
Noname manuscript No.
(will be inserted by the editor)

General Approach for Extracting Road Vector Data from
Raster Maps

Yao-Yi Chiang · Craig A. Knoblock

Received: date / Accepted: date

Abstract Raster maps are easily accessible and con-
tain rich road information; however, converting the road
information to vector format is challenging because of
varying image quality, overlapping features, and typi-
cal lack of metadata (e.g., map geocoordinates). Previ-
ous road vectorization approaches for raster maps typ-
ically handle a specific map series and require signif-
icant user effort. In this paper, we present a general
road vectorization approach that exploits common ge-
ometric properties of roads in maps for processing het-
erogeneous raster maps while requiring minimal user
intervention. In our experiments, we compared our ap-
proach to a widely-used commercial product using 40
raster maps from 11 sources. We showed that overall
our approach generated high quality results with low
redundancy with considerably less user input compared
to competing approaches.

Keywords GIS · raster maps · road vectorization ·
map processing

1 Introduction

For centuries, cartographers have been producing maps,
which contain valuable geospatial information, such as
road lines, text labels, building locations, and contour

Yao-Yi Chiang
University of Southern California, Information Sciences Institute
and Spatial Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, USA
E-mail: yaoyichi@isi.edu

Craig A. Knoblock
University of Southern California, Department of Computer Sci-
ence and Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, USA
E-mail: knoblock@isi.edu

lines. Because of the availability of low cost and high-
resolution scanners and the Internet, we can now obtain
a huge number of maps in raster format from various
sources. For instance, a digital raster graphic (DRG),
which is a georeferenced scanned image of a United
States Geological Survey (USGS) topographic map, can
be purchased from the USGS website or accessed freely
from TerraServer-USA.1 Other map sources, such as
online map repositories like the University of Texas
Map Library,2 also provide information-rich maps and
historical maps for many countries. Websites such as
OpenStreetMap3 and MultiMap4 provide high quality
computer-generated maps produced directly from vec-
tor data with valuable geospatial information, such as
business locations.

Because maps commonly contain road networks, raster
maps are an important source of road information (e.g.,
road geometry), which is especially valuable for areas
where road vector data are not readily available. More-
over, since the road networks exist across various geospa-
tial data sources (e.g., satellite imagery), the road topol-
ogy (e.g., road connectivity) and road geometry ex-
tracted from a raster map can be used as matching
features to align the map and recognized map features
to other geospatial data that contain roads [Chen et al.,
2008; Wu et al., 2007].

Converting the roads in heterogeneous raster maps
to vector format is challenging for a number of reasons:
first, the access to metadata about the maps (e.g., map
geocoordinates) is often not available, which makes it
difficult to obtain prior knowledge about the region for
processing the maps. Second, maps typically contain

1 http://terraserver-usa.com/
2 http://www.lib.utexas.edu/maps/
3 http://www.openstreetmap.org/
4 http://www.multimap.com/

2

!"#$%&'()"*%+#)#%

!"#$%&'()"*+,#-".%

!"#$,-.)'*/'(0".%1'234#)'/%

!"#$%/.)'*0'(-".%1')'(-".%

!"#$%2'"3')*4%56)*#(-".%

!#/)'*%5#3/%

!"#$%6'"2')*7%8*#/)'*%92#:';%

Fig. 1 The overall approach for extracting road vector data from
heterogeneous raster maps

overlapping layers of geographic features, such as roads,
contour lines, and labels. Thus, the map content is mul-
tilayered and highly complex. Third, the image quality
of raster maps is sometimes poor due to the scanning
and/or image compression processes for creating the
maps in raster format.

In this paper we present an end-to-end approach
to extracting accurate road vector data from full-size
raster maps with minimal user input. Figure 1 shows
the three major steps of our approach: (1) Road Ge-
ometry Extraction, (2) Road Intersection Detec-
tion, and (3) Road Vectorization. These three steps
build on the map processing work in our earlier papers,
which solved specific subproblems (road intersection de-
tection [Chiang et al., 2008], road-intersection-template
extraction [Chiang and Knoblock, 2008], road layer ex-
traction [Chiang and Knoblock, 2009a], and road vec-
torization [Chiang and Knoblock, 2009b]) of the overall
approach.

Beyond the overall integrated approach, this paper
makes a number of additional contributions. First, we
present the complete algorithms for the road layer ex-
traction [Chiang and Knoblock, 2009a], road-intersection-
template extraction [Chiang and Knoblock, 2008], and
road vectorization [Chiang and Knoblock, 2009b] (Sec-
tions 3, 4, and 5). Second, we present fast and scalable
algorithms for generating road geometry from raster
maps that have numerous colors (Section 3.1) and large
image sizes (Section 3.3). Third, we present an approach
to processing full-size maps in the integrated vector-
ization process (Section 5.2). Fourth, we evaluate our
integrated approach to road vectorization and present

experimental results on a variety of maps from diverse
sources with varying image quality and compare our
approach with a commercial product (Section 6).

The remainder of this paper is organized as follows.
Section 2 discusses the related work. Sections 3 to 5
present the three major steps of our overall approach:
road geometry extraction, road intersection detection,
and road vectorization, respectively. Section 6 reports
on our experimental results, and Section 7 presents the
conclusion and future work.

2 Related Work

In this section, we first review the related work on seg-
menting color maps into layers of geographic features.
Then we review the related research on road vector-
ization from raster maps and commercial products for
raster-to-vector conversion.

2.1 Color Image Segmentation for Raster Maps

Leyk and Boesch [2010] present a color image segmen-
tation technique that handles a series of scanned his-
torical maps (Siegfried Maps) by considering the image
plane, frequency domain, and color space. This color
image segmentation technique has only been tested on
maps with similar conditions (e.g., with the same set
of map symbols) and may not work on heterogeneous
raster maps. In our color segmentation process, our ap-
proach handles heterogeneous map types by including
an interactive step for a user to select the quantized
image that best represents the segmented map.

Lacroix [2009] presents the median-shift technique,
which extracts the color palette (i.e., a small set of rep-
resentative colors) from a raster map. This technique
requires a preprocessing step based on the automatic
edge detection, which is prone to color noise. In con-
trast, our approach does not rely on the edge detection
and handles raster maps with poor scan quality.

Henderson et al. [2009] focus on USGS topographic
maps to separate individual thematic layers from the
maps. Their technique is based on the color key (i.e.,
the colors of individual feature layers in the map) that
comes with a series of USGS topographic maps. Our
color segmentation approach handles a variety of raster
maps and does not require the knowledge of the map
color-key, which is generally unavailable for scanned
maps.

3

2.2 Research on Road Vectorization from Raster Maps

Much research work has been performed in the field of
extracting graphic features from raster maps, such as
separating lines from text [Cao and Tan, 2002; Li et al.,
2000], detecting road intersections [Chiang et al., 2008;
Habib et al., 1999], extracting road vector data [Bin
and Cheong, 1998; Itonaga et al., 2003], and recognizing
contour lines [Chen et al., 2006; Khotanzad and Zink,
2003] from raster maps.

One line of research on graphic extraction techniques
uses simple techniques to extract the foreground pixels
from raster maps and hence can only handle specific
types of maps. Cao and Tan [2002], Li et al. [2000],
and Bin and Cheong [1998] utilize a preset grayscale
threshold to remove the background pixels from raster
maps and work on the foreground pixels to extract their
desired features. The grayscale-thresholding technique
does not work on raster maps with poor image qual-
ity. In addition, the work of Cao and Tan [2002] and
Li et al. [2000] focuses on recognizing text labels. They
do not process the road pixels further to generate the
road geometry and extract the road vector data. Bin
and Cheong [1998] extract the road vector data from
raster maps by identifying the medial lines of parallel
road lines and then linking the medial lines. The linking
of the medial lines requires various manually specified
parameters for generating accurate results, such as the
thresholds to group medial-line segments and to pro-
duce accurate geometry of road intersections.

Habib et al. [1999] focus on raster maps that con-
tain only road lines to extract road intersections auto-
matically. Their road intersection extraction technique
detects the corner points on the extracted road edges
and then groups the corner points and identifies the
centroid of each group as the road intersection. False-
positive corner-points or intersections of T-shape roads
can significantly shift the centroid points away from the
correct locations.

Itonaga et al. [2003] focus on computer-generated
raster maps that contain only road and background
areas. They exploit the geometric properties of roads
(e.g., elongated polygons) to first label each map area
as either a road or background area. Then they apply
the thinning operator to extract a 1-pixel width road
network from the identified road areas. The distortion
at a road intersection caused by the thinning opera-
tor is corrected by merging the intersecting lines with
a similar orientation, which requires user-specified con-
straints, such as the maximum deviation between two
intersecting lines and the maximum intersecting angle.
Their approach cannot handle scanned maps and they
do not report evaluation results on road vector data.

In our earlier work on road geometry extraction [Chi-
ang et al., 2008], we developed an automatic technique
that utilizes a grayscale-histogram-analysis method to
automatically separate the foreground pixels from raster
maps and then identify the road intersections. The his-
togram analysis method does not handle scanned maps
well since the noise introduced in the scanning process
is sometimes difficult to remove automatically. In addi-
tion, since we use the thinning operator in our previous
work [Chiang et al., 2008], the extracted road intersec-
tions are not accurate when the roads are wide.

In comparison to the previous work that handles
specific types of maps [Bin and Cheong, 1998; Cao and
Tan, 2002; Habib et al., 1999; Itonaga et al., 2003; Li
et al., 2000] and our previous approach [Chiang et al.,
2008], this paper presents a semi-automatic approach,
which includes user training and is capable of handling
diverse types of maps, especially scanned maps. More-
over, we automatically generate accurate road geometry
by detecting and correcting the distorted lines around
road intersections caused by the thinning operator to
handle roads that are wide.

Previous work has developed techniques that in-
clude more sophisticated user training processes for han-
dling raster maps with poor image quality. Salvatore
and Guitton [2004] use a color extraction method as
their first step to extract contour lines from topographic
maps. Khotanzad and Zink [2003] utilize a color seg-
mentation method with user annotations to extract the
contour lines from USGS topographic maps. Chen et al.
[2006] exploit the color segmentation method of Khotan-
zad and Zink [2003] to handle common topographic
maps (i.e., not limited to USGS topographic maps)
using local segmentation techniques. These techniques
with user training are generally able to handle maps
that are more complex and/or have poor image quality.
However, their user-training processes are complicated
and laborious, such as manually generating a set of color
thresholds for every input map [Salvatore and Guitton,
2004] and labeling all combinations of line and back-
ground colors [Khotanzad and Zink, 2003]. In compar-
ison, our semi-automatic approach for extracting road
geometry requires the user to provide a few labels for
road areas, which is simpler and more straightforward.

2.3 Commercial Products for Raster-to-Vector
Conversion

Many commercial products offer the functionality for
raster-to-vector conversion, such as Adobe Illustrator,5

5 http://www.adobe.com/products/illustrator.html

4

CorelDraw Graphics Suite,6 and VectorMagic.7 These
commercial products are designed to generate vector-
ized boundaries of homogenous color areas from input
images. For road vectorization from raster maps, we
want to extract the centerlines of road areas and these
products do not support this capability.

There are commercial products that offer centerline
vectorization functionality. Vextractor8 and Raster-to-
Vector9 use line approximation algorithms that gener-
ate vector lines based on the locations of the pixels in-
side road areas. The line approximation algorithms do
not take into consideration the geometry and topology
of the road network and hence the resulting road vec-
tor data are off-center, such as the Vextractor results
shown in Figure 2(a), or have inaccurate road topol-
ogy (i.e., two lines that are connected at an intersec-
tion in the road layer are not necessarily connected in
the road vector data), such as the results shown in Fig-
ure 2(b). Another commercial product called R2V from
Able Software10 is an automated raster-to-vector con-
version software package specialized in digitizing raster
maps. R2V is specifically designed for raster-to-vector
conversion from maps and can handle a variety of map
specific linear features, such as curved roads and con-
tour lines. Figure 2(c) shows more accurate results in
terms of road geometry and topology compared to the
results of Vectractor and Raster-to-Vector.11

To vectorize roads in raster maps using R2V, the
user needs to first provide labels of road colors or se-
lect one set of color thresholds to identify the road pix-
els. The manual work of providing labels of only road
pixels can be laborious in R2V, especially for scanned
maps with numerous colors, and the color thresholding
function does not work if one set of thresholds cannot
separate all of the road pixels from the other pixels. In
comparison, we automatically identify road colors from
a few user labels for extracting the road pixels. After the
road pixels are extracted, R2V can automatically trace
the centerlines of the extracted road pixels and generate
the road vector data. However, R2V’s centerline-tracing
function is sensitive to the road width without man-
ual pre-processing and produces small branches from a
straight line if the line is wide. We detect the road width
automatically and use the detected road information to
generate parameters for identifying accurate road cen-
terlines. In our experiments, we tested R2V using our

6 http://www.corel.com/
7 http://vectormagic.com/home
8 http://www.vextrasoft.com/vextractor.htm
9 http://www.raster-vector.com/

10 http://www.ablesw.com/r2v/
11 In these examples, we gave the three commercial products
the same input image and we used the automatic vectorization
function of each product to generate the sample results.

(a) Vextractor (blue pixels
are the vectorization results
and gray pixels are road ar-
eas)

(b) Raster-to-Vector (black
pixels are the vectorization
results and yellow pixels are
road areas)

(c) R2V (green pixels are the
vectorization results and black
pixels are road areas)

Fig. 2 Sample screenshots of the road vectorization results from
commercial products

test maps and show that our approach generates better
results.

3 First Step: Road Geometry Extraction

In this section, we present our technique for generat-
ing the road geometry from raster maps. This tech-
nique can handle raster maps with poor image qual-
ity, such as scanned maps. We first present a super-
vised approach for extracting road pixels from raster
maps. Next, we describe how we exploit our previous
work [Chiang et al., 2008] to identify the road cen-
terlines from the extracted road pixels automatically.
Finally, since scanned maps are usually large images
(a typical 350 dot-per-inch (DPI) scanned map can be
larger than 6000x6000 pixels), we present an fast algo-
rithm for detecting the road width and road format of
large maps efficiently. This algorithm is an enhanced
version of the Parallel-Pattern-Tracing algorithm from
our previous work [Chiang et al., 2008]

3.1 Supervised Extraction of Road Pixels

There are three major steps for the supervised extrac-
tion of road pixels from raster maps. The first step is

5

to quantize the color space of the input image. Then, a
user labels road areas of every road color in the quan-
tized image. Since the quantized image has a limited
number of colors, we can reduce the manual effort in
this user-labeling step. Finally, we automatically iden-
tify a set of road colors from the user labels and gen-
erate a color filter to extract the road pixels from the
raster map. For the non-road map features drawn using
the same color as the roads, we will remove them in the
final step to generate the road geometry (Section 3.2).
We describe the details of each step and the labeling
criteria in the following subsections.

3.1.1 Color Quantization

Distinct colors commonly represent different layers (i.e.,
a set of pixels representing a particular geographic fea-
ture) in a raster map, such as roads, contour lines,
and text labels. By identifying the colors that represent
roads in a raster map, we can extract the road pixels
from the map. However, raster maps usually contain
numerous colors due to the scanning and/or compres-
sion processes and the poor condition of the original
documents (e.g., color variation from aging, shadows
from folding lines). For example, Figure 3(a) shows a
200x200-pixel tile cropped from a scanned map. The
tile has 20,822 distinct colors, which makes it difficult
to manually select the road colors. To overcome this dif-
ficulty, we apply color quantization algorithms to group
the colors of individual feature layers into clusters. Since
the color variation within a feature layer is generally
smaller than the variation between feature layers in a
map, after applying the color quantization algorithms,
we can extract individual feature layers by selecting
specific color clusters.

Our color quantization step includes three algorithms:
the Mean-shift [Comaniciu and Meer, 2002], the Median-
cut [Heckbert, 1982], and the K-means [Lloyd, 1982]
algorithms. The Mean-shift algorithm is first applied
to preserve the edges of map features (e.g., road lines)
while reducing noise. The Median-cut algorithm, which
requires the least computation time among the three
color quantization algorithms, is then applied to fur-
ther quantize the image. The goal of the Median-cut
algorithm is to keep image details in the quantized im-
age, such as the image texture but the goal of our color
quantization is to have a single color representing a sin-
gle feature in the map (i.e., eliminating the image tex-
ture). Therefore, we apply the K-means algorithm to
the result of the Median-cut algorithm to merge simi-
lar colors for removing image details. We explain each
algorithm in the following paragraphs.

The Mean-shift algorithm considers the spatial re-
lationships between colors in the image space and in
the color space (i.e., the image texture) and works in
a multi-dimensional space of the image coordinates, X
and Y, and the HSL color space, hue, saturation, and lu-
minous. We use the HSL color space because of the fact
that hue, saturation, and luminous provide good repre-
sentation of human perception [Cheng et al., 2001]. For
a pixel in the raster map, P (x, y), the corresponding
node in the five-dimensional space (i.e., X and Y from
the image coordinates plus H, S, and L from the color
space) is N(x, y, h, s, l), where h, s, and l represent the
color of P .

To reduce the noise in a raster map, for a pixel,
P (x, y), the Mean-shift algorithm starts from comput-
ing the mean node, M(xm, ym, hm, sm, lm), from N ’s
neighboring nodes. The mean node’s position consists
of the mean values on each of the axes X, Y, H, S,
and L of N ’s neighboring nodes within a local area (we
use a spatial distance of 3 pixels and a color distance
of 25 to define the local area). If the distance between
M and N is larger than a small threshold (we use a
small threshold to limit the running time for the Mean-
shift algorithm to converge), the Mean-shift algorithm
shifts N to M and recalculates the mean node within
the new local area. After the Mean-shift algorithm con-
verges (the distance between the mean node and N is
no longer larger than the threshold), the H, S, and L
values of N are used as P (x, y)’s color. In the example
shown in Figure 3, the Mean-shift algorithm reduces
the number of colors in Figure 3(a) by 72% as shown
in Figure 3(b).

The results after the Mean-shift algorithm can still
have many colors and we utilize the Median-cut after
the Mean-shift algorithm to generate an image with at
most 1,024 colors. The Median-cut algorithm first lo-
cates the minimum box which contains every color in
the input image in the three dimensional HSL space.
Then the algorithm sorts the colors using the color com-
ponent that varies the most (i.e., the longest axis of the
box) and divides the minimum box into two boxes at
the median of the sorted colors. This sort-and-divide
process continues to apply on the new divided boxes
until the total number of boxes is smaller than the de-
sired number of colors in the resulting quantized image.
The colors in the same box of the sort-and-divide result
are then represented by their median color to generate
the quantized image.

To further merge similar colors in the raster maps,
we apply the K-means algorithm to generate a quan-
tized image with at most K colors. The K-means algo-
rithm can significantly reduce the number of colors in a
raster map by maximizing the inter-cluster color vari-

6

ance; however, since the K-means algorithm considers
only the color space, it is very likely that the resulting
map has its map features merged with a small K. For
example, Figure 3(c) shows the quantized map with K
as 8 where the text labels have the same color as the
road edges. Therefore, the user would need to select a
larger K to separate different features, such as in the
quantized map in Figure 3(d) with K as 16.

The Median-cut algorithm helps to reduce the run-
ning time of the K-means algorithm by limiting the in-
put number of colors to the K-means algorithm to 1024.
The Median-cut algorithm cannot replace the K-means
algorithm because the Median-cut algorithm keeps im-
age details in the quantized image. For example, as
shown in Figure 4, if we apply the K-means and Median-
cut algorithms directly to the original image, the Median-
cut results shows significant color variation within an
image object, such as the yellow pixels on the orange
roads.

3.1.2 User Labeling

In the user-labeling step, we first generate a set of quan-
tized maps in multiple quantization levels using various
K in the K-means algorithm. Then the user selects a
quantized map that contains road lines in different col-
ors from other features and provides a user label for
each road color in the quantized map. A user label is a
rectangle that should be large enough to cover a road
intersection or a road segment. To label the road colors,
the user first selects the size of the label. Next, the user
clicks on the approximate center of a road line or a road
intersection to indicate the center of the label. The user
label should be (approximately) centered at a road in-
tersection or at the center of a road line, which is the
constraint we exploit to identify the road colors in the
next step. For example, Figure 5(a) shows an example
map and Figure 5(b) shows the quantized map and the
labeling result to extract the road pixels. The two user
labels cover one road intersection and one road segment
and contain the two road colors in the quantized map
(i.e., yellow and white) .

3.1.3 Automatic Identification of Road Colors and

Extraction of Road Pixels

Each user label contains a set of colors, and some of the
colors represent roads in the raster map. We exploit two
geometric properties of the road lines in a user label to
identify the road colors of a given user label, namely
the centerline property and the neighboring property.

The Centerline Property Because the user labels
are centered at a road line or a road intersection, the

(a) An example tile (b) The Mean-shift result

(c) The K-means result,
K=8

(d) The K-means result,
K=16

Fig. 3 An example map tile and the color quantization results
with the color cubes

pixels of a road color are a portion of one or more road
lines that pass through or nearby the image center. For
example, we first separate pixels of individual colors
from the user label shown in the top-right of Figure 5(b)
and the result is a set of six images shown in Figure 6
(background is shown in black) and every decomposed
image contains only one color from the user label. The
pixels in the decomposed images, Image 3, 4, and 5, are
portions of the road lines in the user label.

To exploit the centerline property, for each decom-
posed image, we first detect lines that are constituted
from the connected objects in the image. This is achieved
by applying the Hough transform [Duda and Hart, 1972]
to identify a set of Hough lines from the skeletons of

7

7

Original image

After K-means (16 colors)

After Median-Cut (16 colors)
Each color is represented

by a grayscale level

Fig. 4 Median-cut algorithm result contains more image details
while K-means result contains more homogenous regions

the connected objects. The Hough transform is a fea-
ture extraction technique that can identify lines (i.e.,
the Hough lines) from pixels that do not necessary rep-
resent every part of the lines. Since the image center
of a user label is the center of a road line or a road
intersection, if a Hough line is detected near the im-
age center, the Hough line is most likely to represent a
portion of the road lines. Hence, we detect the Hough
lines in each decomposed image and compute the aver-
age distance between the detected Hough lines to the
image center to determine if the foreground pixels (non-
black pixels) in a decomposed image represent roads in
the raster map.

Figure 7 shows the detected Hough lines of each de-
composed image, where the Hough lines that are within
a distance threshold to the image centers are drawn in
red and others are drawn in blue (this distance thresh-
old is only used to help explain the idea). In Figure 7,
the decomposed images that contain road pixels (Im-

age 3, 4, and 5) have more red lines than blue lines
and hence the average distances between their Hough
lines to their image centers are smaller than the other
decomposed images. Therefore, the decomposed image

that has the smallest average distance is classified as a

road-pixel image (i.e., the color of the foreground pixels

in the decomposed image represents roads in the raster

map). The other decomposed images with their aver-
age distances between 1 pixel to the smallest average
distance are also classified as road-pixel images. This

(a) An example scanned map

(b) The quantized map and user labels (the red boxes and crosses
show the original positions and image centers of the two user labels)

Fig. 5 An example of the supervised extraction of road pixels

criterion allows the user label to be a few pixels off (de-
pending on the size of the user label) from the actual
center of the road line or road intersection in the map,
which makes the user labeling easier. In our example,
Image 5 has the smallest average distance, so we first
classify Image 5 as a road-pixel image. Then, since Im-

age 4 is the only image with its average distance within
a 1-pixel distance to the smallest average distance, we
also classify Image 4 as a road-pixel image.

The Neighboring Property Because the road pix-
els are spatially near each other in a user label, the
pixels of the road colors should be spatially near each
other. For example, the majority of pixels in Image 3

can find an immediate neighboring pixels in Image 4

and 5 and vice versa, but the majority of pixels in Im-

age 0 cannot find an immediate neighbor in Image 3,
4, and 5.

Exploiting the centerline property for the road-pixel
image classification is based on the average distance be-

8

0 1 2

3 4 5

Fig. 6 The decomposed images (background shown in black),
each contains one color in the user label shown in the top-right
of Figure 5(b)

5 4 3

2 1 0

Fig. 7 The identified Hough lines using Figure 6 as the input
(background shown in black)

tween the detected Hough lines to the image center. If
the Hough transform detects only a few Hough lines,
the Hough lines constituted from noise pixels can signif-
icantly bias the average distance and hence the image
will not be classified correctly. Therefore, we present
the Edge-Matching algorithm for exploiting the neigh-
boring property to determine if any of the decomposed
images that are not classified as road-pixel images us-
ing the Hough-line method (i.e., Image 0 to 3) is a
road-pixel image.

The Edge-Matching algorithm utilizes a road tem-
plate generated using the already classified road-pixel
images and compares the unclassified images with the
road template to identify road-pixel images. In our ex-
ample, the road template is the combination of Image 4

and 5 as shown in Figure 8(a) (background is shown
in black). Next, we use the road template to evaluate
Image 0 to 3 in turn. For a color pixel, C(x, y), in a
given decomposed image to be evaluated, we search a
3x3-pixel neighborhood centered at (x, y) in the image

(a) An example road
template

M
at

ch
 <

 5
0%

M
at

ch
 <

 5
0%

M
at

ch
 <

 5
0%

M
at

ch
 >

 5
0%

0 3 2 1

(b) The Edge-Matching results

Fig. 8 Classifying the decomposed images using the road tem-
plate

of the road template to detect if there exists any road
pixels. If one or more road pixels exist, we mark the
pixel C(x, y) as a road pixel since it is spatially near
one or more road pixels. After we examine every fore-
ground pixel in a given decomposed image, if more than
50% of the foreground pixels in that image are marked
as road pixels, we classify the decomposed image as a
road-pixel image.

Figure 8(b) shows an example of the Edge-Matching
algorithm. The first row shows the foreground pixels of
the Image 0 to 3 (background is shown in black) and
the second row is the match with the road template.
The bottom row shows the results after we apply the
Edge-Matching algorithm to each of the images, where
the non-black pixels are the matched pixels. Only Im-

age 3 has more than 50% of its foreground pixels iden-
tified as matched pixels so we classify Image 3 as a
road-pixel image and discard the others.

We process every user label and identify a set of
road-pixel images from each label. We then scan the
quantized map and extract the pixels that have their
colors as one of the identified road colors as the road
pixels. Figure 9 shows the extracted road pixels of Fig-
ure 5(a). Note that the map features that share the
same color as the road lines are also extracted as the
rectangular area shown in Figure 9. These features will
be removed in the next step when we generate the road
geometry.

9

Fig. 9 The extracted road pixels of Figure 5(a)

3.2 Automatic Identification of Road Centerlines

The extracted road layer (i.e., the set of extracted road
pixels) from the previous section can contain non-road
map features, such as area features or text strings, if
the map features are drawn using the same color as the
roads. In this section, we briefly explain our previous
work [Chiang et al., 2008] that we employ for removing
these non-road features and automatically identify the
road geometry.

Concerning the non-road map features of text strings,
text/graphics separation techniques [Cao and Tan, 2002;
Tombre et al., 2002] can be used to separate the text
strings from the extracted road pixels (i.e., linear ob-
jects) . Our previous work uses the text/graphics sep-
aration technique from Cao and Tan [2002] since the
technique was developed and tested for map process-
ing.

To remove the non-road features other than text,
reconnect broken road lines, and generate the road ge-
ometry, we first detect the road width and road for-
mat in the input map, and then we dynamically use
three types of morphological operators: the erosion op-
erator, the dilation operator, and the thinning operator
(see [Pratt, 2001] for a detailed description of the mor-
phological operators). The erosion operator is used to
remove noise objects that are smaller than the road
lines and to temper road areas for generating accurate
road centerlines. The dilation operator is used to ex-
pand road areas for connecting broken road lines and
for filling up holes in the road areas. The thinning oper-
ator is used to extract the centerlines of the roads (i.e.,
the skeleton of the road areas).

The numbers of iterations of these morphological
operators (i.e., the number of times we apply each mor-
phological operator) are decided dynamically based on
the detected road width and road format. For example,

to remove thick non-road features, if road width is 4-
pixel wide, we first remove the road lines by applying
the erosion operator twice with a 3-by-3 structuring el-
ement (or a 5-by-5 structuring element applied once):
one iteration erodes a road line by 2 pixels; one at each
side of the road. Then we apply the dilation operator
to re-grow and obtain the non-road features that are
thicker than road lines. By subtracting the resulting
non-road features from the road layer, we remove the
non-linear features such as the rectangular area in the
upper-right of Figure 9.

Once the non-road features are removed, we use the
dilation operator to expand the road areas and recon-
nect the road lines automatically. Since the expansion
of the road areas should not connect two nearby roads,
the number of iterations of the dilation operator with a
3-by-3 structuring element is half of the detected road
width for single-line format roads. This is because we
assume that two road lines should be at least a road-
width apart in a map.

Concerning double-line format roads, the dilation
operator not only reconnects the broken lines, but also
merges parallel road lines into thick lines in single-line
format. For example, by applying the dilation opera-
tor twice with a 3-by-3 structuring element, the paral-
lel road lines that are 4-pixel apart (i.e., the detected
road width is 4-pixel wide) are merged. This dilation
technique fills up the areas in-between the parallel road
lines if the distance between the road lines and every
pixel in-between the parallel road lines is less than half
of the detected road width. However, for road inter-
section areas, depending on how the intersections are
drawn in the map, the distance between the road lines
and an intersection center can be larger than the half
of the detected road width. In this case, the number of
iterations of the dilation operator needs to be increased
for filling up the areas within road intersections of the
parallel lines.

After the dilation operator, we apply the erosion op-
erator to erode the thickened road lines. Finally, we use
the thinning operator to generate the 1-pixel width road
centerlines (i.e., the road geometry) from the erosion re-
sults. Figure 10 shows the extracted road geometry of
Figure 9.

In this process of extracting the road geometry from
raster maps, the morphological operators used for gen-
erating the road geometry cause distorted lines around
road intersections. As shown in Figure 11, if we apply
the thinning operator directly on the thick lines after
the dilation operator shown in Figure 11(a), the lines
that are near intersections are significantly distorted as
shown in Figure 11(b). Our approach to reduce the ex-
tent of the line distortion is to erode the lines using the

10

Fig. 10 The extracted road geometry of Figure 9

(a) An example of thickened
road lines

(b) The road centerlines from
applying only the thinning
operator on (a)

(c) The eroded road lines
from applying the erosion op-
erator on (a)

(d) The road centerlines from
applying both the erosion
and thinning operators on (a)

Fig. 11 Distorted road lines near road intersections caused by
the thinning operator

erosion operator and then apply the thinning operator.
Figure 11(c) and Figure 11(d) show that the extent of
the line distortion is smaller after we apply the erosion
operator; however, the distortion is still not completely
eliminated and will be handled in the next step by ex-
tracting accurate road geometry around intersections.

3.3 Single-Pass Parallel-Pattern Tracing Algorithm

In our previous work [Chiang et al., 2008], we devel-
oped the Parallel-Pattern-Tracing algorithm (PPT) for

identifying the road format (i.e., single-line or double-
line format) and road width of the dominant road type
in the raster map. For example, if 80% of the roads in
the map have the road width as 10 pixels and the other
20% have the road width as 3 pixels, the resulting road
width after the PPT is 10 pixels.

The PPT checks each foreground pixel to determine
if there exists any corresponding pixel in the horizontal
and vertical directions at a certain road width. If we find
a corresponding pixel in each direction, we classify the
pixel as a parallel-pattern pixel of the given road width.
By applying the PPT iteratively from 1-pixel wide road
width to K-pixel wide, we can identify the road width
and road format of the majority of the roads in the
map by analyzing the number of parallel-pattern pixels
at each of the tested road widths.

In our previous work, we implemented the PPT
using two convolution masks. One convolution mask
works in the horizontal direction and the other one
works in the vertical direction to find the corresponding
pixels. The sizes of the convolution masks are designed
to cover the road areas in-between two parallel road
lines: if the road width is X pixels, the size of the con-
volutions mask is Y xY pixels and Y is X × 2 + 1. For
example, if the road width is 2 pixels, the size of the
convolution masks is 5x5 pixels, which means by ap-
plying the convolution masks to a pixel, we check one
pixel at 2-pixel-distance to left (towards the top) of this
pixels, one pixel at 2-pixel-distance to right (towards
the bottom) of this pixels. Note that these convolution
masks can misidentify parallel-pattern pixels if there
are non-road pixels in the image, which is fine because
the PPT does not need every parallel-pattern pixel to
be identified for detecting the road width [Chiang et al.,
2008]

For N foreground pixels, the number of computing
steps to iteratively apply the PPT on the road width
from 1 pixel to K pixel is:

PPT (N,K) = N ×
K�

r=1

(2r + 1)2 (1)

The time complexity is O(NK3), which requires sig-
nificant computing time when we have a large map (a
large N) and/or we run the PPT with more iterations
(a large K).

To improve the time complexity, we developed the
Single-Pass Parallel-Pattern-Tracing algorithm (SPPT),
which does not rely on the image convolution and only
requires a single-pass scan on the image. Moreover, the
SPPT keeps a record of previously identified parallel
patterns to further reduce the time complexity, which
works as follows: in the previous work, to check whether
there is a parallel pattern for a foreground pixel, P , at

11

// The image width and height
width, height;
// Test from one-pixel to K-pixel wide
K;
// The boolean arrays storing the information about the existence of corresponding pixels

 horizontal = new boolean[width * height][K]; vertical = new boolean[width * height][K];
// The SPPT results: the number of parallel- pattern pixels at each road width
ppt_pixel_count = new int[K];

Function void SPPT()
for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 if (IsForeground(x,y)) {
 int idx = y * width + x;
 for (int i = 0; i < K; i++) {
 boolean h = horizontal[idx][i];
 if (x + i < width) { // Within the image
 horizontal [y * width + x + i][i] = true;
 if (h || IsForeground(y, x + i)) h = true;
 else h = false;
 }
 boolean v = vertical[idx][i];
 if (y+i < height) { // Within the image
 vertical[(y + i) * width + x, i] = true;
 if (v || IsForeground(y + i, x)) v = true;
 else v = false;
 }
 if (h && v) ppt_pixel_count[i]++;
 } // end for
 } // end if
 } // end for
} // end for

/* Check if a corresponding pixel
in the horizontal direction has
been found (h is true) or check
the existence of a foreground
pixel to the right*/

/* Check if a corresponding pixel
in the vertical direction has been
found (v is true) or check the
existence of a foreground pixel
toward the bottom */

Fig. 12 The pseudo-code of the SPPT

a distance D, the PPT has to check 4 pixels, 1 pixel
towards the top of P at the distance D, 1 pixel to-
wards the bottom of P at the distance D, 1 pixel to the
left of P at the distance D, and 1 pixel to the right of
P at the distance D. In the SPPT, to check whether
there is a parallel pattern for a foreground pixel, P , at
a distance D, the algorithm checks the parallel-pattern
records and 2 pixels, 1 pixel to the right of P at the
distance D and 1 pixel towards the bottom of P at the
distance D.

Figure 12 shows the pseudo-code of the SPPT. The
SPPT starts from the upper-left pixel in the image and
scans the image one row at a time from left to right.
To check the parallel pattern from 1 to K pixels, for a
foreground pixel, the SPPT first records the existence
of this foreground pixel for the pixels at the distance
from 1 to K pixels to the right and towards the bot-
tom of this foreground pixel (i.e., set the horizontal and
vertical arrays as true in the pseudo-code). Next, the
SPPT checks if the foreground pixel has a previously
found parallel-pattern pixel (i.e., check the horizontal
and vertical arrays using the position of this foreground
pixel) and then checks the pixels at the distance from 1
to K pixels to the right and towards the bottom of this

foreground pixel (i.e., the IsForeground function in the
pseudo-code). The parallel pattern record (i.e., the hor-
izontal and vertical arrays) eliminates searching in the
pixel’s left/top direction. Therefore, for N foreground
pixels, to iteratively apply the SPPT on the road width
from 1 to K pixels wide, the number of steps is:

SPPT (N,K) = 2×N ×K (2)

The time complexity is O(NK), which is significant less
than using the convolution masks and enables efficient
processing of large maps.

The PPT keeps one record of the number of parallel-
pattern pixels for each road width for the entire image;
and the overall space complexity for the PPT in addi-
tion to the space for storing the image is:

PPT (N,K) = K (3)

The SPPT keeps tracking whether a foreground pixel is
a parallel-pattern pixel during the process. The tracking
record for each foreground pixel includes an array of size
K for the horizontal direction and an array of size K for
the vertical direction. The overall space complexity for
the SPPT in addition to the space for storing the image
is:

SPPT (N,K) = 2×N ×K (4)

12

The SPPT trades the space complexity for less compu-
tational steps. The PPT is an exponential time algo-
rithm with linear space complexity while the SPPT is
a linear time algorithm with linear space complexity.

Once we have the SPPT result, we build a parallel-
pattern histogram using the number of parallel-pattern
pixels as the X-axis and the road width as the Y-axis.
We then identify the road width by analyzing the his-
togram to detect peaks in the histogram [Zack et al.,
1977]. The detailed algorithm can be found in [Chiang
et al., 2008].

4 Step Two: Road Intersection Detection

In this section, we describe our techniques for extracting
accurate road geometry around road intersections (i.e.,
road-intersection templates) to then generate accurate
road vector data in a later step. A road-intersection
template represents the road geometry around a road
intersection, which is the position of a road intersection,
the orientations of the roads intersecting at the inter-
section, and the connectivity of the road intersection.
Figure 13 shows the overall approach to automatically
extract accurate road-intersection templates. This pa-
per builds on our previous work [Chiang et al., 2008],
which focuses on extracting positions of road intersec-
tions.

4.1 Generating Road-Intersection Blobs to Label
Distorted Lines

Since the thinning operator produces distorted road ge-
ometry near the road intersections and the road width
determines the extent of the distortion, we can utilize
the extracted road intersections and the road width
to label the locations of the potential distorted lines.
We first generate a blob image with the detected road-
intersection points labeled as individual foreground pix-
els. Then, we apply the dilation operator to grow a
blob for each of the road-intersection points using the
road width as the number of iterations. For example,
Figure 14(a) shows an example map and Figure 14(b)
shows the blob image after we apply the dilation op-
erator where the size of each blob is large enough to
cover the road area of each road intersection in the orig-
inal map. Finally, we overlap the blob image with the
thinned-line image shown in Figure 14(c) to label the
extent of the potential distorted lines as show in Fig-
ure 14(d).

!"#$%&'()*$#+,&-.)/.0%*&(-.1"2$-./(

!"#$%&'()*+#($'$#,)-*

3)$0,&'()*$#(2,&./(4*)(.$05(62*6(

.//01#,)*!"#$%2(,)1-)/3"(*4)567#,)-*

7.&.)$%&'()*$#+,&-.)/.0%*&(62*6/(

!"#$%2(,)1-)/3"(*8"-'3"(-*

!"#$%2(,)1-)/3"(*97":-*

89-*:&-;.-.0-*)(

4;'(()$%&'()*25#<)*

!"#$*='$,;*

<,&'2.+=$//(=$)$22.2+=$>.)&(3)$0,&'(

Fig. 13 The overall approach to extract the road-intersection
templates from raster maps

4.2 Identifying and Tracing Road-Line Candidates

To extract accurate road vector data around the in-
tersections, we use the labeled image shown in Fig-
ure 14(d) to detect possible road lines intersecting at
each road intersection (i.e., road-line candidates) and
trace the thinned-line pixels to compute the line ori-
entations. We first identify the contact points between
each blob and the thinned-lines by detecting the thinned-
line pixels that have any neighboring pixel labeled by
the gray boxes. These contact points indicate the start-
ing points of a road-line candidate associated with the
blobs. In the example shown in Figure 14(d), the road
intersection in the second top-left blob has three road-
line candidates starting from the contact points that
are on the top, right, and bottom of the blob.

Once we have the contact points, to detect the road-
line candidates, we present the Limited Flood-Fill al-
gorithm to trace the thinned-lines from their contact
points. Figure 15 shows the pseudo-code for the Limited
Flood-Fill algorithm. The Limited Flood-Fill algorithm
first labels a contact point as visited and then checks
the eight neighboring pixels of the contact point to find
unvisited thinned-line pixels. If one of the eight neigh-
boring pixels is not labeled as visited nor is labeled as
a potential distorted line pixel, the neighboring pixel is

13

Function void limitedFloodFill8(int x, int y) // x and y
 if (InsideImage(x,y) && NotVisited(x,y) && pixel_count < MaxLinePixel) {
 pixel_count = pixel_count + 1; SetVisited(x,y);
 limitedFloodFill8 (x + 1, y); limitedFloodFill8(x - 1, y - 1); limitedFloodFill8 (x, y + 1);
 limitedFloodFill8(x + 1, y - 1); limitedFloodFill8 (x + 1, y + 1); limitedFloodFill8(x – 1, y);
 limitedFloodFill8 (x - 1, y + 1); limitedFloodFill8(x, y - 1);
 }

// The maximum number of line pixels the algorithm is allowed to trace for one line

MaxLinePixel;
// The counter for tracking the number of visited pixels
pixel_count;

 void main() // Program starts here
 Foreach contact point, CP {
 limitedFloodFill8 (CP.x, CP.y);
 }

Fig. 15 The pseudo-code for the Limited Flood-Fill algorithm

(a) An example raster map (b) Road-intersection blobs

(c) Thinned road lines (d) Labeling distortion areas

Fig. 14 Generating a blob image to label the distorted lines

set as the next visit point for the Limited Flood-Fill
algorithm to process.

When the Limited Flood-Fill algorithm processes a
new pixel, it records the position of the pixel to later
compute the road orientation. Since it is very unlikely
the road lines near an intersection are significantly curved,
to trace only straight lines, we limit the number of
pixels that the Limited Flood-Fill algorithm can trace
from each contact point using a parameter called Max-

LinePixel. The Limited Flood-Fill algorithm counts the
number of pixels that it has visited and stops when the
counter is larger than the MaxLinePixel variable.

A smaller value for the MaxLinePixel variable pre-
vents the Limited Flood-Fill algorithm from tracing
curved lines. However, a very small value for the Max-

LinePixel variable does not provide enough pixels for
the Limited Flood-Fill algorithm to compute the road
orientations. For example, if we set the MaxLinePixel

variable to 1 pixel, there will be only eight possible

orientations of the traced lines, which is not practical.
In our approach, we empirically use 5 pixels for the
MaxLinePixel variable to reduce the chance of tracing
curved lines while still having enough pixels to generate
the road orientations. As shown in Figure 16, instead of
tracing the whole curve starting from the two contact
points (i.e., the one on the right and the one on the
bottom), we utilize the MaxLinePixel to ensure that
the Limited Flood-Fill algorithm traces only a small
portion of the thinned-lines near the contact points.

After the Limited Flood-Fill algorithm processes ev-
ery line from each contact point and records the posi-
tions of the line pixels, we utilize the Least-Squares Fit-
ting algorithm to find the linear functions of the lines.
Assuming a linear function L for a set of line pixels
traced by the Limited Flood-Fill algorithm, by minimiz-
ing the sum of the squares of the vertical offsets between
the line pixels and the line L, the Least-Squares Fitting
algorithm finds the straight line L that most represents
the traced line pixels. The computed line functions are
then used in the next step of updating road-intersection
templates to identify actual intersecting road lines and
refine the positions of the road intersections.

4.3 Updating Road-Intersection Templates

There are three possible intersecting cases for the road-
line candidates of one intersection as shown in Fig-
ure 17, where: the left images of the three cases are
the original maps; the middle images are the thinned
lines with the locations of the potential distorted lines
labeled by the blob images; and the right images are the
traced line functions (i.e., the line functions computed
using the Least-Squares Fitting algorithm) drawn on a
Cartesian coordinate plane.

The top row of Figure 17 shows Case One where
all the road-line candidates intersect at one point. The
middle row shows Case Two where the road-line can-
didates intersect at multiple points and the intersect-
ing points are within a distance threshold to the ini-
tially detected road-intersection position. The bottom

14

Fig. 16 Tracing only a small portion of the road lines near the
contact points

Fig. 17 The three intersecting cases for updating road-
intersection templates

row shows Case Three where the road-line candidates
intersect at multiple points and some of the intersecting
points are not near the initially detected road-intersection
position.

For Case One, we adjust the position of the road
intersection to the intersecting point of the road-line
candidates. We keep all road-intersection candidates
as the intersecting roads of this road-intersection tem-
plate. The road orientations of this road template are
0 degrees, 90 degrees, and 270 degrees, respectively.

For Case Two, Figure 18 shows a detailed view where:
the solid red dot is the initially detected road-intersection

Fig. 18 Case Two: adjusting the road-intersection position with-
out outliers

position; the green, blue, red, and orange lines are the
road-line candidates; the solid black dots are the can-
didates’ intersecting points; and the semi-transparent
red circle implies a local area with radius as the de-
tected road width. Since the extent of the distortion de-
pends on the road width, the positional offset between
any intersecting point of the road-line candidates and
the initially detected road-intersection position should
not be larger than the road width. Therefore, for case
two, since every intersecting point of the road-line can-
didates are in the semi-transparent red circle, we ad-
just the position of the road-intersection template to
the centroid of the intersecting points of all road-line
candidates. We keep all road-intersection candidates
as the intersecting roads of this road-intersection tem-
plate. The road orientations of this road template are
80 degrees, 172 degrees, 265 degrees, and 355 degrees,
respectively.

For Case Three, when two road intersections are
very close to each other, the road geometry between
them is totally distorted as shown in Figure 19. In this
case, the blobs of the two road intersections merge into
one big blob as shown in Figure 19(d), and we asso-
ciate both road intersections with the four thinned-
lines linked to this blob. Figure 20 shows a detailed
view of Case Three. Since the two intersecting points
where the dashed road-line candidate intersects with
two other road-intersection candidates are more than
a road width away from the initially detected road-
intersection position, we discard the dashed road-line
candidate. We use the centroid of the remaining two in-
tersecting points as the position of the road-intersection
template. Since we discard the dashed road-line can-
didate, the connectivity of this road-intersection tem-
plate is three and the road orientations are 60 degrees,
150 degrees, and 240 degrees, respectively. Case Three
shows how the blob image helps to extract correct road

15

(a) An example of road
segments

(b) Thickened lines

(c) Distorted centerlines (d) Merged blobs

Fig. 19 Merged nearby blobs

Fig. 20 Case Three: adjusting the road-intersection position
with outliers

orientations even when an intersecting road line is to-
tally distorted by the thinning operator. This case is not
limited to three intersecting roads. Our approach holds
when the distorted road line has the same orientation
as the lines outside the distortion area. For example, in
Case Three shown in Figure 17, the distorted line is part
of a straight line that goes throughout the intersection
so it has the same orientation as the 240-degree line.
In addition, the intersecting road lines need to have a
similar road width because the road width is used to
determine the outlier of the road-line candidates.

Figure 21 shows example results of the accurately
extracted road-intersection templates and the results
of using the thinning operator only. By utilizing the
knowledge of the road width and road format, we auto-
matically detect and correct the distorted lines around
road intersections caused by the thinning operator and
generate accurate road-intersection templates. Since this

(a) Using the thinning operator only

(b) Accurate road-intersection templates

Fig. 21 Example results compared to using the thinning opera-
tor only

approach is based on the heuristic that the road lines
near an intersection are straight within a short distance
smaller than the MaxLinePixel parameter, for signifi-
cantly curved road lines around the road intersections
(i.e., roads that are curved and shorter than the Max-

LinePixel parameter), the traced line functions would
not be accurate.

5 Step Three: Road Vectorization

In this section, we describe our techniques for vectoriz-
ing the extracted road geometry using the road-intersection
templates. For large raster maps, instead of processing
the entire map at once, we first divide the map into
2000x2000-pixel tiles with overlapping areas on their
connected borders and extract the road vector data for
each tile. Then we combine the road vector data from
each tile and generate the road vector data for the en-
tire map.

5.1 Road Vectorization Using Road-Intersection
Templates

With the knowledge of potential distorted areas and the
accurate positions of the road intersections as shown in
Figures 22(a) and 22(b), we start to trace the road pix-
els in the thinned-line image to generate the road vec-
tor data. The thinned-line image contains three types of
pixels: the non-distorted road pixels, distorted road pix-
els, and background pixels. Figure 22(a) shows the three
types of pixels, which are the black pixels not covered

16

(a) Marking distortions and
tracing roads

(b) Extracting accurate
road-intersection templates

(c) Straight-line patterns (d) Extracted road vector
data

Fig. 22 Extracting road vector data from an example map

by the gray boxes, black pixels in the gray boxes, and
white pixels, respectively. We create a list of connecting
nodes (CNs) of the road vector data. A CN is a point
where two lines meet at different angles. We first add
the detected road intersections into the CN list. Then,
we identify the CNs among the non-distorted road pix-
els using a 3x3-pixel window to check if the pixel has
any of the straight-line patterns shown in Figure 22(c).
We add the pixel to the CN list if we do not detect
a straight-line pattern since the road pixel is not on a
straight line.

To determine the connectivity between the CNs,
we developed an eight-connectivity flood-fill algorithm
called the Road-Tracer to trace the road pixels. Fig-
ure 23 shows the pseudo-code of the Road-Tracer. Note
that the Road-Tracer algorithm and the Limited Flood-
Fill algorithm in Figure 15 are both derived from the
traditional image processing flood-fill algorithm, which
is used to determine the pixel connectivity or to fill up
connected areas. The differences between the the Road-
Tracer algorithm and the Limited Flood-Fill algorithm
in this paper are their stopping criteria.

The Road-Tracer algorithm starts from a CN, trav-
els through the road pixels (both non-distorted and dis-
torted ones), and stops at another CN. Finally, for the
CNs that are road intersections, we use the previously
updated road intersection positions as the CNs’ posi-
tions. The CN list and their connectivity are the re-
sults of our extracted road vector data. Figure 22(d)
shows the extracted road vector data. The road vector
data around the road intersections are accurate since

we do not generate any CN using the distorted lines
except the road intersections (i.e., our algorithm does
not record the geometry of the distorted lines) and the
intersection positions are updated using the accurate
road orientations.

5.2 Divide-and-Conquer Extraction of Road Vector
Data

We divide a raster map into overlapping tiles and pro-
cess each tile for extracting its road vector data. Fig-
ure 24 shows an input scanned map and we divide the
desired map region into four overlapping tiles. After we
process all the tiles, we combine the extracted road vec-
tor data from each tile as one set of road vector data
for the entire raster map.

For the extracted road vector data of each tile, we
cut the vector data at the center of the overlapping
areas as the dashed lines shown in Figure 24, and we
discard the vector data located in the areas between
the dashed line and the tile borders. This is because
the extracted road vector data near the image borders
are usually inaccurate from using the image processing
operators (e.g., the morphological operators).

We merge the road vector data from two neighbor-
ing tiles by matching the intersections of the dashed
lines and the road lines (i.e., the cutting points) of the
two neighboring sets of road vector data. For exam-
ple, Figure 24(b) shows two sets road vector data from
two neighboring tiles. We first generate a set of cut-
ting points for the left set of road vector data using the
intersections of the vertical dashed line and the road
lines of the left tile’s road vector data. Then, we gen-
erate the set of cuttings points for the right set of road
vector data. Finally, we merge the two sets of road vec-
tor data by connecting two road lines in the two tiles
ending at the cutting points of the same location as
shown in Figure 24(c) where each of the horizontal ar-
rows point to a matched pair of cutting points shown as
the cross marks. Figure 24(d) shows the merged road
vector data.

We first merge the road vector data of tiles on the
same row from left to right and then we merge the
integrated vector data of each row into the final re-
sults from top to bottom. Note that the divide-and-
conquer approach does not reduce the overall computa-
tional complexity, but introduces additional computa-
tional overhead (i.e., more pixels need to be processed).
However, by dividing the input image into tiles that can
be processed independently, our road vectorization pro-
cess can scale to arbitrarily large images as long as we
can divide the input image into smaller regions. More-
over, since each tile is processed independently, the road

17

CNList; // The connecting-node list (CN.x and CN.y are the pixel location)

road_vectors; // The line-segment list (A line segment contains two CN indexes)

// The IDs of the starting and ending CNs of the line segment we are currently tracing

start_id; end_id;

void main() // Program starts here
 Foreach CN in the CNList {
 start_id = CN.id;
 SetVisited(CN.x, CN.y);
 RoadTracer(CN.x, CN.y);
 }
 // Correct the distortions
 Foreach CN in the CNList {
 if (InsideGrayBox(CN.x, CN.Y) {
 // An intersection
 CN.x =
 GetUpdatedIntersectionLocationX(CN.id);
 CN.y =
 GetUpdatedIntersectionLocationY(CN.id);
 }

Function void RoadTracer(int x, int y)
 if (InsideImage(x,y) && NotVisited(x,y)
 && NotBackground(x,y)) {
 if (IsCN(x,y) { // We found a line
 CN end = CNList.FindCNAtLocationXY(x,y);
 road_vectors.AddLine(start_id, end.id);
 } else {
 SetVisited(x,y);
 RoadTracer(x + 1, y); RoadTracer(x - 1, y - 1);
 RoadTracer(x, y + 1); RoadTracer(x + 1, y - 1);
 RoadTracer(x + 1, y + 1); RoadTracer(x – 1, y);
 RoadTracer(x - 1, y + 1); RoadTracer(x, y - 1);
 }
 }

Fig. 23 The pseudo-code of the Road-Tracer algorithm

vectorization process can take the advantage of multi-
core or multi-processor computers to process the tiles
in parallel.

6 Experiments

In this section, we report on our experiments on the ex-
traction of road vector data from heterogeneous raster
maps using the techniques described in this paper. We
have implemented our overall approach as two com-
ponents in a system called Strabo. The first compo-
nent, called Road Layer Extraction, is the supervised
road-pixel-extraction technique in Section 3 (the first
step, road geometry extraction). This component takes
a raster map as input and extracts the road layer. The
second component, called Road Layer Vectorization, in-
cludes the remaining techniques in Section 3 and the
road intersection detection and road vectorization tech-
niques in Sections 4 and 5. This component takes the
extracted road layer as input and generates the road
vector data.

We tested Strabo on 40 maps from 11 sources. Ta-
ble 1 shows the information of the test maps and their
abbreviations used in this section.12 The ITM, GECKO,
GIZI maps cover the city of Baghdad, Iraq and were
scanned in 350 DPI. The UNIraq map covers the city
of Samawah, Iraq, which is from the United Nations
Assistance Mission for Iraq website13 and provides no
information of scan resolution. The UNAf map covers
Afghanistan and is from the United Nations Assistance
Mission in Afghanistan website.14 The Afghanistan map

12 The detailed information for obtaining the test maps
and the ground truth can be found on: http://www.isi.edu/

integration/data/maps/prj_map_extract_data.html
13 http://www.uniraq.org
14 http://unama.unmissions.org/

Map Source Map Dimension

(map count, abbr.) Type (pixels)

International Travel Maps (6, ITM) Scanned 4000x3636
Gecko Maps (3, GECKO) Scanned 5264x1923

Gizi Map (4, GIZI) Scanned 3344x3608
UN Iraq (9, UNIraq) Scanned 4000x3636

Rand McNally (4, RM) Computer 2084x2756
UN Afghanistan (4, UNAfg) Computer 3300x2550
Google Maps (2, Google) Computer 800x550

Live Maps (2, Live) Computer 800x550
OpenStreetMap (2, OSM) Computer 800x550

MapQuest Maps (2, MapQuest) Computer 800x550
Yahoo Maps (2, Yahoo) Computer 800x550

Table 1 Test maps

shows the main and secondary roads, cities, political
boundaries, airports, and railroads of the nation. The
RM map covers the city of St. Louis, Missouri and is
from Rand McNally.15 The Google, Live, OSM, Map-
Quest, Yahoo maps cover one area in Los Angeles, Cal-
ifornia and one area in St. Louis, Missouri, which are
from Google Maps, Microsoft Live Maps, OpenStreet-
Map, MapQuest Maps, and Yahoo Maps, respectively.
Figure 25 shows examples of the test maps, where the
scanned maps show poor image quality, especially the
Gecko and Gizi maps with the shadows caused by the
fold lines.

6.1 Experimental Setup

This section presents the experimental setup for the
road layer extraction and vectorization components in
Strabo.

15 http://www.randmcnally.com/

18

(a) Overlapping tiles

(b) Cutting the overlapping area (gray)

(c) Connecting the cutting points

(d) The merged road vector data

Fig. 24 Merging two sets of road vector data from neighboring
tiles

(a) ITM map (b) GECKO map

(c) GIZI map (d) UNIraq map

(e) RM map (f) UNAfg map

Fig. 25 Examples of the test maps

Road Layer Extraction We first used Strabo to
generate a road layer for each test map automatically.
This automatic technique of Strabo is implemented based
on our previous grayscale-histogram analysis technique [Chi-
ang et al., 2008]. Then we manually checked the road
layer to determine if user intervention was required.

Strabo successfully extracted the road layer from
the last five sources shown in Table 1 and did not
extract correct road layers for the other six sources.
Among the six sources (ITM, GECKO, GIZI, UNIraq,
RM, and UNAfg), four sources correspond to scanned
maps (ITM, GECKO, GIZI, and UNIraq) since the
grayscale-histogram analysis technique could not sep-
arate the foreground pixels from the background. The
other two map sources contain non-road linear features,
which are drawn using the same single-line format as
the roads, and hence the automatically extracted road
layers contain these linear features. To achieve the best

19

results for the six sources, we utilized the supervised
technique presented in Section 3.1 to extract the road
layers.

The supervised technique first quantized the maps
from the four scanned-map sources (ITM, GECKO, GIZI,
and UNIraq) to generate quantized images in various
quantization levels (the quantization levels have the
number of colors as 32, 64, 128, and 256, respectively).
We did not apply the color segmentation algorithms
on computer-generated maps (test maps from RM and
UNAfg) before user labeling. This is because the computer-
generated maps contain a smaller number of colors. The
UNAfg map has 90 unique colors and there is only one
color representing both the major and secondary roads
in the map. The RM map has 20 unique colors with 5
colors representing roads. The user starts using Strabo
for the user-labeling task with the quantized image of
the highest quantization level (i.e., the quantized image
that has the smallest number of colors). If the user can-
not distinguish the road pixels from other map features
(e.g., background) in the quantized image, the user se-
lects a quantized image containing more colors (a lower
quantization level) for user labeling.

For comparison, we tested the 40 test maps using
R2V from Able Software. R2V allows the user to use
one set of color thresholds to extract the road pixels
from the map for vectorization. For raster maps that
require more than one set of color thresholds (all of our
test maps except the UNAfg map require more than one
set of color thresholds), the user has to manually specify
sample pixels for each of the road colors, which requires
significant effort. Therefore, for the raster maps that
require more than one set of color thresholds to extract
their road pixels, we used the road layers extracted from
Strabo (which are the same set of road layers used to
test Strabo’s road vectorization function) without using
R2V’s manual pre-processing and post-processing. The
UNAfg map requires only one set of color thresholds to
extract the road pixels using R2V and both R2V and
Strabo generated the same road layer for the UNAfg
map.

Road Layer Vectorization Once the road layers
were extracted, the second component of Strabo then
processed the road layers and automatically generated
the road vector data. For comparison, we utilized “Auto
Vectorize” function in R2V to process the same set of
road layers for generating the road vector data auto-
matically.

6.2 Evaluation Criteria

This section describes the evaluation criteria for the
road layer extraction and vectorization components in
Strabo.

Road Layer Extraction To evaluate the road-
layer-extraction component, we report the number of
user labels that were required for extracting road pix-
els from each map source using Strabo.

Road Layer Vectorization For evaluating the ex-
tracted road vector data from the road-layer-vectorization
component, we report the accuracy of the extraction re-
sults using the road extraction metrics proposed by Heipke
et al. [1997], which include the completeness, correct-
ness, quality, redundancy, and the root-mean-square
(RMS) difference. We had a third-party to manually
draw the centerline of every road line in the maps as
the ground truth.

The completeness is the length of true positives di-
vided by the sum of the lengths of true positives and
false negatives, and the optimum is 100%. The cor-
rectness is the length of true positives divided by the
sum of the lengths of true positives and false positives,
and the optimum is 100%. The quality is a combina-
tion metric of the completeness and correctness, which
is the length of true positives divided by the sum of
the lengths of true positives, false positives, and false
negatives, and the optimum is 100%. The redundancy
is the length of matched extraction minus the length
of matched reference. The redundancy shows the per-
centage of the matched ground truth that is redundant
(i.e., more than one true positive line matched to one
ground-truth line), and the optimum is 0. The redun-
dancy does not depend on the number of line segments
in the matched extraction line or the matched reference.
The RMS difference is the average distance between the
extracted lines and the ground truth, which represents
the geometrical accuracy of the extracted road vector
data.

To identify the length of the true positives, false neg-
atives, and matched ground truth, Heipke et al. [1997]
suggest using a buffer width of half of the road width
in the test data so that a correctly extracted road seg-
ment is in between the road edges as shown in Figure 26.
In our test maps, the roads range from 5 to 12 pixels
wide. We used a buffer width of 3 pixels, which means
a correctly extracted line is no farther than 3 pixels
from the road centerlines. For example, to calculate the
length of the true positives, we first drew the extracted
road vector data using 1-pixel-width lines as the blue
lines shown in the top of Figure 26 (i.e., the length of a
road segment is approximately the number of pixels of
the drawn road line). Then we drew the ground truth

20

Buffer width

Reference road
Extracted road

Buffer width

False Positive True Positive

False Negative
Matched Reference

Fig. 26 Calculating road extraction metrics

lines (the reference roads) using the width as the buffer
width on top of the blue lines as the red box shown in
in Figure 26. The number of blue pixels outside the red
box is the length of false positives and the total number
of blue pixels minus the length of false positives is the
length of true positives. More details on calculating the
metrics can be found in [Heipke et al., 1997].

6.3 Experimental Results

This section presents the experimental results of the
road layer extraction and vectorization components in
Strabo.

Road Layer Extraction Table 2 shows the num-
bers of colors in the images used for user labeling and
the numbers of user labels used for extracting the road
pixels. Strabo did not generate quantized maps for the
RM and UNAfg maps (i.e., no values for their quan-
tized map colors in Table 2) because they contain only
a small number of colors.

For all the scanned maps, only 1 to 9 labels were
needed for Strabo to extract the road pixels. The num-
ber of user labels varied from 1 to 9 because of the
varying complexity of map content and the number of
road colors of the tested map sources. Strabo’s user
labeling function is an interactive process. During the
road-layer-extraction experiments, a user first selected
one or more labels for a map source and then instructed
Strabo to show the layer extraction results using the se-
lected labels. If not all of the road lines were extracted,
the user would provide more labels and then re-examine
the results. This interactive labeling process continued
until all of the road lines were extracted. Since the user
label does not have to contain only road pixels, the user
does not have to carefully avoid including non-road pix-
els in the label and hence does not take a long time to
decide on a label (i.e., usually less than 30 seconds).

In contrast to R2V, which requires manually pro-
viding samples of each road color, Strabo’s interactive
strategy provides a much easier-to-use approach for ex-
tracting road layers from raster maps. Note that if the

color quantization failed to group the road colors into
groups because of poor map quality, as found in some
historical maps, this interactive strategy would not work
well. In this case, a more advanced color segmentation
technique could be used to produce a quantized map
for user labeling [Chiang et al., 2011].

Road Layer Vectorization Table 3 shows the nu-
meric results from using Strabo and R2V to extract
road vector data from the 16 test maps. The average
completeness, correctness, quality, redundancy, and re-
dundancy of Strabo and R2V are shown in the bot-
tom rows of Table 3. Strabo produced more accurate
road vector data with a smaller RMS. We emphasize
the numbers where R2V generated a better result than
Strabo. R2V produced better completeness numbers
for five test maps, but this was because R2V gener-
ated highly redundant lines, while Strabo eliminated
small branches, such as the highway ramps shown in
Figure 27.

R2V could achieve better results if we tuned R2V
with manually specified pre-processing and post-process-
ing functions. To demonstrate the pre-processing and
post-processing functions in R2V for improving the vec-
torization result on the road layer shown in Figure 27(b),
we first manually resized the image to a quarter of the
original size for reducing the thickness of the line ar-
eas. Next, we applied the de-speckle function in R2V
to remove noise objects. We then used the image edit-
ing function in R2V to manually draw lines to fill up
the gaps between broken lines and holes; in this par-
ticular example, we manually drew 14 areas and the
black pixels in Figure 28 shows the edited result. Fi-
nally, we applied the automatic vectorization function
with spline smoothing to generate the results as the
road lines shown in Figure 28. Note that the results
are significantly improved after manual processing, but
the road geometry near the intersections is not accurate
compared to our results shown in Figure 27(c) due to
the fact that Strabo automatically detects and corrects
distorted lines near road intersections.

One limitation of Strabo’s automatic vectorization
process is that the process to generate road geometry
relies on the width of the majority of roads. This can
be seen in Figure 27 where Strabo eliminated small
branches because Strabo detected the road width as
the width of the majority of roads (in Figure 27, the
majority roads are the white roads) and used the de-
tected road width to set up the parameters for gener-
ating the road geometry automatically. As a result, in
the examples in Figure 27, the number of iterations of
the erosion operator was larger than the width of the
small branches so that the branches were eliminated
after applying the erosion operator.

21

Map Source Original Map Colors Quantized Map Colors User Labels

ITM 779,338 64 9
GECKO 441,767 128 5
GIZI 599,470 64 9

UNIraq 217,790 64 5
RM 20 N/A 5

UNAfg 90 N/A 1

Table 2 The number of colors in the image for user labeling of each test map and the number of user labels for extracting the road
pixels

Map Source Completeness Correctness Quality Redundancy RMS

ITM (Strabo) 90.02% 93.95% 85.08% 0.85% 3.59
ITM (R2V) 96.00% 66.91% 65.09% 117.33% 13.68
GECKO (Strabo) 93.75% 94.75% 89.12% 0.61% 2.95
GECKO (R2V) 96.52% 76.44% 74.39% 52.64% 8.27
GIZI (Strabo) 92.90% 96.18% 89.59% 0.00% 2.46
GIZI (R2V) 93.43% 95.03% 89.08% 39.42% 11.17
UNIraq (Strabo) 88.31% 96.01% 85.19% 0.00% 6.94
UNIraq (R2V) 94.92% 78.38% 75.22% 18.82% 5.19

RM (Strabo) 96.03% 84.72% 81.85% 1.60% 2.79
RM (R2V) 92.74% 68.89% 65.36% 33.56% 16.03
UNAfg (Strabo) 86.02% 99.92% 85.96% 0.00% 3.68
UNAfg (R2V) 88.26% 99.92% 88.20% 12.36% 3.98
Google (Strabo) 99.62% 99.87% 99.49% 0.00% 0.81
Google (R2V) 83.45% 81.93% 70.41% 18.78% 19.16
Live (Strabo) 99.47% 98.31% 97.79% 0.00% 8.08
Live (R2V) 83.42% 71.36% 62.69% 29.25% 23.85
OSM (Strabo) 99.81% 100.00% 99.81% 0.00% 0.76
OSM (R2V) 90.47% 93.71% 85.79% 6.82% 10.84
MapQuest (Strabo) 99.85% 100.00% 100.00% 0.00% 0.73
MapQuest (R2V) 92.01% 93.41% 87.149% 7.52% 6.72
Yahoo (Strabo) 99.97% 99.97% 99.94% 0.00% 0.69
Yahoo (R2V) 86.10% 77.17% 68.62% 103.29% 26.49

Avg. (Strabo) 95.07% 96.70% 92.15% 0.28% 3.05
Avg. (R2V) 90.66% 82.10% 75.64% 39.98% 13.22

Table 3 Numeric results of the extracted road vector data (3-pixel-wide buffer) using Strabo and R2V

Figures 29 to 35 show some example results. Note
that the geometry of the extracted road vector data is
very close to the road centerlines for both straight and
curved roads, especially the computer-generated maps
from the web-mapping service providers.

For the lower than average completeness numbers
in the ITM, GECKO, GIZI, and UNAfg maps, some
broken lines were not reconnected since the gaps were
larger than the iterations of the dilation operator af-
ter the non-road overlapping features were removed,
such as the gaps in the UNAfg, GECKO, and GIZI
maps shown in Figures 29, 30, and 31. The broken lines
could be reconnected with post-processing on the road
vector data since the gaps are now smaller than they
were in the extracted road layers resulting from the
dilation operator. One post-processing example could
be connecting extreme points that are within the dis-
tance of a user-specified threshold in the road vector
data. This post-processing step could potentially in-

crease the completeness of the road vector data results.
For the lower than average completeness numbers in the
scanned UNIraq map, some of the road lines as shown
in Figure 32 are dashed lines and the ground truth were
drawn as solid lines.

For the text labels in the test maps, except the RM
maps, the maps contained text labels drawn in a differ-
ent color than the roads so that the text pixels were re-
moved during the extraction of road layers (i.e., Strabo
identified the colors that represent roads and used the
road color to extract the road layers). The overlapping
text was also removed and hence the extracted road
layers were broken as shown in the examples of the
ITM, UNAfg, Gecko, and GIZI maps in Figure 29 to
Figure 31.

For the RM maps, Figure 33(b) shows the extracted
road pixels using the supervised function of Strabo.
Many characters were extracted since they share the
same color as the black lines. Although we removed

22

(a) ITM map (portion) (b) Extracted road pixels

(c) Strabo results (d) R2V results

Fig. 27 Example results using Strabo and R2V of a cropped
area from the ITM map

Fig. 28 R2V results with manual image editing (red lines are
the extracted road vector data and black pixels are the edited
road area

the majority of the characters automatically using the
text/graphics separation and connected component anal-
ysis techniques [Cao and Tan, 2002; Chiang et al., 2008]
as described in Section 3.3, some of the characters were
miss-identified as road lines since they touch the road
lines and the connected-component analysis approach
we used could not remove this type of false positive,
which resulted in lower completeness, correctness, and
quality. For the Google, Live, OSM, MapQuest, and Ya-
hoo maps, because of the good image quality, Strabo

automatically separated the foreground pixels from the
background and the foreground pixels contain both the
text and road pixels as the example shown in Figure 35.
Since the text labels in these maps were placed on top
of the road lines, the extracted road layers show accu-
rately connected road lines.

The ITM, GECKO, GIZI, UNIraq, and RM maps
had lower than average correctness numbers since some
of the non-road features were also extracted using the
identified road colors and those parts contributed to
false positive road vector data. Figure 29(b) shows a
portion of the ITM map where the runways are rep-
resented using the same color as the white roads and
hence were extracted as road pixels. Figure 32 shows a
portion of the UNIraq map where some of the building
pixels were extracted since they share the same colors
as the road shadows. Figure 33 shows two grid lines in
pink on the left and right portions of the RM map were
also extracted since they have the same color as the
major road shown at the center of the map. Including a
user validation step after the road pixels were extracted
could further reduce this type of false positive resulting
in higher correctness numbers.

Strabo’s redundancy numbers are generally low since
we correctly identify the centerlines for extracting the
road vector data. The average RMS differences are un-
der 3 pixels, which shows that the thinning operator
and our approach to correct the distortion result in
good quality road geometry. For example, in the re-
sults shown in Figure 34 and Figure 35, although the
extracted road lines are thick, Strabo extracted accu-
rate road vector data around the intersections. The high
redundancy numbers of R2V resulted from no manual
pre-processing before R2V’s automatic function to ex-
tract the centerlines of the roads, and the automatic
function is sensitive to wide road lines.

6.3.1 Computation Time

We built Strabo using Microsoft Visual Studio 2008
running on a Microsoft Windows 2003 Server powered
by a 3.2 GHz Intel Pentium 4 CPU with 4GB RAM.
The average processing time for the entire process of
vectorizing the road pixels for a 800x550-pixel map was
5 seconds, for a 2084x2756-pixel map was 2 minutes,
and for a 4000x3636-pixel map was 3.5 minutes. The
dominant factors of the computation time are the image
size, the number of road pixels in the raster map, and
the number of road intersections in the road layer. The
implementation was not fully optimized and improve-
ments could still be made to speed up the processes,
such as multi-threading on processing map tiles of an
input map.

23

(a) ITM map (portion) (b) Road pixels of (a)

(c) Road vector data of (a) (d) UNAfg map (portion)

(e) Road pixels of (d) (f) Road vector data of (d)

Fig. 29 Examples of the road vectorization results on the ITM
and UNAfg maps

7 Conclusion and Future Work

We present a general approach to extract accurate road
vector data from heterogeneous raster maps with mini-
mal user input. This approach handles raster maps with
poor image quality using a semi-automatic technique.
We show that our approach extracts accurate road vec-
tor data from 40 raster maps from 11 sources with
varying color usages and image quality. In the future,
we plan to extend our approach to include automatic
post-processing on the road vector data. For example,
without knowing the real-world lengths of the extracted
road lines, we cannot apply heuristics for post-processing
on the extracted road vector data, such as removing
road lines that are shorter than 1 meter. With the ex-
tracted road vector data, we plan to utilize map confla-
tion techniques, such as the one from Chen et al. [2008],
to identify the geocoordinates of the road vector data
and then discover the actual lengths of the extracted
road lines. We can then utilize real-world heuristics,
such as thresholds on the road length and road turn-

(a) GECKO map (portion) (b) Road pixels of (a)

(c) Road vector data of (a) (d) GECKO map (portion)

(e) Road pixels of (d) (f) Road vector data of (d)

Fig. 30 Examples of the road vectorization results on the
GECKO map

ing angles, to apply automatic post-processing on the
extracted road vector data to improve the results.

Acknowledgements

We thank Phyllis O’Neil for her excellent proofreading
and editing work. We also thank Weili Chiang for man-
ually digitizing the test maps to generate the ground
truth.

This research is based upon work supported in part
by the University of Southern California under the Viterbi
School of Engineering Doctoral Fellowship.

References

Ballard, D. H. (1981). Generalizing the hough trans-
form to detect arbitrary shapes. Pattern Recognition,
13(2):111–122.

24

(a) GIZI map (portion) (b) Road pixels of (a)

(c) Road vector data of (a) (d) GIZI map (portion)

(e) Road pixels of (d) (f) Road vector data of (d)

Fig. 31 Examples of the road vectorization results on the GIZI
map

D. Bin and W. K. Cheong. A system for automatic ex-
traction of road network from maps. In Proceedings

of the IEEE International Joint Symposia on Intelli-

gence and Systems, pages 359–366, 1998.
R. Cao and C. L. Tan. Text/graphics separation in

maps. In Proceedings of the Fourth GREC, pages
167–177, 2002.

Cheng, H., Jiang, X., Sun, Y., and Wang, J. (2001).
Color image segmentation: advances and prospects.
Pattern Recognition, 34(12):2259 – 2281.

C.-C. Chen, C. A. Knoblock, and C. Shahabi. Auto-
matically and accurately conflating raster maps with
orthoimagery. GeoInformatica, 12(3):377–410, 2008.

Y. Chen, R. Wang, and J. Qian. Extracting contour
lines from common-conditioned topographic maps.
IEEE Transactions on Geoscience and Remote Sens-

ing, 44(4):1048–1057, 2006.

(a) UNIraq map (portion)

(b) Road pixels of (a)

(c) Road vector data of (a)

Fig. 32 Examples of the road vectorization results on the UNI-
raq map

(a) RM map (portion)

(b) Road pixels of (a)

(c) Road vector data of (a)

Fig. 33 Examples of the road vectorization results on the RM
map

25

(a) MapQuest map

(b) Road pixels of (a)

(c) Road vector data of (a)

Fig. 34 Examples of the road vectorization results on a
MapQuest map

Y.-Y. Chiang and C. A. Knoblock. Automatic extrac-
tion of road intersection position, connectivity, and
orientations from raster maps. In Proceedings of the

16th ACM GIS, pages 1–10, 2008.
Y.-Y. Chiang and C. A. Knoblock. A method for au-

tomatically extracting road layers from raster maps.
In Proceedings of the Tenth ICDAR, pages 838–842,
2009a.

Y.-Y. Chiang and C. A. Knoblock. Extracting road
vector data from raster maps. Selected Papers of the

Eighth GREC, LNCS, 6020:93–105, 2009b.
Y.-Y. Chiang, C. A. Knoblock, C. Shahabi, and C.-C.

Chen. Automatic and accurate extraction of road
intersections from raster maps. GeoInformatica, 13
(2):121–157, 2008.

Y.-Y. Chiang, S. Leyl, and C. A. Knoblock. Integrat-
ing Color Image Segmentation and User Labeling for

(a) OSM map

(b) Road pixels of (a)

(c) Road vector data of (a)

Fig. 35 Examples of the road vectorization results on a OSM
map

Efficient and Robust Graphics Recognition from His-
torical Maps. The Ninth IAPR International Work-

shop on Graphics RECognition, 2011b.
D. Comaniciu and P. Meer. Mean shift: a robust ap-
proach toward feature space analysis. IEEE TPAMI,
24(5):603–619, 2002.

Duda, R. O. and Hart, P. E. (1972). Use of the hough
transformation to detect lines and curves in pictures.
Communications of the ACM, 15:11–15.

A. Habib, R. Uebbing, and A. Asmamaw. Automatic
extraction of road intersections from raster maps.
Project Report, Center for Mapping, The Ohio State
University, 1999.

P. Heckbert. Color image quantization for frame buffer
display. SIGGRAPH, 16(3):297–307, 1982.

C. Heipke, H. Mayer, C. Wiedemann, and O. Jamet.
Evaluation of automatic road extraction. In Interna-

26

tional Archives of Photogrammetry and Remote Sens-

ing, pages 47–56, 1997.
T. C. Henderson, T. Linton, S. Potupchik, and A. Os-

tanin. Automatic segmentation of semantic classes
in raster map images. In Proceedings of the Eighth

IAPR International Workshop on Graphics Recogni-

tion, pages 253–262.
W. Itonaga, I. Matsuda, N. Yoneyama, and S. Ito.

Automatic extraction of road networks from map
images. Electronics and Communications in Japan

(Part II: Electronics), 86(4):62–72, 2003.
A. Khotanzad and E. Zink. Contour line and geographic

feature extraction from USGS color topographical
paper maps. IEEE TPAMI, 25(1):18–31, 2003.

V. Lacroix. Automatic palette identification of col-
ored graphics. In Graphics Recognition: Achieve-

ments, Challenges, and Evolution, Selected Papers of

the 8th International Workshop on Graphics Recog-

nition (GREC), Lecture Notes in Computer Science,

6020, pages 95–100. Springer, New York.
S. Leyk and R. Boesch. Colors of the past: color image

segmentation in historical topographic maps based
on homogeneity. GeoInformatica, 14(1):1–21.

L. Li, G. Nagy, A. Samal, S. C. Seth, and Y. Xu. In-
tegrated text and line-art extraction from a topo-
graphic map. IJDAR, 2(4):177–185, 2000.

Lloyd, S. P. (1982). Least squares quantization in pcm.
IEEE Transactions on Information Theory, 28:129–
137.

W. K. Pratt. Digital Image Processing: PIKS Scientific

Inside. Wiley-Interscience, 3rd edition, 2001.
S. Salvatore and P. Guitton. Contour line recognition

from scanned topographic maps. In Proceedings of

the Winter School of Computer Graphics, 2004.
J. Shi and C. Tomasi. Good features to track. In Pro-

ceedings of the IEEE CVPR, pages 593–600, 1994.
Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., and

Dosch, P. (2002). Text/graphics separation revisited.
In Lopresti, D., Hu, J., and Kashi, R., editors, Doc-

ument Analysis Systems V, volume 2423 of Lecture
Notes in Computer Science, pages 615–620. Springer
Berlin / Heidelberg.

X. Wu, R. Carceroni, H. Fang, S. Zelinka, and
A. Kirmse. Automatic alignment of large-scale aerial
rasters to road-maps. In Proceedings of the 15th ACM

GIS, pages 1–8, 2007.
G. Zack, W. Rogers, and S. Latt. Automatic measure-

ment of sister chromatid exchange frequency. Journal
of Histochemistry and Cytochemistry, 25(7):741–753,
1977.

