallel-line matching techniques require manual settings
on various parameters to identify the accurate centerlines, such as the maximum
difference between the slopes of two line segments to be merged [11] .

In this paper, we present a general technique that requires minimal user
input for extracting accurate road vector data from raster maps with varying

map complexity (e.g., overlapping features) and image quality. We exploit our
previous work on extracting road pixels from raster maps [5] and utilize the thin-
ning operator to determine the road centerlines. We then automatically correct
the distortions near road intersections caused by the thinning operator using
our previous techniques on extracting accurate road-intersection templates from
raster maps [4; 6] to extract accurate road vector data. We tested our road vec-
torization technique on a variety of maps including scanned and digital maps
from different sources and compared our results to a commercial map-digitizing
product.

The remainder of this paper is organized as follows. Section 2 discusses related
work on road extraction from maps. Section 3 presents our approach to extract
the road pixels from raster maps. Section 4 describes our approach to generate
the road vector data from the extracted road pixels. Section 5 reports on our
experimental results, and Section 6 presents the conclusion and future work.

2 Related Work

Much research work has been performed in the field of extracting road infor-
mation from raster maps, such as separating lines from text [2; 14], detecting
road intersections [8], and extracting road vector data [1; 11] from raster maps.
In the previous work on text/graphics separation from raster maps, Cao and
Tan [2] and Li et al. [14] utilize preset grayscale thresholds to remove the back-
ground pixels from raster maps and then detect text labels from the remaining
foreground layers of the maps. The road pixels are the by-product (i.e., only the
road pixels are extracted) after the text pixels are identified. Since in their work,
the main goal is to recognize the text labels, they do not process the raster maps
further to extract the road vector data.

Some of the previous work assumes a simpler type of raster maps for their
algorithms. Habib et al. [8] extract road intersections from raster maps that con-
tain road lines only. Itonaga et al. [11] employ a stochastic relaxation approach
to first extract the road areas from digitally-generated maps (i.e., not scanned
maps) and then apply the thinning operator to extract the road vector data.
The distorted lines around the road intersections are corrected based on the
straightness of the roads, which is determined using user specified constraints,
such as the road width. In comparison, our approach can process a variety of
raster maps including scanned maps, and we avoid the distortion with no pa-
rameter settings. Bin et al. [1] work on scanned maps to extract the road vector
data. Instead of using the thinning operator, as in [1], the medial lines of par-
allel road lines are first produced and then linked to generate the road vector
data. In general, the vectorization results of utilizing the medial lines of parallel
road lines can be very accurate for the lines around the intersections, but the ex-
traction processes require more manually specified parameters than the thinning
operator, such as the thresholds to group medial-line segments and to produce
the road intersections.

In addition to the research work, a commercial product called R2V from Able
Software is an automated raster-to-vector conversion software package special-
ized for digitizing raster maps. To vectorize roads in raster maps using R2V,

the user needs to first manually provide samples of road pixels or select a set of
color threshold to identify the road pixels. The manual work of providing sam-
ples of road pixels can be laborious, especially for scanned maps with numerous
colors, and the color thresholding function does not work if one set of threshold
cannot separate all of the road pixels from the other pixels. In comparison, our
approach automatically identifies road colors from a few user labels for extract-
ing the road pixels. After the road pixels are extracted, R2V can automatically
trace the centerlines of the extracted road pixels and generate the road vector
data. Our approach detects the road format and road width automatically and
uses the detected road information to extract accurate road vector data. In our
experiments, we tested R2V using our test maps and show that our automatic
technique generates better results.

3 Extracting Road Pixels

Distinct colors commonly represent different layers (i.e., a set of pixels represent-
ing a particular geographic feature) in a raster map, such as roads, contour lines,
and text labels. By identifying the colors that represent roads in a raster map, we
can extract the road pixels from the map. However, raster maps usually contain
numerous colors due to scanning and/or compression processes and the poor con-
dition of the original documents (e.g., color variation from aging, shadows from
folding lines, etc.). For example, Figure 1(a) shows a 200x200-pixels tile cropped
from a scanned map. The tile has 20,822 distinct colors, which makes it difficult
to select the road colors manually. To overcome this difficulty, many techniques
have been developed to first group the colors of individual feature layers into
clusters based on the assumption that the color variation within a feature layer
is smaller than the variation between feature layers [5; 10; 12; 13]. Therefore,
the feature layers can be extracted by selecting specific clusters. In this paper,
we utilize our supervised map decomposition technique in [5] to extract the road
pixels, which requires minimal user input and is capable of handling various
types of raster maps, especially scanned maps.

The supervised map decomposition technique first employs two color quanti-
zation techniques to reduce the number of colors in the raster map. To preserve
object edges while clustering the colors in a raster map, we first employ the
Mean-shift algorithm [7], which merges two colors into one by considering their
distance in the color space (we use a color distance of 25 in the red, blue, and
green color space) as well as in the image space (we use a spatial distance of 3
pixels). The Mean-shift algorithm reduces the number of colors in Figure 1(a)
by 72% as shown in Figure 1(b). To further merge similar colors in the raster
maps for reducing the user input to select the road colors, we apply the K-means
algorithm with a user specified K to generate a quantized map image with at
most K colors. The K-means algorithm can significantly reduce the number of
colors in a raster map by maximizing the inter-cluster color variance; however,
since the K-means algorithm considers only the color space, it is very likely that
the resulting map has merged features with a small K. For example, Figure 1(c)
shows the quantized map with K as 8 and the text labels have the same color as

\ L
NV &
(a) An example tile (b) The Mean-shift result
&
(c) The K-means result, K=8 (d) The K-means result, K=16

Fig. 1. An example map tile and the color quantization results with color cubes

T

el

5 i
{

i

‘ KHADRA .
| =S A -
£ ¢ V4 ~ @]
3 o
[AN E i ‘; o

—
(a) User labels centered at road lines) Extracted road plxels

Fig. 2. Extracting road pixels using road color identified by analyzing user labels

the road edges. Therefore, the user would need to select a larger K to separate
different features, such as in the quantized map in Figure 1(d) with K as 16.
With the quantized map, the user provides labels of road areas such as the
two user labels shown in Figure 2(a), and the map decomposition technique then
exploits the fact that a user label is required to be centered at a road line or a
road intersection to identify the road colors. Using this approach, the user only
has to provide enough user labels to cover each road color in the raster map,
such as one for the white roads and one for the yellow roads in Figure 2(a).

Figure 2(b) shows the extracted road pixels by using the road colors identified
using these two user labels.

4 Vectorizing Road Pixels

Once we have the road pixels, we generate the road vector data by first deter-
mine the road centerlines and then vectorize the centerlines. Figure 3(a) and
Figure 3(b) show an example map tile from a scanned map and the road pixels
extracted from the map using the approach described in the previous section.
The extracted road pixels contain objects other than roads since they are drawn
using the same color as roads. In addition, some of the road lines in the extracted

road layer are broken since the missing pixels also belong to the text labels and
grid lines (i.e., overlapping features) and these pixels are not drawn using the
road colors. To separate the non-road features from the road pixels, we exploit
the distinctive geometric properties of road lines such as road lines are linear ob-
jects and are connected, to remove solid areas and small connected-components.
Next, we apply the closing operator to reconnect one-pixel wide gaps and fill
small holes. The closing operator first expands the foreground areas by one pixel
(i.e., one iteration of the dilation operation) and then expands the background
areas by one pixel (i.e., one iteration of the erosion operation). Figure 3(c) shows
the results after we apply the closing operator, where the red circles show that
some of the missing road pixels are filled if the missing parts are small, especially
in the places where the text labels overlap with roads.

In order to reconnect broken lines with larger gaps automatically, we expand
the areas of road pixels by utilizing the binary dilation operator as shown in
Figure 3(e). We determine the number of iterations of the dilation operator
(i.e., how far the foreground region should expend) using the road width and
road format (i.e., double-line and single-line roads) identified automatically by
the Parallel-Pattern Tracing algorithm [6]. In a road layer where road lines are
drawn as single lines (i.e., single-line format) as the example shown in Figure 3,
the detected road width is the thickness of the majority of the road lines in the
road layer as the dashed lines shown in Figure 3(d). If a road line is drawn using
two parallel lines (i.e., double-line format), the road width is the pixel distance
between corresponding road pixels on the parallel lines. During the thickening
process, we also merge parallel lines into thick single lines if the road layer is in
double-line format.

To generate the centerline representation of the thickened road lines, we apply
the binary erosion operator and the thinning operator as shown in Figure 3(f)
and Figure 3(g). We use the erosion operator to shrink the road areas before
we apply the thinning operator because the thinning operator distorts lines near
the intersections and the extent of the distortion depends on the thickness of
the lines before the thinning operator is applied. Although the binary erosion
operator helps to minimize the extent of the distortion caused by the thinning
operator, the road geometry near the intersections is still not accurate, especially
near T-shape intersections. Figure 3(g) shows the distorted examples of the road
geometry around a T-shape intersection and Figure 3(h) shows the inaccurate
results if the distorted lines are traced to generate the road vector data.

For correcting the distortion around the intersection points and generating
accurate road vector data from the thinned-line image (Figure 3(g)), we first de-
tect intersections of the thinned lines to mark potential distorted lines. We utilize
the corner detector [15] to detect intersection candidates and then use the con-
nectivity of the candidates to determine actual road intersections [6]. Figure 3(i)
shows the intersection candidates in blue circles and the actual intersections
with cross marks. Since the extent of the distortion around each intersection is
determined by the thickness of the thickened lines (which is decided by the road
width and the dilation operator), we can mark potential distorted thinned-lines

><><%

2

(a) An example map) Extracted road plxels) Results of applying the
closing operation

‘1%%

(d) Road width) Thickened roads) Eroded roads
\>/ NS V\\
. N AN
AN N |:J>
\\(/ \\ \‘\\ L/
W X
N X
/ a N \/ /'/ >
NG AVEYe % A
XN %
\\ / \></ // \\
(g) Thinned roads with distortion around intersections) Distorted results
LA
° “u.
e ’/»‘ R]
x J
X, x’ X
\‘\
E o
?‘ h >4
\ o = N # \\.
(i) Intersection candidates (j) Marking distortions (k) Accurate results

and actual intersections and tracing roads

AN

AN

N

(1) Straight-line patterns (m) Extracted road vector
data

Fig. 3. Extracting road vector data from an example map

CNList; // The connecting-node list (CN.x and CN.y are the pixel location)

road_vectors; / The line-segment list (a line segment contains two CN indexes)
start_id; end_id; #/ The IDs of the starting and ending CNs of the line segment we are currently tracing

void main() # Program starts here Function void floodFill8(int x, int y)
Foreach CN in the CNList { if (Insidelmage(x,y) && NotVisited(x,y)

start_id = CN.id; &8& NotBackground(x,y)) {

SetVisited(CN.x, CN.y); if (IsCN(x,y)){ # We found a line

floodFill8(CN.x, CN.y); end_id = GetCNID(x,y);

road_vectors.AddLine(start_id, end_id);
// Correct the distortions } else{
Foreach CN in the CNList { SetVisited(x,y);

If (InsideGrayBox(CN.x, CN.y) { floodFill8(x + 1, y); floodFill8(x - 1, y - 1);
// An intersection floodFill8(x, y + 1); floodFill8(x + 1,y - 1);
CN.x = GetUpdatedIntersectionLocationX(CN.id) floodFill8(x + 1, y + 1); floodFill8(x — 1, y);
CN.y = GetUpdatedIntersectionLocationY(CN.id) floodFill8(x - 1, y + 1); floodFill8(x, y - 1);

} }

} }

Fig. 4. Pseudo code for tracing line pixels

near an intersection point using a gray box with the size as the thickness of the
thickened lines as shown in Figure 3(j). We then trace the lines outside the gray
boxes to generate accurate road orientations and update the positions of the
road intersections based on the intersecting roads and their orientations. Fig-
ure 3(k) shows a portion of example extraction results. The road lines around
the intersections are accurate despite the distortion of the thinned lines shown
in Figure 3(g).

With the accurate positions of the road intersections and the knowledge
of potential distorted areas, we start to trace the road pixels on the thinned-
line image to generate the road vector data. The thinned-line image contains
three types of pixels: the non-distorted road pixels, distorted road pixels, and
background pixels, (as shown in Figure 3(j), they are the black pixels not covered
by the gray boxes, black pixels in the gray boxes, and white pixels, respectively).
We create a list of connecting nodes (CNs) of the road vector data. A CN is a
point where two lines meet at different angles. We first add the detected road
intersections into the CN list. Then, we identify the CNs among the non-distorted
road pixels using a 3x3-pixels window to check if the pixel has any of the straight-
line patterns shown in Figure 3(1). We add the pixel to the CN list if we do not
detect a straight-line pattern since the road pixel is not on a straight line.

To determine the connectivity between the CNs, we trace the road pixels
using an eight-connectivity flood-fill algorithm shown in Figure 4. The flood-fill
algorithm starts from a CN, travels through the road pixels (both non-distorted
and distorted ones), and stops at another CN. Finally, for the CNs that are
road intersections, we use the previously updated road intersection positions
as the CNs’ positions. The CN list and their connectivity are the results of
our extracted road vector data. Figure 3(m) shows the extracted road vector
data. The road vector data around the road intersections are accurate since the
distorted lines are not traced by the flood-fill algorithm and the intersection
positions are updated using accurate road orientations.

5 Experiments

We evaluated our road vectorization approach using three raster maps produced
from different sources. Two maps are scanned maps (350dpi) covering the city of

Table 1. The number of colors in the image for user labeling of each tested map and
the number of user labels for extracting the road pixels

ITM Map Gecko Map

Tile Number || 1] 2 3] 4] 5] 6] 7] 8] 9]10|| 1] 2] 3] 4] 5] 6] 7| 8] 9[10] " M2P

Colors 8|16| 8|16|16|16|16|16({16| 8| 8| 8|16]16(16| 8|16/16/16| 8 90

User Labels || 4| 3| 3| 4| 3| 2| 4| 3| 3| 2| 2| 2| 2| 2| 2| 2] 3| 3|3 | 2 1

Bagdad, Iraq published by Gecko Maps and International Travel Maps (ITM).
We cropped and tested 10 map tiles (800x600 pixels each) from each of the
scanned map. The paper maps have been folded, and the fold lines cause in-
evitable shadows and color differences between areas in the scanned maps, which
enriches our test data since the cropped tiles from the same map have various
color usage and image quality. In addition to the scanned maps, we tested a
digitally generated map covering Afghanistan published by the United Nations
(UN).! The digital map (3300x2550 pixels) shows the main and secondary roads,
cities, political boundaries, airports, and railroads of the nation. We tested the
digital map as a single tile in our experiments. For comparison, we also tested
the automatic road vectorization function in R2V from Able Software.

We first applied our supervised map decomposition technique described in
Section 2 to extract the road pixels from the test maps. We pre-processed the
scanned map tiles using the Mean-shift and K-means algorithms with K as 8,
16, 24, and 32 to generate four quantized images for each map tile. The user
started the user-labeling task from the quantized image containing eight colors.
If the user cannot distinguish the road pixels from other map features (e.g., back-
ground) in the quantized image, the user will then select an image containing
more colors (a higher K) for user labeling. We did not apply the color segmen-
tation algorithms on the digital map before user labeling. This is because the
digital map contains a smaller number of colors (i.e., 90 unique colors) and there
is only one color representing both the major and secondary roads in the map.
Table 1 shows the numbers of colors in the images used for user labeling and
the numbers of user labels used for extracting the road pixels. The user-labeling
task is the only process that requires user input in our experiments, and for all
of the scanned map tiles, only two to four labels were needed.

We tested R2V on extracting the road pixels from the test maps. Since the
scanned maps contain numerous colors, we need more than one set of color
thresholds to extract the road pixels (R2V only allows one) or significant user
effort to manually specify sample pixels for each of the road colors. Therefore, we
did not successfully extract the road pixels from the scanned maps using R2V.
For the digital map, we used one set of color threshold to extract the road pixels
using R2V.

For the extracted road vector data, we report the accuracy of the extrac-
tion results using the road extraction metrics proposed in [9], which include the
completeness, correctness, quality, redundancy, and the root-mean-square (RMS)
difference. We manually drew the centerline of every road line in the maps as the

! http://unama.unmissions.org/

Table 2. Numeric results of the extracted road vector data from the scanned Gecko
and I'TM maps (four-pixel-wide buffer) using our approach

l “ ITM [Gecko “ ITM [Gecko“ ITM [Gecko“ITM[Gecko“ITM[Geckol

Tile ||Completeness|| Correctness Quality Redundancy|| RMS Diff.
1 [|98.7% | 97.8% || 96.7% | 85.8% || 95.5% | 84.1% {|0.07%| 0% 2.34| 1.69
99.3% | 97.4% 1/ 93.6% | 97.5% || 92.9% | 95% 0% 0% 1.23| 3.51
98.1% | 93.3% || 75.8% | 97.8% || 74.7% | 91.4% || 0% | 6.7% | 1.52| 2.46
91.7% | 97.2% |/ 96.0% | 98.7% || 88.3% | 96% 0% | 1.73% || 2.57| 1.61
92.0% | 98.9% || 94.7% | 97.9% || 87.5% | 96.8% || 0% 0% 2.79 | 1.32
92.7% | 88.6% /99.0% | 90.2% || 91.9% | 80.1% || 0% | 0.41% || 2.50 | 3.2
97.5% | 97.3% |199.2% | 98% || 96.7% | 95.4% ||3.34%| 6.52% || 1.81 | 1.65
95.1% | 93.4% ||97.1% | 94% | 92.5% | 88.2% || 0% 0% 2.02 | 2.56
93.7% | 99.0% || 94.6% | 83.3% || 88.9% | 82.6% || 0% 0% 2.21| 1.54
10 ||97.1% | 98.7% |/ 85.9% | 94% ||83.7%(92.9% || 0.7% | 1.7% || 2.20 | 1.47

[Avg.[[95.6%] 96.2% [[93.3%[93.7%[[89.3%[90.3%[[0.6%] 1.7% [[2.12] 2.1 |

(00| | O I[N

ground truth. The completeness and correctness represent how complete/correct
the extracted road vector data are (the optimum is 100%). The quality is a com-
bination metric of completeness and correctness (the optimum is 100%). The
redundancy shows the difference in percentage between the correctly extracted
lines and the matched ground truth (the optimum is 0). The RMS difference is
the average distance between the extracted lines and the ground truth, which
represents the geometrical accuracy of the extracted road vector data. To gen-
erate these metrics, the authors in [9] suggest using a buffer width as half of the
road width in the test data. In our test maps, the roads are five and eight pixels
wide in the digital map and are seven to ten pixels wide in the scanned maps.
We used a buffer width of four pixels.

Table 2 and Table 3 show the numeric results. The average completeness are
from 87.9% to 95.6%, the average correctness are from 93.7% to 99.9%, and the
average redundancy are from 0% to 1.7% for the scanned and digital map using
our approach. Figure 5 shows some example results, where the geometry of the
extracted road vector data are very close to the road centerlines in the maps.
Some broken lines are not connected (causing lower completeness numbers, such
as for the digital map) since the gaps are larger than the iterations of the dilation
operations (we automatically detected the road format as single-line roads and
used three iterations of the dilation operator to fix the gaps smaller than six
pixels). The broken lines could be reconnected with post-processing on the road
vector data since the gaps are now smaller than they were in the extracted road
layers resulting from the dilation operations. The tiles 3 and 10 of the I'TM map
and tiles 1 and 9 of the Gecko map have lower correctness since parts of non-
road features are also extracted using the identified road colors and those parts

Table 3. Numeric results of the extracted road vector data from the UN digital map
(four-pixel-wide buffer) using our approach and R2V

Tested Technique|Completeness|Correctness|Quality|Redundancy|RMS Diff.

This Paper 87.9% 99.9% 87.8% 0% 3.75

Able R2V 76.1% 96.7% 74.2% 18.92% 3.91

contribute to false-positive road vector data. Figure 5(a) to Figure 5(c) show
the ITM tile 3 where the runways are represented using the same color as the
white roads and hence are extracted as road pixels. This type of false-positives
could be further removed by including a user validation step after the road pixels
were extracted. Some tiles have higher redundancy numbers such as the Gecko
tiles 3 and 7, which is because some of the straight road lines in these tiles were
extracted as shorter line segments with a small orientation variation and their
buffers overlap with each other. The average RMS differences are under three
pixels for scanned maps and under four for the digital map, which shows that
the thinning operator and our approach to correct the distortion results in good
quality road geometry. Table 3 shows our approach achieved better results than
R2V.2 The lower completeness of R2V is because R2V did not automatically
connect broken road pixels. The lower correctness and high redundancy of R2V
is because R2V generated small line segments instead of long and smooth lines
and did not generate accurate road lines near the intersections.

For the computation time, we built our test system using Microsoft Visual
Studio 2008 running on a Windows XP Professional Virtual Machine installed on
2.4 GHz Intel Core 2 machine with one GB of memory. The average processing
time for vectorizing the road pixels for a scanned map tile (800x600 pixels) is 13
seconds. The dominant factors of the computation time are the image size, the
number of road pixels in the raster map, and the number of road intersections
in the road layer.

6 Conclusion and Future Work

We present a general technique that extracts accurate road vector data from het-
erogeneous raster maps with minimal user input. We utilize our previous work [5]
to handle raster maps with varying image quality and exploit the accurate road-
intersection templates [4; 6] to prevent distorted extraction results. We show
that our technique extracts accurate road vector data from three raster maps
with varying color usage and image quality. In the future, we plan to test our
approach on more maps from various sources and test to include post-processing
on the road vector data to improve the results.

7 Acknowledgments

This research is based upon work supported in part by the University of South-
ern California under the Viterbi School Doctoral Fellowship, and in part by the
United States Air Force under contract number FA9550-08-C-0010. The U.S.
Government is authorized to reproduce and distribute reports for Governmental
purposes notwithstanding any copyright annotation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of any of the above organizations or any person connected with them.

2 We used the “Auto Vectorize” function in R2V without manual post-processing.

TADAN QPN

Daudi Park

Abu Jaafar Al-Mansur
L Square.

)
artment Store W

(a) ITM tile 3

ANHA

‘ l’f"

(d) ITM tile 6

s Ar Rashid Hote l‘(g\o
H
3 B .
1l Gardert s ot
Coner
fialeb Square
Festival and A e
Parade Ground|
N
ey >
§°
%
o oh
OBd o
(g) ITM tile 9

—

3
() Gecko tile 7

MaryU_' ~ ~ . ~ =

n\\

....... TURKMENISTAP S~ i e ? |
| s «

- \
2% \ T A / (\J

P

-

/-:,\Gﬁsjf’y_ > \
Towraghondi I3 B/\l)()}

5 l @QalaINaw \ -
N L N ~ T / 1

(m) UN map (portion) (n) Road pixels of () (o) Road vector data of (m)

WVISI
E)
g

Fig. 5. Examples of the road vectorization results

1]

2]
[3]

[4]

[5]

[6]

Bibliography

D. Bin and W. K. Cheong. A system for automatic extraction of road net-
work from maps. In Proceedings of the IEEE International Joint Symposia
on Intelligence and Systems, pages 359-366, 1998.

R. Cao and C. L. Tan. Text/graphics separation in maps. In Proceedings
of the Fourth GREC Workshop, pages 167177, 2002.

C.-C. Chen, C. A. Knoblock, and C. Shahabi. Automatically and accurately
conflating raster maps with orthoimagery. Geolnformatica, 12(3):377-410,
2008.

Y.-Y. Chiang and C. A. Knoblock. Automatic extraction of road intersec-
tion position, connectivity, and orientations from raster maps. In Proceed-
ings of the 16th ACM GIS, pages 1-10, 2008.

Y.-Y. Chiang and C. A. Knoblock. A method for automatically extracting
road layers from raster maps. In Proceedings of the Tenth ICDAR, 2009.
Y.-Y. Chiang, C. A. Knoblock, C. Shahabi, and C.-C. Chen. Automatic and
accurate extraction of road intersections from raster maps. Geolnformatica,
13(2):121-157, 2008.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature
space analysis. IEEE Transactions on PAMI, 24(5):603-619, 2002.

A. Habib, R. Uebbing, and A. Asmamaw. Automatic extraction of road
intersections from raster maps. Project Report, Center for Mapping, The
Ohio State University, 1999.

C. Heipke, H. Mayer, C. Wiedemann, and O. Jamet. Evaluation of auto-
matic road extraction. In International Archives of Photogrammetry and
Remote Sensing, pages 47-56, 1997.

T. C. Henderson, T. Linton, S. Potupchik, and A. Ostanin. Automatic
segmentation of semantic classes in raster map images. In the Fighth GREC
Workshop, 2009.

W. Itonaga, I. Matsuda, N. Yoneyama, and S. Ito. Automatic extraction of
road networks from map images. Electronics and Communications in Japan
(Part II: Electronics), 86(4):62-72, 2003.

V. Lacroix. Automatic palette identification of colored graphics. In the
FEighth GREC Workshop, 2009.

S. Leyk and R. Boesch. Colors of the past: color image segmentation in his-
torical topographic maps based on homogeneity. Geolnformatica, 14(1):1-
21, 2010.

L. Li, G. Nagy, A. Samal, S. C. Seth, and Y. Xu. Integrated text and line-art
extraction from a topographic map. IJDAR, 2(4):177-185, 2000.

J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 593-600,
1994.

