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Abstract. Scientific metadata containing semantic descriptions of scientific 
data is expensive to capture and is typically not used across entire data analytic 
processes. We present an approach where semantic metadata is generated as 
scientific data is being prepared, and then subsequently used to configure 
models and to customize them to the data. The metadata captured includes 
sensor descriptions, data characteristics, data types, and process documentation.  
This metadata is then used in a workflow system to select analytic models 
dynamically and to set up model parameters automatically. In addition, all 
aspects of data processing are documented, and the system is able to generate 
extensive provenance records for new data products based on the metadata. As 
a result, the system can dynamically select analytic models based on the 
metadata properties of the data it is processing, generating more accurate 
results.  We show results in analyzing stream metabolism for watershed 
ecosystem management.  
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1   Introduction  

Despite significant advances in computational infrastructure and sensor network 
observatories, many environmental scientists are slowed down by the tasks required 
to set up their analyses as data comes in daily from their sensors. Data preparation is 
time-consuming: scientists gather data from multiple sources and sensors, they must 
first clean the data, normalize it so that data from different sources is represented 
using the same units and formats, and they must integrate it and configure it according 
to the requirements of their models and simulation software. Data analysis is also time 
consuming: scientists run different models and must make sure to provide each model 
the inputs it requires in the format it requires, and that the outputs of one model are 
compatible with the inputs of the next one.  



An important aspect of data analysis is selecting and fine-tuning models according 
to the data characteristics.  For example, for analyzing metabolism in a river some 
models are appropriate for high water flows, and others are best for low water flows. 
One way to do this is for the scientist to first prepare the data, and then based on the 
characteristics of the data select the appropriate models. This simple approach 
becomes cumbersome and time-consuming when scientists wish to run their analysis 
periodically (e.g., every day) to analyze data coming from sensors.  

Despite best intentions and care, the execution of a model may fail, often because 
data violates a model assumption for which components do not explicitly check. 
Errors that surface in running a model may have been introduced in an earlier step. To 
understand and debug these problems, scientists need to trace back the provenance of 
the data. 

Finally, to assess progress, scientists must be able to reproduce their analyses, to 
run new models on previous data, and to easily retrieve results of prior runs. 
Reproducing previous analyses becomes difficult if the process involved manual steps 
where scientists manually configured models, or interactively provided inputs. The 
process needs to be fully audited so it can be accurately reproduced.  Results from 
many runs need to be found based on their properties. Inspecting prior results is often 
difficult because scientific analysis processes often generate vast amounts of data and 
files, and without explicit metadata and provenance information it is hard to 
understand where each piece of data came from and what it represents.  

All these issues could be addressed if scientists invested the time and were 
thorough in creating and propagating metadata as they prepare and process data.  
However, the management of metadata often has to be done manually, so it becomes 
a burden and therefore it is seldom done. 

The main contribution of our work is to show that by explicitly capturing the 
semantics of the data and their provenance, our tools enable scientists to focus on 
their science rather than on the mechanics of running their models. We show that 
capturing metadata and propagating it through the data preparation and analysis 
processes is useful to: 1) save manual effort in managing metadata and setting up and 
running analyses, 2) make all data and analytic results searchable, 3) make results 
understandable and interpretable, 4) share results with other scientists.  We 
demonstrate two integrated systems for data preparation and analysis that capture and 
use metadata and provenance information as data flows through different steps of the 
process.  Karma, our data preparation system [Tuchinda et al. 2011] helps scientists 
extract, clean, normalize and integrate the data coming from sensors and third-party 
data sources. Karma uses a programming by example paradigm to enable scientists to 
perform these tasks by providing examples of how the data should be transformed. 
Karma infers general procedures from these examples that it can then apply to entire 
data sets. During this process, Karma also learns models of the data, aligning the data 
to a domain ontology and augmenting the data sets with metadata that records the 
learned models. This metadata is passed along with the data to Wings, a workflow 
system that uses the metadata to ensure that the workflow components fit together in a 
semantically meaningful way. Most importantly, this metadata enables Wings to 
dynamically select analytic models and parameters that are appropriate for the data 
being processed. Because all metadata is expressed according to a domain ontology, it 
is possible to query all workflow results in terms of the domain ontology. 



Karma and Wings work together to make metadata management effective and 
accessible to scientists while saving them time throughout the data analysis processes. 
Karma generates the metadata that Wings uses to reason about the workflow almost 
as a side effect of preparing the data for the workflow. Much of the metadata is 
learned automatically from the data itself. Wings then propagates the metadata 
throughout the workflow to all intermediate data sets that each workflow component 
produces as it is executed. In the end, the provenance for all data sets is captured in 
the metadata, producing a complete audit trail of the workflow products.  

This paper presents our approach in the context of a case study where scientists 
analyze stream metabolism of the Merced river in California’s Central Valley. In the 
next section we describe the case study in more detail. In section 3 we present an 
overview of the approach, and in sections 4 and 5 we describe Karma and Wings in 
more detail. In section 6 we show the results of our case study, and in section 7 we 
present conclusions and directions for future work. 

2   Motivation: Environmental Science  

Despite tremendous advances in shared infrastructure, many daily tasks faced by 
scientists are disconnected from those capabilities.  For environmental scientists and 
many of the observatory disciplines, the scientific method—hypothesize, observe, 
analyze, interpret—remains bogged down by myriad manual and routine data analysis 
processes aimed at separating environmental variability from the phenomena of 
interest. To truly enable transformative science, the time and effort required for these 
processes must be lowered in order to substantially compress the timeframe of 
observatory-scale analysis. 

We motivate key requirements to support scientists with the problem of simulation 
of whole stream metabolism, where we use a model for estimating rates of aquatic 
photosynthesis known as gross primary production (GPP) and community respiration 
(CR24) [Bott 2007].  These estimates are useful for assessing the status of and changes 
in stream ecosystems in the context of a watershed management. 

In our domain of interest, the hypothesize, observe, analyze, interpret cycle takes 
weeks to months longer than the timescale of observation, such that the best that 
scientists can achieve are post-hoc interpretations of river conditions. Furthermore, in 
uncontrolled (real) systems, they often learn only late in the observation or analysis 
parts of the cycle that an experiment has failed due to unexpected changes in river 
flow or water chemistry. These limitations make it difficult for researchers to discover 
the cause and effect links between different drivers (e.g., climate and land use change) 
and the aquatic ecosystem function on a timescale less than years, or even decades. 
By automating and compressing the cycle of data collection, integration, and analysis, 
we aim not only to enable the more rapid advancement of river science, but to 
advance the environmental science paradigm by enabling timely, practical resource 
management decisions [Dozier and Gail, 2009].  We now describe the data 
preparation, integration, and processing steps in this cycle for water metabolism. 

 
 



Data Preparation 
Stream ecologists spend significant time collecting data in the field and preparing it 

to be useful for running computational models.  Metadata regarding data origins is 
needed at collection time to annotate the station, location, type of sensor, and error 
rates.  This metadata is important for selecting supplemental data and to determine 
which models to run.  For example, the time and location are needed so that weather 
data from national weather sites is selected consistently with the sensor readings.  
Once the raw data is transmitted or brought back to the lab, it needs to be checked for 
consistency and anomalies.  For example, data filtering is generally needed to remove 
noise and spurious data points, or sometimes sensor calibration drift necessitates 
systematic adjustment of the data.  These quality control steps should be tracked, as 
they transform data in ways that are important to select models and to interpret results 
of future steps. 

Data Integration 
Beyond investigations of local, site-specific scope, a major need for environmental 

scientists is the integration of their data with the massive amounts of data and other 
resources that the national scale cyberobservatories are designed to provide. For 
example, river simulators require inputs such as: (1) the material properties (e.g., the 
soil type of the river bed in different parts of the model) and structure or geometry of 
the simulated domain (e.g., the bathymetry of the river bed), (2) the fluid properties, 
including dissolved chemical species, and (3) the initial and boundary conditions 
associated with the river (e.g., a constant flow condition on the upstream boundary 
would drive flow into the system).  The data behind these parameters are populated 
from a variety of data sources and are in different formats, including spatial 
shapefiles, time series, and locally gridded data (as from robotic sensor platforms).  It 
is important to capture metadata about types and constraints to represent the 
semantics of what the data means and what data each source provides.  The origin 
metadata captured during earlier data preparation steps is useful here in order to select 
the appropriate supplemental data sources.  In addition, metadata about statistical 
properties of the datasets provides extremely useful characteristics that drive model 
use and facilitate search.  For example, extracting the average daily depth of a river 
based on hourly readings enables scientists to determine days of low flow and select 
models appropriately.   

Data Processing 
Once datasets are located, cleansed, and integrated, there are many possible data 

analysis processes performed using analytic software or simulation models.  Analytic 
and simulation software may be developed in-house or by colleagues, or obtained 
from third parties such as government agencies or commercial vendors. Examples 
range from relatively sophisticated simulation engine codes for river flow, chemical 
fate, and transport modeling to statistical packages for time series analysis. These 
tools are used in diverse aspects of the modeling processes.  For example, spatial 
interpolation routines are often used to prepare spatially distributed material 
properties or physical parameters for input to gridded numerical simulation models.   

For our task of river metabolism analysis, there are a variety of model types 
available.  Selecting the most appropriate models for analysis is important.  In the 



current post-hoc modeling paradigm, the researcher needs to select an appropriate one 
on the basis of key observational parameters and knowledge of the field.  For 
instance, some metabolism rate models work better when the river flow is relatively 
low while others are better suited to high flow conditions.  Indeed, for a given 
location in a river, different models may be appropriate over different time periods 
because the amount of water may change drastically based on changes in conditions 
dictated by weather (e.g. heavy precipitation or snow melt) or human activities (e.g., 
reservoir releases).  Therefore, the metadata about statistical properties captured 
earlier during data integration is useful to select models at this stage. 

As if managing the data transfers across individual tools and models were not 
challenging and time consuming enough, metadata is often poorly managed and 
laborious to integrate into the analysis.  Key metadata is often archived locally by key 
investigators but not moved along with the data throughout the analytic process steps.  
Metadata for analytic results is tracked manually and seldom published.  This process 
metadata is key for documenting results, so that they can be interpreted 
appropriately, searched based on what processes were used to generate them, and so 
that they can be understood and used by other investigators.  For example, the fact 
that a particular model was used to generate a result and what the parameter settings 
were matter tremendously if the result is to be integrated with other results. 

In summary, scientists need integrated environments for managing end-to-end data 
preparation, integration, and analysis that offer a comprehensive treatment of 
metadata throughout the processes.  In order to make scientific data analysis processes 
more efficient and useful, we must offer better support to capture metadata about: 1) 
the origins of raw data, 2) the types and relationships across datasets, 3) the statistical 
properties of datasets, and 4) the processes applied to the data. 

3 Approach: Provenance-Aware Systems that Manage Metadata  

Our approach is to develop provenance-aware systems that create, propagate, and 
use metadata as they contribute to scientific data analysis processes. Metadata can be 
extracted from original data sources, created during data integration and analysis, and 
propagated throughout the different steps of the analysis process so that the 
provenance of any result (whether intermediate or final) is well documented.  All this 
metadata is useful throughout the process to integrate with new data sources, to select 
and setup analytic steps, and to understand analytic results. 

To demonstrate our approach, we have developed two provenance-aware systems 
that address complementary steps in the scientific analysis process.  Karma, our data 
preparation tool, carries out data preparation and integration steps [Tuchinda et al. 
2011]. Wings, our workflow system, carries our data processing steps through 
computations [Gil et al. 2011].  Both systems capture and use metadata as the data 
flows through different steps.   

Figure 1 shows an overview of the interaction between Karma and Wings, which 
will be described in detail in the rest of  the paper.  The bottom-left  part of the figure 



 
Figure 1. Overview of creation and use of metadata as the data is processed throughout our 
provenance-aware system. 

shows a sketch of the data preparation process where a scientist cleans, normalizes 
and integrates data from multiple sources. Different parts of the integrated dataset are 
color-coded to show the original sources where the data came from. Behind the 
scenes, Karma creates metadata for the dataset so that when a dataset is exported its 
metadata is exported with it, as shown in the blue bubble at the center bottom of the 
figure. Once a dataset is prepared, the scientist can upload the data set to Wings, as 
shown in the top-left part of the figure. The right part of the figure shows the data 
processing aspects of the system. The top-right part shows a Wings screen where 
users can review the data sets that have been uploaded from Karma for processing as 
well as the metadata associated with each dataset. The bottom-right part of the figure 
shows the workflow used to analyze the data.  Wings propagates metadata received 
from Karma for the initial data inputs of the workflow so that newly generated results 
can be described appropriately.  Wings also uses metadata to dynamically select 
models and set up their parameters.  All the metadata is used to generate provenance. 

The next sections describe how Karma and Wings create and use metadata in a 
synergistic manner, and how this integrated and comprehensive treatment of metadata 
benefits scientists. 

4   Data Preparation and Integration with Karma: Metadata about 
Origins, Type, and Characteristics 

Karma [Tuchinda et al. 2011] is an information integration tool designed to enable 
users unfamiliar with databases, ontologies, scripting languages or any other 
programming concepts to extract, clean, normalize and integrate data.  

Karma uses a programming-by-example paradigm where users provide examples 
of how these steps are carried out and Karma generalizes these examples into 



procedures that can be applied to entire datasets. User studies [Tuchinda et al. 2011] 
showed that users were able to complete three information integration tasks about 
three times faster using Karma than using Dapper/Yahoo Pipes (a state of the art tool). 
These studies also revealed that the Karma users were able to complete the tasks 
without error. In contrast, 83% of Dapper/Yahoo Pipes users made at least one error 
in the first task, 45% in the second and 95% in the third. Karma is a visual tool that 
offers users a table representation of their data and commands to import, clean, 
integrate and publish their data. We present the Karma capabilities in the context of 
our stream metabolism case study. 

The first data preparation step is to import the various data sets needed to drive the 
stream metabolism analysis. The first set of sources comes from the California Data 
Exchange Center (CDEC, water.ca.gov). We defined a Web service that provides 
programmatic access to the data published in this web site. After users select the 
appropriate web service from the library of web services registered in Karma, they 
can select the parameters of the service that are of interest. In the CDEC service, users 
can choose the station, sensor and date ranges. The data retrieved from the Web 
service is subsequently shown in a table where users can proceed with further data 
preparation steps. In our case study, users import data for multiple sensors obtaining a 
collection of five tables with data for the dates of interest. Our users also use data 
from their own water quality sensors, which comes from a comma-separated-value 
(CSV) file, and a metadata source from CDEC that records the geospatial coordinates 
of all the CDEC sensors, also a CSV file. 

The next data preparation step is to integrate the data from all these tables into a 
single table that contains the sensor values for all the CDEC sensors, the water quality 
sensors, and the location of each sensor. In order to integrate the data, the date and 
time formats need to be normalized, and changed to the format required by the 
simulation software.  The water quality dates are in the format “2010-03-10 00:15:00” 
and the CDEC dates formatted as “20100309” and “2300” in two separate columns.   

Figure 2 illustrates Karma’s by-example data normalization capabilities. To 
normalize the CDEC dates to the required format, users provide an example of how 
the data ought to be transformed. Karma generalizes the example and applies the 
general rule to all the values in the column. If the generalization is incorrect, users can 
provide additional examples. Using this procedure, users can quickly normalize all the 
date and time formats of the five tables imported from CDEC and the water quality 
tables to transform the data as shown in Figure 3.  

Once the data is normalized, users must join the five CDEC tables and their water 
quality data table into a single table that contains the sensor values for all the sensors, 
as shown in Figure 3.  To do so, they use the Karma ‘Integrate” command on the 
consolidated table. Behind the scenes, Karma has analyzed the tables to automatically 
determine that they can be joined based on the Date and Time fields that are common 
to all tables and using this information it creates a menu of the columns from the 
CDEC and water quality tables that are appropriate to add to the consolidated table 
using database join operations. Users can successively choose from this menu the 
columns that they want to add to the table, unaware of the database join operations 
that Karma is performing to appropriately align the joined values based on Date and 
Time. Similarly, users can integrate the geospatial coordinates of the sensors from the 
CDEC metadata source. 



 
Figure 2.  Normalizing the date format: the user provides one example, and the system learns a 
rule and applies it automatically to the entire dataset. 
 

 
 
Figure 3. Integration of sensor sources into a consolidated dataset. 

 
The next step in the data preparation phase is to build the metadata for the 

consolidated table so that in the final step, when the table is deployed to Wings, it 
carries the metadata used for workflow processing. To do so, users invoke the 
ontology alignment capability in Karma that enables them to map each column of the 
consolidated table to the classes defined in the domain ontology, which is also used 
by Wings and may contain community ontologies for the domain. To map a column 
to the ontology, users click on the grey cells above the column headings and choose 
from the menu that appears the appropriate ontology class. Using the information in 
the ontology, Karma generates standard metadata for the source. For numeric fields 
and date fields Karma will generate metadata with the minimum, maximum and 
average values. It is also possible to associate with classes in the ontology custom 
computations that compute additional metadata. For example, we defined custom 
computations to compute a velocity metadata field.  Karma represents the metadata as 
RDF.  An example of the metadata for a daily dataset is: 
 



   <dcdom:Daily_Sensor_Data rdf:ID=“DailyData-04272011"> 
   <dcdom:siteLong rdf:datatype=“float">-120.931</dcdom:siteLongitude> 
   <dcdom:siteLatitude rdf:datatype=“float">37.371</dcdom:siteLatitude> 
   <dcdom:dateStart rdf:datatype=“date">2011-04-27</dcdom:dateStart> 
   <dcdom:forSite rdf:datatype=”string">MST</dcdom:forSite> 
   <dcdom:numOfDayNights rdf:datatype=“int">1</dcdom:numOfDayNights> 
   <dcdom:avgDepth rdf:datatype=”float">4.523957</dcdom:avgDepth> 
   <dcdom:avgFlow rdf:datatype=“float">2399</dcdom:avgFlow> 
   </dcdom:Daily_Sensor_Data> 

The final data preparation step is to deploy the table and its metadata to Wings. 
This is done using the “Publish” command in Karma that supports publishing the data 
in a variety of formats, as HTML pages that visualize the data, to a table in a 
database, as CSV files, or to a Web service. In our case, Wings uses a Web service to 
deploy data, so users will publish their data as a Web service. Karma can also publish 
the data and the metadata as RDF aligned to the user’s ontology. This capability 
enables scientists to contribute the metadata, and the data if they so desire as Linked 
Open Data aligned to the domain ontology. Because the published data is aligned to 
an ontology it is much easier to link it to other data that uses the same ontology. 

A dataset needs to be created for each day, as required by the simulation software 
used in later steps in the workflow. The data preparation procedure for each dataset is 
the same. To accommodate this, Karma allows users to save all the data preparation 
steps for one data set as a script. Then they can parameterize the script with respect to 
the dates and replay the script for the desired days.  These steps are explicitly 
recorded as metadata to capture the process provenance for each dataset created. 

5   Data Processing with Wings: Metadata about Analysis Processes 

In our work, we use the Wings workflow system [Gil et al. 2011].  Wings is unique 
in that it uses semantic workflow representations to describe the kinds of data and 
computational steps in the workflow. Wings can reason about the constraints of the 
workflow components (steps) and the characteristics of the data and propagate them 
through the workflow structure.  In contrast, most workflow systems focus either on 
execution management or on including extensive libraries of analytic tools [Oinn et 
al. 06; Deelman et al. 05; Reich et al. 06]. Semantic reasoning in Wings is used to 
provide interactive assistance and automation in many aspects of workflow design 
and configuration.  In [Gil et al. 10], we show details of the interaction of a user with 
Wings through its web-based interface.   

Wings uses OWL2 to represent ontologies of workflows, components, and data.  
Metadata is represented as RDF assertions that refer to those ontologies.  Some 
constraints are represented as rules.  A set of rules are associated with particular 
workflow component to express constraints on the applicability of the component, 
how to set up component parameters, or what the metadata of its outputs should be, 
given metadata of its inputs.  We show examples of these rules and their use later. 



 
 
Figure 4. A Wings workflow template for estimating water metabolism rates, illustrating how 
metadata created by Karma is used to: 1) choose a simulation model appropriate for the daily 
water quality data, 2) set up parameters of the models, 3) create metadata for new data 
generated by the workflow and provide provenance of any new results. 

 
Figure 4 shows an example workflow to carry out a daily metabolism calculation 

in a river site for a given time period, which needs as input the daily reaeration rates 
calculated in the initial steps of the workflow.  The metabolism calculation also uses 
as input hydrological data collected by in-situ sensors for that day. The representation 
of this workflow exploits several key features in Wings, highlighted in the figure. 

First, for water metabolism analysis, there are three different empirical reaeration 
models that must be selected based on the morphometry and flow conditions of the 
river at the site of interest [Owens et al. 1964; O’Connor and Dobbins 1958; Churchill 
et al. 1962]. Wings can represent abstract workflow steps as classes of components.  
In this example, Wings represents ReaerationEmpirical as a class of components, 
which has three instances (one per model).  

Second, the workflow needs to be run for a time period of n days, while the data 
for each day is stored in a separate file.  This means that a collection of hydrological 
data for the last n days is required as input to the workflow. Wings can reason about 
data collections and execute as many metabolism calculations as there are days in the 
time period. 

Third, in the semantic workflows used in Wings, every dataset and step is 
associated with a variable.  Variables can have associated semantic constraints. Figure 



4 shows these constraints for the input variable Formatted_Data in a small box at the 
top, they are not readable but they are the metadata generated by Karma shown in the 
last section.  These semantic constraints can be used to represent metadata properties 
of input datasets, such as the type of sensor and the collection date of a dataset of 
water flow rates. Wings checks that the metadata properties of the input datasets are 
consistent with the constraints of the workflow variable Formatted_Data.   

Several important capabilities of Wings are used in this application and described 
in the rest of this section. 

 
Dynamic Selection of Models Based on Metadata 
An important capability is the ability to represent constraints associated with inputs to 
a component to express its requirements.  In our case, each reaeration method is 
appropriate for certain ranges of flow conditions. For example, the O'Connor-Dobbins 
model is only valid when the depth is either greater than 0.61m or greater than 3.45 
times the velocity to the 2.5 power (velocity in m/s). These constraints are expressed 
as rules, which invalidate that component for a workflow that uses data outside of 
those ranges.  The above example is expressed as: 

 
# ODM not valid for Depth <= 3.45 * pow(velocity, 2.5) 
[ODMInvalidity2: 
 (?c rdf:type pcdom:ReaerationODM) 
 (?c pc:hasInput ?idv) (?idv pc:hasArgumentID "HourlyData") 
 (?idv dcdom:depth ?depth) (?idv dcdom:velocity ?vel) 
 pow(?vel, 2.5, ?vpow) product(?vpow, 3.45, ?condn) le(?depth, ?condn) 
   -> (?c pc:isInvalid "true"^^xsd:boolean)] 
 
Wings takes the abstract workflow step ReaerationEmpirical and specializes it to 

the three models, creating three possible workflow candidates for a given input 
dataset.  Next, it applies the rule above to each of the workflows.  The metadata of 
HourlyData has to contain a depth and velocity that conform with the requirement of 
this model to be greater than 3.45xV2.5 (velocity in m/s), otherwise the candidate 
workflow that uses this model is invalidated and rejected.  Similar rules exist for the 
other two models.  Each component has its own set of rules.  This approach is more 
modular than representing such constraints as a conditional branch of the wofklow, as 
is done in other workflow systems. 

 
Automatic Parameter Set Up Based on Metadata 
Wings can set up input parameters of the models selected based on characteristics of 
input datasets.  In our workflow example, the latitude/longitude of the location are 
parameters to the metabolism estimation model.  In Wings, they are set automatically 
by the system based on the location of the sensor that was used to collect the initial 
data.  This is done with a rule for that workflow component: 

 
[SetValuesLatLong: 
    (?c rdf:type pcdom:MetabolismCalcEmpiricalClass) 
    (?c pc:hasInput ?idv) (?idv pc:hasArgumentID "HourlyData") 
    (?c pc:hasInput ?ipv1) (?ipv1 pc:hasArgumentID "Latitude") 
    (?c pc:hasInput ?ipv2) (?ipv2 pc:hasArgumentID "Longitude") 
    (?idv dcdom:siteLatitude ?lat) (?idv dcdom:siteLongitude ?long) 
       -> (?ipv1 pc:hasValue ?lat) (?ipv2 pc:hasValue ?long)] 



 
Note however that the HourlyData input to the metabolism calculation is not an 

input to the workflow, so it does not have any metadata. That is, while we know what 
the characteristics are for the input water quality datasets generated by Karma 
(FormattedData), we do not know what the characteristics are for other datasets in the 
workflow.  Wings has the ability to create metadata for HourlyData by propagating 
metadata throughout the workflow, as we explain below. 
 
Automatic Generation of Metadata for New Results 
Wings generates metadata for all new workflow data products, and we already 
discussed how this metadata is used by the two types of rules that we just described.  

Wings uses rules for components that express what the output metadata properties 
are based on input metadata properties. This is handled through metadata propagation 
rules associated with each component.  An example rule for the first workflow step is: 

 [FwdPropFilter: 
    (?c rdf:type pcdom:FilterTimestampsAndDataClass) 
    (?c pc:hasInput ?idv) (?idv pc:hasArgumentID "InputSensorData") 
    (?c pc:hasOutput ?odv) (?odv pc:hasArgumentID "outputSensorData") 
    (?idv ?p ?val) (?p rdfs:subPropertyOf dc:hasDataMetrics)  
       -> (?odv ?p ?val)] 

Here, the property hasDataMetrics is a superclass of all the metadata properties 
that must be propagated to the outputs of a component, otherwise they are assumed to 
be different for the output dataset created by the component.  Other rules express how 
metadata of the outputs will be different based on the metadata of the inputs, what the 
computation is about, and what the parameter settings are.  These metadata 
propagation rules are used to automatically create metadata for all workflow data 
products.  As a result, any resulting data can be queried based on their properties.   

Workflow data products also have detailed provenance metadata that records what 
workflow was used to generate them.  All workflow executions with their provenance 
can be exported as Linked Data using the Open Provenance Model 
(http://openprovenance.org).  Unlike other provenance systems, Wings provenance 
records include semantic metadata associated to datasets, which can be used to query 
about workflow results. We show examples of such queries in the next section. 

6   Results  

An important contribution of our work is that our provenance-aware system 
automatically chooses a model each day based on metadata characteristics that are 
created and propagated by the system about the daily data.  The results of the data 
analysis are more meaningful from the point of view of the scientific application. 

Figure 5 shows plots of the calculated reaeration rates (K2) for the cases (a) when 
one model is used for every day of the period of analysis and (b) when each model is 
used only for the conditions of flow for which it applies. Notice how the models 
predict roughly the same values during the highest flows but diverge significantly as 
flow decreases. 



 
Figure 5. Reaeration rates plotted against river flow a) Inaccurate results when a single 

model is used throughout the time period, b) Accurate results when different models are used 
for each day depending on the flow conditions. 

 
Figure 6 shows the plots of the net daily metabolism for a given monthly time 

period during Spring when the flow of the river has high fluctuations. The Wings 
workflow system selects dynamically the models each day based on flow conditions 
represented as metadata and captured in Karma. For the first few days, the Churchill 
model is best and is the one selected by the system.  The O’Connor-Dobbins model is 
close, but the Owens-Gibbs model would not be appropriate.  In the later part of the 
month the Owens-Gibbs model is significantly better, and is the one selected by our 
system. All models roughly agree for the dates around the middle of the month, which 
happen to have intermediate flow conditions. 



Figure 6. Results from the workflow with reaeration correction by three different models, 
each optimal at different flow conditions (smaller symbols).  The workflow system 
automatically selects the models (larger red circles) based on flow conditions. 

 

Figure 7. All workflow data products have metadata (left), and can be queried by their 
metadata properties (right). 

 
The results demonstrate immediate scientific relevance, with the different 

reaeration models producing a significant divergence in the estimates (roughly 30-
35% differences) for the highest and lowest flows.   

Another important contribution of our work is the ability of our provenance-aware 
system to associate metadata with any analytic data products, so it can be 
meaningfully queried and interpreted.  Figure 7 shows the metadata for one of the 
metabolism datasets that resulted from workflow execution on the left.  On the right it 
shows an example of a query over the provenance of the results.  The query retrieves 



all data products that were obtained with workflows that used the ODM model as a 
component and were metabolism data. 

7   Related Work  

Although there are many tools for scientific data preparation and integration, 
Karma provides a unique approach that learns from user-provided examples.  Many 
scientists still use spreadsheets for these tasks, and Karma retains that paradigm and 
adds to it novel capabilities for capturing metadata.  There has been recent related 
work on integrating large data sets using a spreadsheet paradigm in a project called 
Google Fusion Tables [Gonzalez et al. 2010; Gonzalez et al. 2010]. In this effort they 
developed an online service that allows users to integrate large datasets, annotate and 
collaborate on the data, and visualize the integrated results. The focus of the work is 
primarily on the scalability and visualization of the integrated data instead of on the 
problems of extracting, modeling, cleaning, and integrating the data. The ideas in 
Google Fusion Tables are relevant to Karma and would apply directly to deal with the 
problems of scaling up to large datasets and visualizing the integrated results.  In 
contrast, Karma is able to generate valuable metadata for daily datasets that it exports 
together with the integrated data.  This is a novel capability in a spreadsheet paradigm 
for data manipulation.   

Scientific workflow systems generate provenance of new data products (see 
[Taylor et al 2007] for an overview), many using the community-developed Open 
Provenance Model (http://www.openprovenance.org).  However, other systems focus 
on provenance concerning execution details, such as the specific invocations of the 
components and the execution times and other details.  Wings is the only workflow 
system that uses semantic constraints and rules to generate metadata, as well as to 
represent abstract steps as classes of components. 

8   Conclusions  

We have presented two integrated complementary systems that create, propagate, 
and use metadata in different stages of scientific data analysis processes.  They are 
provenance-aware systems that capture metadata about: 1) the origins of raw data, 2) 
the types and relationships across datasets, 3) the statistical properties of datasets, and 
4) the processes applied during data analysis.  Our approach makes the management 
of metadata more efficient for scientists, and at the same time the metadata captured 
reduces the amount of manual work by using the metadata to dynamically select 
models, set up their parameters, and generate provenance metadata.  These 
capabilities are crucial in environmental sciences, where sensor networks report daily 
on datasets that cannot be analyzed manually in a timely manner.  We used our 
approach in an application for water metabolism analysis, showing significant 
improvements in accuracy as the system dynamically analyzes daily water quality 
data. 



We are currently setting up the system to produce water metabolism results in a 
timely manner as data comes in daily from sensors in the observation site.  We are 
also using the system to analyze data for the last five years, in order to produce more 
accurate historical models of the metabolism in the observation site.   

In future work, we want to use metadata to control the sensor collection and 
transmittal system.  By making the sensor system provenance aware and integrating it 
with the data preparation and processing systems that we already have, we can have a 
feedback loop to guide the sensors to produce the data that is most useful for 
scientists.   
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