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Abstract

Optimizing queries to heterogeneous, distributed multidatabases is an important
problem. Due to the query complexity and the heterogeneity of databases, it is dif-
ficult for conventional optimization approaches to solve the problem satisfactorily.
Semantic Query Optimization (SQO) can complement conventional approaches to
overcome the heterogeneity and considerably reduce redundant data transmission.
SQO optimizers use rules about data regularities to yield significant cost reduc-
tion. However, hand coding useful rules for SQO is impracticable. This dissertation
presents a machine learning approach to this knowledge bottleneck problem.

Unlike search control rules or classification rules studied extensively in machine
learning, two roughly correlated measures must be maximized in the learning of high
utility rules for SQO. The first measure is the effectiveness. Effective rules must
be applicable in many different queries and yield high cost reduction. The second
measure is the robustness against database changes. That is, they must remain valid
regardless of database changes. This dissertation presents a new inductive learning
approach to learning effective and robust rules. The learning approach considers
both applicability and cost-reduction in rule induction to learn effective rules. The
learned rules are robust because the learner is able to guide the learning for robust
rules with an approach to estimating the probabilities of database changes.

To evaluate the utility of the learning approach, this dissertation also describes
an extended SQO approach for query plans that retrieve data from heterogeneous
multidatabases. The experimental results show that the learned rules produce sig-
nificant savings while being robust against database changes. The learning and
optimization approaches provide a complete solution for multidatabase information
systems to effectively optimize queries using SQO that does not require an expensive

coding effort to produce useful rules.
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Chapter 1

Introduction

Query optimization is important for information systems. An effective query opti-
mizer can automatically search for efficient procedures to retrieve data, which allows
us to query an information system without the need to understand its internal mech-
anism. Query optimization is increasingly important in the 1990s and, according to
a report on the trends of database research [Silberschatz et al., 1996], it will be
even more important in the twenty-first century due to the increasing complexity of
queries and the heterogeneity of information sources. However, it is difficult for con-
ventional query optimization techniques to solve all the problems for the next genera-
tion information systems. Semantic query optimization (SQO) [Hammer and Zdonik,
1980, King, 1981, Siegel, 1988, Shekhar et al., 1988, Shenoy and Ozsoyoglu, 1989,
Yu and Sun, 1989, Chakravarthy et al., 1990, Sun and Yu, 1994] is a promising query
optimization technique that can complement conventional techniques to overcome
the heterogeneity and considerably reduce query execution cost. The essential idea
of semantic query optimization is to use semantic rules about data, such as all Cali-
fornia seaports have railroad access, to reformulate a query into a more efficient but

semantically equivalent query. Given this rule, suppose we have a query

Query: Find all California seaports with railroad access and 2,000,000

ft2 of storage space.
The system can reformulate the query into a new query

Query (optimized): Find all California seaports with 2,000,000 f¢* of

storage space.



This optimized query is equivalent to the original query, because from the given
rule there is no need to check the railroad access of seaports in California and the
optimized query will still return the same answer. Executing the optimized query is
less expensive than executing the original query because the system saves the time
for the redundant comparisons.

Though semantic query optimization is an effective and promising technique, it
requires sufficient semantic knowledge to yield high cost reduction. Previous work
in SQO, such as [King, 1981}, assume that the optimizer can use semantic integrity
constraints given by users for the optimization. Semantic integrity constraints ex-
press rules that must be followed by the data in any state of a database. Examples
of semantic integrity constraints for a hospital database are the age of a patient must
be a nonnegative number smaller than 150, or only female patients can be pregnant.
Semantic integrity constraints are useful to guarantee the correct use of a database
system, but they do not necessarily reflect the data distributions that affect query
execution cost. Also, because users usually already possess some knowledge about
the application domains of databases, it is unlikely for them to issue a query where
semantic integrity constraints can be applied in query optimization (e.g., it is un-
likely for any one to issue a query to a database for the gender of pregnant patients).
On the other hand, it is difficult to encode semantic knowledge that both reflects
data distributions and matches query patterns. This knowledge bottleneck problem is
one of the reasons why semantic query optimization is not applied widely in practice.

This dissertation presents a machine learning approach to this problem. To con-
strain the learning for high utility rules, two important issues must be addressed.
The first issue is that the learner needs to generate effective semantic rules. Effective
rules allow an SQO optimizer to achieve high cost reduction in query optimization.
The second issue is that the learner needs to generate robust rules. A rule is robust
against changes to the database if it remains consistent with the data after changes.
Inconsistent rules are not useful for SQO because using inconsistent rules the opti-
mizer may reformulate a query into a new query not equivalent to the original query
and cause the system to produce incorrect results. The learner must address both
issues to generate high utility rules. This dissertation investigates these issues and
presents an inductive learning approach to learning effective and robust rules. To

demonstrate the learning approach, the dissertation also describes a novel semantic



Q1: assets(?ship_class,?draft):-
ship_class(?ship_class,_, ?draft,_,"Y"),
ship(_,?ship_class,"Active",_, ),
?draft < 50.

Q1.1: assets(?ship._class,?draft):-
ship_class(?ship_class,_, ?draft,_,"Y"),
ship(_,?ship_class,_,_,_),

?draft < 50.

Q1.2: assets(?ship._class,?draft):-
ship_class(?ship_class,_, ?draft,_,"Y"),
?draft < 50.

Q1.3: assets(?ship._class,?draft):-
ship_class(?ship_class,_, ?draft,_,"Y"),
ship(_,?ship_class,"Active",_,?year-built),
?year-built > 1945,

?draft < 50.

Table 1.1: Equivalent queries of Q1 deduced from semantic knowledge

query optimization approach for information systems that integrate heterogeneous
databases. The experiments show that using the learned rules in query optimization
provides significant cost reduction

The remainder of this chapter describes the problem more precisely and presents
an outline of the solution. The next section will explain semantic query optimization

and discuss what kind of semantic rules are useful for semantic query optimization.

1.1 Semantic Query Optimization

The goal of semantic query optimization is to search for the more efficient semanti-
cally equivalent query of an input query using the given semantic knowledge. Two
queries are defined to be semantically equivalent if they return identical answers.
This section explains how semantic query optimization works using a concrete ex-
ample.

Consider the conjunctive query Q1 in Table 1.1. This query retrieves the ship
classes and the maximal draft of the ships in those classes which satisfy the following
conditions: the ships in the class are capable of carrying containers, their draft is
less than 50 feet, and there is at least one active ship in this class. Suppose further

that prior to receiving this input query, the optimizer possesses a set of semantic
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Rules:

Ri1.1: If the mazimum draft of a ship is less than 50, then its status is active.
ship_class(?class,_,?draft,_,_) A ship(_,?class,?status,_,_) A ?draft < 50
= ?status = "Active"

R1.2: If a ship class has container capability, then there must exist some ships that belong to

that ship class in the database.
ship_class(?class,_,_,_,"Y") = ship(_,?class,_,_,_)

R1.3: If a ship is active, then it is built after 1945.
ship(_,?class,_,"Active",?year-built) = ?year-built > 1945

Table 1.2: Applicable semantic rules for Q1

knowledge about the data. Based on the semantic knowledge, the optimizer will
propose applicable reformulations to optimize the input query. Possible reformu-
lations are inserting a new literal to the query, deleting a literal and refuting the
entire query (asserting that it will return an empty set). Proposing reformulations
involves locating applicable semantic rules from the set of given semantic knowl-
edge. A rule is considered applicable to a query if the antecedent part of the rule
is a logical consequence of the query literals. This can be determined by applying
SLD-refutation [Lloyd, 1987] to a target rule and the query. The applicable semantic
knowledge for this query is given in Table 1.2.

Once the antecedent of an applicable rule is unified, a set of variable substitutions
will be returned and used to substitute variables in the consequent of the rule. The
optimizer can proceed to delete a literal from the query if the consequent implies a
literal in the query, or insert the consequent as a new literal. Some of the reformu-
lated equivalent queries of Q1 are shown in Table 1.1. Q1.1 is reformulated from Q1
by applying R1.1. In this reformulation, the constraint on the status ‘ ‘Active’’
is deleted. This is an example of constraint elimination [King, 1981] reformulation.
From Q1.1 and R1.2, we can infer that the literal on a database relation ship is
implied by other literals in Q1.1 and thus is redundant. Therefore, it can be deleted
and the resulting query Q1.2 is still equivalent to Q1. This is an example of join
elimination [King, 1981] reformulation where the relational join from ship_class
to ship is eliminated. In addition to deletions, we may also add new constraints
to a query based on the semantic rules. For example, we can add ?year-built >

1945 to Q1 from R1.3 to yield another equivalent query Q1.3 of Q1. Adding new



constraints could be useful in many situations. One of them is when the added con-
straint is specified on an indexed attribute. The optimizer can refute a query, when
it infers that the query literals contradict a rule (or a chain of rules) and will not be
satisfiable by the data. Sometimes the optimizer can assert the answer directly from
semantic rules. In either case, there is no need to access the database to answer the
query and we could achieve close to 100 percent savings.

In semantic query optimization, when an applicable rule for eliminating a lit-
eral is located, the optimizer will not perform the elimination immediately like the
example described above, because another applicable rule may no longer be ap-
plicable without the presence of that literal in the query. To make sure that no
applicable rule, and hence no optimization opportunity, is missed, the optimizer can
propagate the results of rule applications and generate a closure of implications,
which includes all redundant literals that can be deleted from an input query and
all newly inserted literals. An example of such a closure is indicated by the literals
underlined in Q1.3. Researchers have developed several polynomial algorithms to
generate closures of implications [Shenoy and Ozsoyoglu, 1989, Yu and Sun, 1989,
Hsu and Knoblock, 1993b]. With the closures, the optimizer can search for the least
expensive equivalent query by identifying an optimal combination of insertions and
deletions from the closure. In our example, since the equivalent query Q1.2 does not
involve access to the large ship relation and thus is the least expensive query based
on the applicable rules, the optimizer will return it as the output and send it to
the query processor to retrieve data. Since an SQO optimizer can use its knowledge
about the content of an information source, the search space of equivalent queries in
SQO is much larger than its counterpart in conventional syntactic query optimiza-
tion. For this reason, it can detect more optimization opportunities and provide
higher cost reduction.

A key advantage of semantic query optimization is that it can be easily applied
in information mediators [Wiederhold, 1992, Arens et al., 1993, Knoblock et al.,
1994, Levy et al., 1995, Hammer et al., 1995, Arens et al, 1996] that integrate
heterogeneous information sources. Query processing in an information mediator
can be briefly summarized as follows. An information mediator possesses a shared,
global model that describes a set of integrated information sources. To allow the

mediator to retrieve data, each information source is wrapped by a component that



translates between the language used by the source and the language used by the
mediator. When the information mediator receives a query, it will decompose the
query into a set of subqueries expressed in the global model to retrieve and combine
data from individual information sources. The wrappers of information sources will
translate the subqueries into the corresponding query language before the subqueries
are executed. Finally, the information mediator will combine retrieved data and
present the results to the user.

Semantic query optimization is especially appropriate for information mediators
because it reformulates a query into a new query expressed in the same language,
rather than optimizing how a query is executed. As a result, we can use it to perform
global optimization on the subqueries before they are sent to individual information
sources and overcome the heterogeneity. Meanwhile, existing query optimizers for
information sources can still be used to perform local optimization. Semantic query
optimization also supports the extensibility of heterogeneous information systems.
Since it is independent on how individual sources execute a query, when a new in-
formation source is integrated to the information mediator, the SQO optimizer can
still be used without change to its code. Chapter 4 of this dissertation describes an
extended SQO approach to the query optimization in heterogeneous information sys-
tems. An implementation of this approach is used in the experiment to demonstrate

the effectiveness of our learning approach.

1.2 High Utility Semantic Knowledge for SQO

Not all semantic rules are useful for semantic query optimization. The first, and
basic criterion of a useful semantic rule is that it must be consistent with the given
database, otherwise, the optimized query might return incorrect answers. Another
basic criterion is operational, that is, a semantic rule must be in the form ready
to be used. For all existing semantic query optimizers, operational rules must be
expressed in Horn-clauses. We make a distinction between two types of Horn-clause
rules. The first type, referred to as a range rule, contains rules whose consequent is a
built-in literal, such as 7x > 3. For instance, R1.1 in Table 1.2 is a range rule. The
second type consists of relational rules, whose consequent is a literal on a database

relation. R1.2 in Table 1.2 is an example of relational rules. Range rules are used



to derive redundant literals or introduce cost-reducing literals, and relational rules
are useful for detecting redundant retrievals and joins of database relations. Since
relational joins are expensive in query execution and relational rules allow an SQO
optimizer to detect redundant joins, it is important to use relational rules in the
optimization.

We note that previous work in SQO cannot apply general relational rules in
the optimization [Hammer and Zdonik, 1980, King, 1981, Siegel, 1988, Shekhar et
al., 1988, Shenoy and Ozsoyoglu, 1989, Yu and Sun, 1989, Chakravarthy et al.,
1990, Sun and Yu, 1994]. To detect redundant joins, they use referential integrity
constraints [Ullman, 1988], a restrictive form of relational rules that allow only one
literal as the antecedent. One of the new features of the SQO approach presented in
Chapter 4 is that it can apply relational rules. To support this feature and achieve
high cost reduction, it is important that the learner can learn relational rules.

Consistency and operationality, however, are not sufficient to guide the design
of a learning approach since the number of consistent and operational Horn-clause

rules that can be derived from a database is enormous. In addition , we need to

:
analyze other characteristics of high utility semantic rules. Generally speaking, high
utility rules for semantic query optimization must be effective in producing high
savings for a wide range of queries, while require a minimal cost to be used.

The cost to use semantic rules includes the storage space for the rules, the com-
putation time to match and apply the rules during the optimization, and the cost
to maintain inconsistent rules in the presence of database changes. If a learning ap-
proach can always learn invariant semantic rules that are consistent with all possible
database states regardless of how a database changes, then the cost of maintaining
inconsistent rules can be eliminated. However, it is prohibitive to guarantee that
all the learned rules are invariants, because it is impossible for the learner to verify
whether a rule is invariant without complete knowledge about the database ap-
plication domains. Also, invariant rules might not produce high savings in query
optimization. Therefore, a learning approach must address the issue of minimizing
the maintenance cost in the presence of database changes.

There are several possible approaches to this issue. As the system detects an
inconsistent rule after data modification transactions, it can delete the rule or repair

the rule. Deleting inconsistent rules is simple and efficient, however, if the learned



rules are not robust against database changes, after a few changes, most of rules will
become inconsistent and the remaining rules may not be sufficient to support the
optimizer. As a result, the system will have to re-learn semantic rules frequently and
incur an expensive cost. Conversely, the system can choose to repair an inconsistent
rule. However, repairing rules is not trivial. In some applications, the databases
are rarely modified and an additional rule repairing system merely increases the
complexity and the size of an information system.

An alternative approach to dealing with the issue of database changes is to learn
robust semantic rules. A semantic rule is robust if it is likely to remain consistent in
new database states after database changes. An invariant semantic rule is extremely
robust but it is prohibitive to learn invariant rules, so it is a more practical goal to
learn robust rules for a learning approach.

A set of semantic rules is extremely effective if, for any query, it allows the
optimizer to reformulate the query into the optimal equivalent query. Intuitively, an
optimal equivalent query is the one that returns the same answer as a given query
and can be executed with the lowest possible cost. However, if we take database
changes into account, an optimal equivalent query in one database state might not be
equivalent to a given query in another database state, especially when the semantic
rules used to infer the equivalent queries are not invariant. Therefore, a set of
effective rules might not be robust. Similarly, we can see that a robust rule might
not be effective. The learner must balance these two factors — effectiveness and

robustness — to maximize the net utility of learning.

1.3 Learning Effective and Robust Rules

In real-world applications, database usage can be modeled as a stochastic sequence of
queries and data modification transactions over time. The distribution and density
of the sequence may depend on applications. A general solution should not assume
any particular distribution or density of queries and transactions. The goal of this
research is to develop a general learning approach that maximizes the net utility of
semantic rules throughout the life span of a information system. To achieve this
goal, I have developed an approach to the estimation of the robustness of semantic

rules [Hsu and Knoblock, 1995]. This estimation approach allows the learner to



determine the degree of the robustness of a semantic rule and use the results to
guide the search for robust rules. This estimation approach will be described in
detail in Chapter 2.

Robustness is different from predictive accuracyin rule induction (e.g., [Michalski,
1983, Haussler, 1988, Clark and Niblett, 1989, Quinlan, 1990, Muggleton and Feng,
1990, Clark and Boswell, 1991, Pazzani and Kibler, 1992, Quinlan, 1993, Lavrac
and Dzeroski, 1994]) which mainly concerns data insertions. In contrast, database
changes in our learning problem includes updates or deletions. Under the closed-
world assumption [Lloyd, 1987], they have the same semantic effect as to assert
that the old data are now false and cause the learned rules to become inconsistent.
Chapter 2 will compare the difference between robustness and predictive accuracy
in detail.

The estimation approach is integrated into the general learning approach to the
acquisition of effective and robust semantic rules. The organization of this learning
approach is illustrated in Figure 1.1. This learning approach has two components:
an inductive learning component and a pruning component. The system is triggered
to learn a new set of rules when the query processor encounters an expensive query
that can not be satisfactorily optimized with existing rules. Given such an expen-
sive query, the inductive learning component inductively forms an alternative query
from the data. Ideally, the resulting alternative query is the optimal equivalent
query in the given database state. Based on the alternative query, the learner can
proceed to derive a set of semantic rules to allow the optimizer to optimize the given
query into the alternative query. The inductive learning component uses knowledge
about query execution cost to bias the induction so that the learned alternative
query can be evaluated with a minimum cost that is close to the optimal. Another
important feature of this inductive learning component is that it can form an al-
ternative query with relational joins from relational data [Hsu and Knoblock, 1994,
Hsu and Knoblock, 1996b]. This feature allows the learner to generate relational
rules for the optimizer to detect redundant relational joins.

The semantic rules derived from the alternative query may not be robust and
could be overly-specific to the given query. To address this problem, the learner uses
a rule pruner [Hsu and Knoblock, 1996a) to prune the literals in the derived rules

to increase their applicability to a wide range of queries. When pruning for robust
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Figure 1.1: Organization of the learning approach for SQO

rules, the learner uses the robustness estimation approach to guide the pruning so
that the resulting rules are robust against database changes. This way, the learner

will be able to learn effective and robust rules for semantic query optimization.

1.4 Closely Related Work

Previously, three approaches to automating the knowledge acquisition for semantic
query optimization were proposed in [Siegel, 1988], [Shekhar et al., 1993] and [Yu
and Sun, 1989]. The first approach is a query-driven approach due to [Siegel, 1988,
Siegel, 1989]. Siegel’s system learns simple rules, a limited form of rules that allows
exactly one literal on each side of implication. His system uses a set of predefined
heuristics combined with example queries to guide the learning for effective rules.
The heuristics are identical to those proposed by [King, 1981] to guide semantic

query optimization. An example of such a heuristic is as follows:

If a selection condition on attribute A is implied by another selection
condition on attribute B and A is not an indexed attribute, then the

selection on A can be removed from the query.

This heuristic is called the selection reduction heuristic. There are seven such heuris-
tics. Based on this heuristic, when his system receives an input query, it checks
whether there is a selection on an attribute A which is not indexed. If such an A
exists, then the heuristic will propose deriving a rule so that A is implied by another

selection condition on attribute B in the query and his system will construct a rule
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Pet r ol eun 1230 300 0

Busi nessType

NonPet r ol eun 356 30 523
Nat ur al Gas RefinedQ | G hers
Car goType

Table 1.3: Data-distribution grid

from the data. In this way, suppose the system receives a query with n selection
conditions and none of them are on indexed attributes. The system will propose to
learn n? rules from this heuristic alone. In addition, this approach does not consider
the robustness of rules in learning. The fundamental limitation of this approach is
that the heuristics depend only on the query specification but do not take properties
of data into account, and thus may miss learning many high utility rules.

Shekhar et al. develop a data-driven approach to the learning problem of seman-
tic query optimization [Shekhar et al., 1993]. Their system is based on an assumption
that useful semantic rules can be derived from the nonuniform distributions of at-
tribute values. To detect nonuniform data distributions, their system constructs a
set of data distribution grids, such as the one appears in Table 1.3, adopted from
[Shekhar et al., 1993]. The numbers in the cells of a grid are the tuples satisfying
the conditions specified on the coordinates. For instance, the second cell on the first
row in Table 1.3 shows that the number of tuples that satisfies BusinessType =
Petroleum and CargoType = Refined0il is 300. From the grid, the system gener-

ates two semantic rules as follows:
(BusinessType = Petroleum) = (CargoType € {NaturalGas, Refined0il})
(BusinessType = NonPetroleum) = (CargoType € {NaturalGas, Refined0il, Others})

It is obvious that given a database a combinatorial number of grids can be con-
structed to generate rules, and many issues need to be addressed to constrain the
number of grids. Their solution, however, is to require users to specify relevant
attributes, conditions and join paths as input to build the grids. The require-
ment creates another knowledge bottleneck problem for users because in real-world
databases, there are many attributes, join paths and dynamic query patterns to
be considered. It might takes significant effort to specify the required information

for a large database. The performance of the generated rules will be sensitive to
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the quality of the given information from users. As a result, their approach is not
practical. Moreover, data distribution is just one of many factors that may affect
the effectiveness of rules. Again, the issue of database change is totally neglected in
this approach. In brief, this approach requires careful hand-tailoring and does not
address important issues of the learning problem.

The knowledge acquisition approach presented in [Yu and Sun, 1989] generates
semantic rules from two equivalent or subsumable queries, where the answer of one
query is a subset of the others. Unlike our approach, they do not describe any
systematic approach to generating two equivalent queries. Therefore, the system
must identify equivalent or subsumable queries from input queries to generate rules.
This identification process could be expensive but futile, because the system needs
to cache the answers of all queries, while the system may end up generating rules
from two expensive queries and the learned rules are not useful in cost reduction. In
addition to a rule generation approach, [Yu and Sun, 1989] also presents an approach
to removing logically redundant rules. That approach could be useful to maintain
the number of rules and partly address the utility problem. Similar to the other two

approaches, they do not provide any solution to deal with database changes.

1.5 Summary of Contributions

This research will provide a general solution to the problem of learning for SQO. This
research also addresses many important issues of autonomous learning in dynamic
real-world environments. These issues include learning for both effectiveness and
robustness, their interactions, and the probabilistic estimation of robustness.

The contributions are summarized as follows.

e This dissertation defines the robustness of knowledge, a new measure of
machine-learned knowledge from information sources that change. The
definition leads to an approach to estimating the robustness of Horn-
clause rules in a relational database. This new measure sheds new light
on applying machine learning to other database and information sys-
tem problems, because it allows a learner to deal with changes to the

databases.

12



e This dissertation presents a general learning approach to the knowledge
acquisition problem of semantic query optimization. This approach ad-
dresses both the effectiveness and robustness issues of the learning prob-
lem. Another important feature of this learning approach is that it can
learn relational rules that allow an optimizer to eliminate expensive re-
lational joins in a query.

e This dissertation describes an extended semantic query optimization ap-
proach for query plans of heterogeneous multidatabase systems. Com-
pared to previous work in semantic query optimization, this query opti-
mization approach is more flexible because it can optimize a wider range
of queries and apply a larger class of Horn-clause rules to detect more
optimization opportunities.

e This dissertation provides an implementation of the resulting learning
and query optimization approaches, “BASIL in PESTO,” as a part of SIMS,
an intelligent information mediator [Arens et al., 1993, Knoblock et al.,
1994, Arens et al., 1996, and reports the experimental results using the
implementation. The results show that the learned rules produce signif-
icant cost reduction and outperform hand-coded rules. The results also
show that the system provides accurate robustness estimation and thus
the learning approach can maximize the net utility of learning through-

out the life span of an information system.

1.6 Organization of the Dissertation

Throughout this dissertation, I have tried to adopt the standard terminology in our
discussion. However, the topics of this dissertation are related to both databases
and artificial intelligence, and some terms in these two fields may have different
meanings, so Appendix A explains and defines informally the terminology used in
this dissertation.

The remainder of this dissertation is organized as follows. Chapter 2 discusses
the robustness of knowledge in a general context of machine learning applications

in databases and concludes with a formal definition of robustness and an estimation
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approach. Chapter 3 presents the inductive learning approach for high utility seman-
tic rules. This chapter describes how inductive learning for effective rules and rule
pruning guided by the robustness estimation can be integrated to learn high utility
rules for SQO. Chapter 4 presents a novel approach to the query optimization in a
heterogeneous multidatabase system. Chapter 5 describes the experiments on the
performance of the learning system BASIL and the query plan optimizer PESTO, the
implementation of the learning and optimization approaches. This chapter presents
the experimental results, including the performance statistics on using learned rules
in PESTO, the robustness of learned rules, and the efficiency of the learner BASIL.
The results confirm our assumption about effectiveness and robustness, and show
that the learned rules are both effective and robust. Chapter 6 reviews the contri-

butions and describes some future work.
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Chapter 2

Robustness of Knowledge

Many applications of machine learning and data mining [Piatetsky-Shapiro and
Frawley, 1991, Fayyad et al., 1996] such as learning for semantic query optimiza-
tion require the knowledge to be consistent with data. However, databases usually
change over time and make machine-learned knowledge inconsistent with data. Use-
ful knowledge should be robust against database changes so that it is unlikely to
become inconsistent after database changes. This chapter defines this notion of

robustness, and describes how robustness can be estimated.

2.1 Consistency of Rules and Database Changes

Databases are evolving entities. Knowledge discovered from one database state may
become invalid or inconsistent with a new database state. Many applications require
discovered knowledge to be consistent with the data. Examples are the problem
of learning for semantic query optimization, learning integrated domain models of
heterogeneous databases, knowledge discovery for decision support, etc. However,
most approaches to these problems assume static databases, while in practice, many
databases are dynamic, that is, they change frequently. It is important that dis-
covered knowledge is robust against data changes in the sense that the knowledge
remains valid or consistent after databases are modified.

This notion of robustness can be defined as the probability that the database
is in a state consistent with discovered knowledge. This probability is different
from predictive accuracy, which is widely used in learning classification knowledge,

because predictive accuracy measures the probability that knowledge is consistent
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Schema:
ship_class(class name,ship type,max draft,length,container cap),
ship(ship name,ship_class,status,fleet,year built).
geoloc (name, glc_cd,country,latitude, longitude) s
seaport (name, glc_code,storage,rail,road,anch off shore),
wharf (wharf id,glc_code,depth,length,crane qty).

Rules:
R2.1: ;The latitude of a Maltese geographic location is greater than or equal to 35.89.
geoloc(_,_,?country,?latitude, ) A ?country = ‘‘Malta’’

= ?latitude > 35.89
R2.2: ;All Maltese geographic locations are seaports.
geoloc(_,7glc_cd,?country,_,_) A Pcountry = ‘‘Malta’’
= seaport(_,?glccd,_,_,_,-)
R2.3: ;AU ships built in 1981 belong to either < ‘MSC’’ fleet or ¢ ‘MSC Lease’’ fleet.
ship(_,_,_,7R133,7R132) A ?7R132 = 1981
= member (?R133,[“‘MSC’’, ¢ ‘MSC LEASE’’])
R2.4: ;If the storage space of a seaport is greater than 200,000 tons, then its geographical
;s location code is one of the four codes.
seaport(_,7R213,7R212,_,_,.) A 7R212 < 200000
= member (?R213, [ “APFD’’, ¢ ‘ADLS’’, ¢ ‘WMY2’’, ‘‘NPTU’’])

Table 2.1: Example rules learned from a database

with randomly selected unseen data instead of with an entire database state. This
difference is significant in databases that are interpreted using the closed-world as-
sumption(CWA). For a Horn-clause rule ' « A, predictive accuracy is usually
defined as the conditional probability Pr(C|A) given a randomly chosen data in-
stance [Cohen, 1993, Cohen, 1995b, Cussens, 1993, Furnkranz and Widmer, 1994,
Lavra¢ and Dzeroski, 1994]. In other words, it concerns the probability that the rule
is valid with regard to a newly inserted data. However, databases also change by
updates and deletions, and in a closed-world database they may affect the validity
of a rule too. Consider the rule R2.2 in Table 2.1 and the database fragment in
Table 2.2. R2.2 will become inconsistent if we delete the seaport instance labeled
with a “ *” in Table 2.2, because the value 8004 for variable ?glc_cd that satisfies
the antecedent of R2.2 will no longer satisfy the consequent of R2.2. To satisty the
consequent of R2.2 requires that there is a seaport instance with its glc_cd value

8004, according to the closed-world assumption.
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geoloc("Safaqis", 8001, Tunisia, ...) seaport("Marsaxlokk" 8003 ...)
geoloc("Valletta", 8002, Malta, L+ seaport("Grand Harbor" 8002 ...)
geoloc("Marsaxlokk", 8003, Malta, L+ seaport ("Marsa" 8005 ...)
geoloc("San Pawl", 8004, Malta, L+ seaport ('St Pauls Bay" 8004 ...)*
geoloc("Marsalforn", 8005, Malta, L+ seaport("Catania" 8016 ...)
geoloc("Abano", 8006, Italy, L)) seaport("Palermo" 8012 ...)
geoloc("Torino", 8007, Italy, ...) seaport ("Traparri" 8015 ...)
D

geoloc("Venezia", 8008, Italy, L)) seaport ("AbuKamash" 8017 ..

Table 2.2: A database fragment

Closed-world databases are widely used partly because of the limitation of the
representation systems, but mostly because of the characteristics of application do-
mains. Instead of representing a static state of past experience, an instance of closed-
world data usually represents a dynamic state in the world, such as an instance of
employee information in a personnel database. Therefore, closed-world data tend to
be dynamic, and it is important to handle dynamic and closed-world data when we
apply learning and knowledge discovery approaches to database applications.

This chapter defines this notion of robustness, and describes how robustness
can be estimated and applied in knowledge discovery systems. The key idea of our
estimation approach is that it estimates the probabilities of data changes, rather than
the number of possible database states, which is intractably large for estimation. The
approach decomposes data changing transactions and estimates their probabilities
using the Laplace law of succession. This law is simple and can bring to bear
information such as database schemas and transaction logs for higher accuracy. Our
experiments demonstrate the feasibility of our robustness estimation approach. The
estimation approach can be used by a rule generation or maintenance system to
guide the search for more robust rules so that the rules can be used with a minimal
maintenance effort.

This chapter is organized as follows. The next section defines robustness. Sec-
tion 2.3 describes how to estimate the robustness of a rule. Section 2.4 discusses the
implementation issues of the robustness estimation. Section 2.5 demonstrates em-
pirically the feasibility of our estimation approach. Section 2.6 compares robustness
with other Al uncertainty measures. Finally, Section 2.7 summarizes contributions

and potential applications of the robustness estimation.
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2.2 Definitions of Robustness

This section first defines formally our notion of robustness. Intuitively, a rule is
robust against database changes if it is unlikely to become inconsistent after database
changes. This can be expressed as the probability that a database is in a state

consistent with a rule.

Definition 2.1 (Robustness for all states) Given a rule r, let D be the event
that a database is in a state that is consistent with r. The robustness of r is

Robusty(r) = Pr(D).

This probability can be estimated by the ratio between the number of all possible
database states and the number of database states consistent with a rule. That is,

# of database states consistent with r
# of all possible database states

Robust(r) =

There are two problems with this estimate. The first problem is that it treats all
database states as if they are equally probable. That is obviously not the case in
real-world databases. The other problem is that the number of possible database
states is intractably large, even for a small database. Alternatively, we can define
robustness from the observation that a rule becomes inconsistent when a transaction
results in a new state inconsistent with the rule. Therefore, the probability of certain
transactions largely determines the likelihood of database states, and the robustness
of a rule is simply the probability that such a transaction is not performed. In other
words, a rule is robust if the transactions that will invalidate the rule are unlikely

to be performed. This idea is formalized as follows.

Definition 2.2 (Robustness for accessible states) Given a rule r, and a data-
base in a state denoted as d, in which r is consistent. New database states are
accessible from d by performing transactions. Let t denote the event of performing a
transaction on d that results in new database states inconsistent with r. The robust-

ness of r in accessible states from the current state d is defined as Robust(r|d) =

Pr(~t|d) = 1 — Pr(t]d).

This definition of robustness is analogous in spirit to the notion of accessibility
and the possible worlds semantics in modal logic [Ramsay, 1988]. Definition 2.2 re-

tains our intuitive notion of robustness, but allows us to estimate robustness without
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counting the intractably large number of possible database states. If the only way to
change database states is by transactions, and all transactions are equally probable

to be performed, then the two definitions of robustness are equivalent.

Corollary 2.3 Given a rule r and a database in a database state denoted as d,
if  is consistent with d, and if new database states are accessible from d only by

performing transactions, and all transactions are equally probable, then
Robusty(r) = Robust(r|d)

Proof: This is because the set of possible database states is exactly the same as
the set of database states accessible from a current database state by transactions.

They can be reached with an equal probability. O

However, it is usually not the case in real-world databases that all transactions are
equally probable. The robustness of a rule could be different in different database
states. For example, suppose there are two database states dy and dy of a given
database. To reach a state inconsistent with r, we need to delete ten tuples in d;

and only one tuple in dy. In this case, it is reasonable to have
Robust(r|dy) > Robust(r|dy)

because it is less likely that all ten tuples are deleted. Definition 2.1 implies that
robustness is a constant while Definition 2.2 captures the dynamic aspect of robust-

ness.

2.3 Estimating Robustness

We first review a useful estimate for the probability of the outcomes of a repeatable
random experiment. It will be used to estimate the probability of transactions and

the robustness of rules.

Laplace Law of Succession Given a repeatable experiment with an outcome of
one of any of k classes. Suppose we have conducted this experiment n times, r of

which have resulted in some outcome C, in which we are interested. The probability

r+1
n+k’

that the outcome of the next experiment will be C' can be estimated as
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A detailed description and a proof of the Laplace law can be found in [Howson
and Urbach, 1988]. The Laplace law applies to any repeatable experiments (e.g.,
tossing a coin). The Laplace law is a special case of a modified estimate called
m-Probability [Cestnik and Bratko, 1991]. A prior probability of outcomes can be

brought to bear in this more general estimate.

m-Probability Let r, n, and C be as in the description of the Laplace law. Suppose
Pr(C) is known as the prior probability that the experiment has an outcome C, and m
is an adjusting constant that indicates our confidence in the prior probability Pr(C).

The probability that the outcome of the next experiment will be C can be estimated
r+m-Pr(C)

n-+m

as

The idea of m-Probability can be understood as a weighted average of known

relative frequency and prior probability:

r—l—m-Pr(C):( n )(i)—l-( m

n-+m n-+m n n-+m

) Pr(C)

where n and m are the weights. The Laplace law is a special case of the m-probability
estimate with Pr(C) = 1/k, and m = k. The prior probability used here is that k
outcomes are equally probable. The m-probability estimate has been used in many
machine learning systems for different purposes [Cestnik and Bratko, 1991, Lavraé¢
and Dzeroski, 1994]. Convincing results in handling noisy data and pruning decision
trees have been achieved. The advantage of the Laplace estimate is that it takes both
known relative frequency and prior probability into account. This feature allows us
to include information given by a DBMS, such as database schema, transaction logs,
expected size of relations, expected distribution and range of attribute values, as
prior probabilities in our robustness estimation.

Our problem at hand is to estimate the robustness of a rule based on the proba-
bility of transactions that may invalidate the rule. This problem can be decomposed
into the problem of deriving a set of invalidating transactions and estimating the
probability of those transactions. We illustrate our estimation approach with an ex-
ample. Consider R2.1 in Table 2.3, which also lists three mutually exclusive classes
of transactions that will invalidate R2.1. These classes of transactions cover all
possible transactions that will invalidate R2.1. Since T1, T2, and T3 are mutually
exclusive, we have Pr(T1V T2 V T3) = Pr(T1) 4+ Pr(T2) 4+ Pr(T3). The probability
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R2.1: 7latitude > 35.89 <
geoloc(_,_,7country,?latitude, ) A

?country = ‘‘Malta’’.
T1: One of the existing tuples of geoloc with its Zcountry = ‘‘Malta’’ is
updated such that its 7latitude < 35.89.
T2: A new tuple of geoloc with its 7country = ‘‘Malta’’ and ?latitude < 35.89

is inserted to the database.
T3: One of the existing tuples of geoloc with its ?latitude < 35.89 and its
?country # ‘‘Malta’’ is updated such that its ?country = ‘‘Malta’’.

Table 2.3: Transactions that invalidate R2.1

x1:
type of
transaction?

X2:
on which
relation?

x4:
on which
attribute?

x5:
what new
attribute value?

Figure 2.1: Bayesian network model of transactions

of these transactions, and thus the robustness of R2.1, can be estimated from the
probabilities of T1, T2, and T3.

We require that transaction classes be mutually exclusive so that no transaction
class covers another because for any two classes of transactions t, and ?,, if ¢, covers
ty, then Pr(t, V #,) = Pr(f,) and it is redundant to consider ¢;,. For example, a
transaction that deletes all geoloc tuples and then inserts tuples invalidating R2.1
does not need to be considered, because it is covered by T2 in Table 2.3.

Also, to estimate robustness efficiently, each class of transactions must be mini-
mal in the sense that no redundant conditions are specified. For example, a trans-
action similar to T1 that updates a tuple of geoloc with its 7country = "Malta"
such that its latitude < 35.89 and its longitude > 130.00 will invalidate R2.1.
However, the extra condition “longitude > 130.00” is not relevant to R2.1. With-
out this condition, the transaction will still result in a database state inconsistent
with R2.1. Thus that transaction is not minimal for our robustness estimation and

the extra condition does not need to be considered.
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We now demonstrate how Pr(T1) can be estimated only with the database schema
information, and how we can use the Laplace law of succession when transaction logs
and other prior knowledge are available. Since the probability of T1 is too complex
to be estimated directly, we have to decompose the transaction into more primitive
statements and estimate their local probabilities first. The decomposition is based on
a Bayesian network model of database transactions illustrated in Figure 2.1. Nodes
in the network represent the random variables involved in the transaction. An arc
from node z; to node x; indicates that z; is dependent on x;. For example, z; is
dependent on x; because the probability that a relation is selected for a transaction
is dependent on whether the transaction is an update, deletion or insertion. That
is, some relations tend to have new tuples inserted, and some are more likely to
be updated. x4 is dependent on x5, because in each relation, some attributes are
more likely to be updated. Consider the relations involved in our example rules
(see Table 2.1), the ship relation is more likely to be updated than other relations.
Among its attributes, status and fleet are more likely to be changed than other
attributes. Nodes x5 and x4 are independent because, in general, which tuple is likely
to be selected is independent of the likelihood of which attribute will be changed.

The probability of a transaction can be estimated as the joint probability of all
variables Pr(z1 A+ - -Axs). When the variables are instantiated for T1, their semantics
are as follows:

e 11: a tuple is updated.

e 1, a tuple of geoloc is updated.

e 15 a tuple of geoloc, whose Pcountry = "Malta',is updated.

o 14 a tuple of geoloc whose ?latitude is updated.

o 15 a tuple of geoloc whose ?latitude is updated to a new value less

than 35.89.

From the Bayesian network and the chain rule of probability, we can evaluate

the joint probability by a conjunction of conditional probabilities:
Pr(T1) = Pr(ays A o Aws Ay A as)
= Pr(x1) - Pr(aa]zy) - Pr(as|es A xq) - Pr(ag|eg A aq) - Pr(as|es A ag A aq)

We can then apply the Laplace law to estimate each local conditional probability.
This allows us to estimate the global probability of T1 efficiently. We will show how
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information available from a database can be used in estimation. When no infor-
mation is available, we apply the principle of indifference and treat all possibilities
as equally probable. We now describe our approach to estimating these conditional
probabilities.

o A tuple is updated:
t,+1

1+ 3

where t, is the number of previous updates and ¢ is the total number of previous

Pr(xy) =

transactions. Because there are three types of primitive transactions (insertion, dele-
tion, and update), when no information is available, we will assume that updating
a tuple is one of three possibilities (with ¢, = ¢ = 0). When a transaction log is
available, we can use the Laplace law to estimate this probability.

o A tuple of geoloc is updated, given that a tuple is updated:

Pr(ay]ay) = 7%7;20:)_0;_ !
where R is the number of relations in the database (this information is available
in the schema), and t, jeooc is the number of updates made to tuples of relation
geoloc. Similar to the estimation of Pr(z1), when no information is available, the
probability that the update is made on a tuple of any particular relation is one over
the number of relations in the database.

o A tuple of geoloc whose Tcountry = "Malta" is updated, given that a tuple
of geoloc is updated:

lyasz + 1
tugeoloe + G/ 13

where G is the size of relation geoloc, I 3 is the number of tuples in geoloc that

Pr(as|as A ay) =

satisfy ?country ="Malta", and t,,3 is the number of updates made on the tu-
ples in geoloc that satisty 7country ="Malta". The number of tuples that sat-
isfy a literal can be retrieved from the database. If this is too expensive for large
databases, we can use the estimation approaches used for conventional query opti-
mization [Piatetsky-Shapiro, 1984, Ullman, 1988] to estimate this number.

o The value of Latitude is updated, given that the tuple that is updated is a tuple

of geoloc with its 7country ="Malta":

tu,geoloc,latitude + 1
tu,geoloc + A

Pr(zq|as A ay) =
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where A is the number of attributes of geoloc, {, jeoioc,latitude 18 the number of updates
made on the latitude attribute of the geoloc relation. Here we have an example
of when domain-specific knowledge can be used in estimation. We can infer that
latitude is less likely to be updated than other attributes of geoloc from our
knowledge that it will be updated only if the database has stored incorrect data.

o The value of latitude is updated to a value less than 35.89, given that a tuple
of geoloc with its 7country ="Malta" is updated:

Pr(as|es A xo A aq)

0.5 no information available
0.398 with range information

Without any information, we assume that the attribute will be updated to any value
with uniform probability. The information about the distribution of attribute values
is useful in estimating how the attribute will be updated. In this case, we know that
the latitude is between 0 to 90, and the chance that a new value of latitude is less
than 35.89 should be 35.89/90 = 0.398. This information can be derived from the
data or provided by the users.

Assuming that the size of the relation geoloc is 616, ten of them with ?country
="Malta", without transaction log information, and from the example schema (see
Table 2.1), we have five relations and five attributes for the geoloc relation. There-

fore,
pry L L1011
3 5 616 5 2
Similarly, we can estimate Pr(T2) and Pr(T3). Suppose that Pr(T2) = 0.000265 and
Pr(T3) = 0.00002, then the robustness of the rule can be estimated as 1 —(0.000108+
0.000265 + 0.00002) = 0.999606.

The estimation accuracy of our approach may depend on available information,

= 0.000108

but even given only database schemas, our approach can still come up with some
estimates. This feature is important because not every real-world database system
keeps transaction log files, and those that do exist may be at different levels of gran-
ularity. It is also difficult to collect domain knowledge and encode it in a database
system. Nevertheless, the system must be capable of exploiting as much available

information as possible.
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9(7l‘) < /\ A A /\ B]' A /\ Ly,
1 <4< 1T 1 <45 <7 1<k <K

where A;’s and B;’s are database literals, Lr’s are built-in literals.

Transaction templates:

T1: Update a tuple of A; or B; covered by the rule so that a new 7z value
satisfies the antecedent but does not satisfy 6(7x).

T2: Insert a new tuple to a relation A; or B; so that the tuple satisfies all
the antecedents but not 0(7x).

T3: Update one tuple of a relation A; or B; not covered by the rule so that
the resulting tuple satisfies all the antecedents but not 0(7x).

Table 2.4: Templates of invalidating transactions for range rules

Deriving transactions that invalidate an arbitrary logic statement is not a trivial
problem. Fortunately, most knowledge discovery systems have strong restrictions on
the syntax of discovered knowledge. Hence, we can manually generalize the invali-
dating transactions into a small sets of transaction templates, as well as templates of
probability estimates for robustness estimation. The templates allow the system to
automatically estimate the robustness of knowledge. This section briefly describes
the derivation of those templates.

Recall that we have defined two classes of rules based on the type of their conse-
quents. If the consequent of a rule is a built-in literal, then the rule is a range rules
(e.g.,R2.1), otherwise, it is a relational rule with a database literal as its consequent,
(e.g., R2.2). In Table 2.3 there are three transactions that will invalidate R2.1. T1
covers transactions that update the attribute value used in the consequent, T2 covers
those that insert a new tuple inconsistent with the rule, and T3 covers updates on
the attribute values used in the antecedents. The invalidating transactions for all
range rules are covered by these three general classes of transactions. We generalize
them into a set of three transaction templates and express them in plain English in
Table 2.4. For a relational rule such as R2.2, the invalidating transactions are di-
vided into another five general classes different from those for range rules. Table 2.5
shows the transaction templates for relational rules. These two sets of templates are
sufficient for any Horn-clause rules on relational data. The complete templates are

presented in detail in Appendix B.
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C(7l‘) < /\ A A /\ B]' A /\ Ly,
1 <4< 1T 1 <4< J 1<k <K
where C(7z), A;’s and B;’s are database literals, [L;’s are built-in literals.

T1: Update an attribute of a tuple of A; or B; covered by the rule so that
the new value allows a new 7z value satisfies the antecedents but not the
consequent.

T2: Insert a new tuple to A; or B; so that the new tuple allows a new 7z value
satisfies the antecedents but not the consequent.

T3: Update an attribute of a tuple of A; or B; not covered by the rule so that
the new value allows a new 7z value satisfies the antecedents but not the
consequent.

T4: Update C.z of all C' tuples that share a certain C.x value that satisfies
the antecedents to a new value that does not satisfies the antecedents.

T5: Delete all (' tuples that share a certain C.x value that satisfies the
antecedents of the rule.

Table 2.5: Templates of invalidating transactions for relational rules

2.4 Templates for Estimating Robustness

From the transaction templates, we can derive the templates of the equations to com-
pute robustness estimation for each class of rules. The parameters of these equations
can be evaluated by accessing database schema or transaction log. Some parame-
ters can be evaluated and saved in advance (e.g., the size of a relation) to improve
efficiency. For rules with many antecedents, a general class of transactions may be
evaluated into a large number of mutually exclusive transactions whose probabilities
can be estimated separately. In those cases, our estimation templates will be instan-
tiated into a small number of approximate estimates. As a result, the complexity
of applying our templates for robustness estimation is always proportional to the
length of the rules.

For example, consider R2.1.1 shown in Table 2.6. This rule is a range rule
similar to R2.1 except that there is an additional literal on the variable ?longitude
as an antecedent. Table 2.6 also shows a general class of transactions that update
attribute values used in the antecedent. For R2.1, there is only one such attribute
value, and thus we only need a minimal transaction T3 to cover this general class
(see Table 2.3). However, for R2.1.1, since there are two attribute values, ?country
and ?longitude, involved in the antecedents, we have three cases for this class of

transactions: updating ?country (T3.1), updating ?longitude(T3.2), or updating
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R2.1.1: 7latitude > 35.89 <
geoloc(_,_,?country,?latitude,?longitude) A
?country = "Malta" A
?longitude > 130.00.
T3.1: One of the existing tuples of geoloc with its 7?latitude < 35.89 and its
?country # "Malta" is updated such that its ?country = "Malta'.
T3.2: One of the existing tuples of geoloc with its 7?latitude < 35.89 and its
?longitude ¥ 130.00 is updated such that its 7longitude > 130.00.
T3.3: One of the existing tuples of geoloc with its 7?latitude < 35.89 and its
?country # "Malta" and ?longitude % 130.00 is updated such that its
?country = "Malta" and ?longitude > 130.00.

Table 2.6: Three invalidating transactions of R2.1.1

both (T3.3), as shown in Table 2.6. In general, if there are N attribute values used
in the antecedents, there will be 2V — 1 cases need to be considered, although many
of the cases are extremely unlikely.

In our template, we ignore the cases that update more than one attribute value,
and consider the cases that update just one attribute value. For R2.1.1, we only
estimate the probability of T3.1 and T3.2, but not T3.3. Because the class of
transactions covered by T3.3 is the intersection of those covered by T3.1 and T3.2,

from set theory, we have
Pr(73.1vT3.2VT3.3)="Pr(T3.1)+ Pr(73.2) — Pr(73.3) < Pr(73.1) + Pr(73.2)

and the estimated probability will be slightly greater than the actual probability.
Therefore, the system will not underestimate the robustness and mislead the search
in discovery. This approximation applies to other situations that may require large

numbers of transactions to cover all possibilities.

2.5 Empirical Demonstration

We estimated the robustness of the sample rules on the database that were shown in
Table 2.1. This database stores information on a transportation logistic planning do-
main with twenty relations. Here, we extract a subset of the data with five relations
for our experiment. The database schema contains information about the number of
relations and attributes in this database, as well as ranges of some attribute values.

For instance, the range of year of ship is from 1900 to 1996. In addition, we also
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‘ Relation ‘ geoloc ‘ seaport ‘ wharf ‘ ship ‘ ship_class ‘ Total ‘

Size 616 16 18 142 25

Updates 0 1 1 10 1 13
Insertions 25 6 1 22 12 66
Deletions 0 2 1 10 6 19

Table 2.7: Database relation size and transaction log information

have a log file of data updates, insertions and deletions over this database. The
log file contains 98 transactions. The size of relations and the distribution of the
transactions on different relations are shown in Table 2.7.

Among the sample rules in Table 2.1, R2.1 seems to be the most robust because
it is about the range of latitude which is rarely changed. R2.2 is not as robust
because it is likely that the data about a geographical location in Malta that is not
a seaport may be inserted. R2.3 and R2.4 are not as robust as R2.1, either. For
R2.3, the fleet that a ship belongs does not have any necessary implication to the
year the ship was built, while R2.4 is specific because seaports with small storage
may not be limited to those four geographical locations.

Figure 2.2 shows the estimation results. We have two sets of results. The first
set shown in black columns is the results using only database schema information
in estimation. The second set shown in grey columns is the results using both the
database schema and the transaction log information. The estimated results match
the expected comparative robustness of the sample rules.

The absolute robustness value of each rules, though, looks high (more than 0.93).
This is because the probabilities of invalidating transactions are low since they are
estimated with regard to all possible transactions. In situations where a set of n
transactions is given and the task is to estimate the probability that a rule remains
consistent after the completion of the transactions, we can use the estimated robust-
ness of the rule p to estimate the probability as p”, assuming that the transactions
are probabilistically independent. Table 2.8 shows the estimated probabilities of con-
sistency of the four example rules after the completion of 50 transactions. That way,
the relative robustness values of the rules are normalized so that they are uniformly

distributed between 0 and 1.
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Figure 2.2: Estimated robustness of sample rules

The results show that transaction log information is useful in estimation. The
robustness of R2.2 is estimated lower than other rules without the log information
because the system estimated that it is not likely for a country with all its geo-
graphical locations as seaports. (See Table 2.1 for the contents of the rules.) When
the log information is considered, the system increases its estimation because the log
information shows that transactions on data about Malta are unlikely. For R2.3, the
log information shows that the fleet of ships may change and thus the system esti-
mated its robustness significantly lower than when no log information is considered.
A similar scenario appears in the case of R2.4. Lastly, R2.1 has a high estimated

robustness as expected regardless of whether the log information is used.

2.6 Related Uncertainty Measures

Robustness and predictive accuracy are closely related. For a Horn-clause rule
(' «— A, predictive accuracy is usually referred to as the conditional probability
Pr(C|A) given a randomly chosen data instance [Cussens, 1993, Furnkranz and

Widmer, 1994, Lavra¢ and Dzeroski, 1994, Cohen, 1993, Cohen, 1995b]. In other

words, it concerns the probability that the rule is valid with regard to a newly
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| | R1 | R2 | R3 | R4 |

Robustness | 0.9996 | 0.9482 | 0.9967 | 0.9847
(w/o log)
Prob. of 0.9802 | 0.0699 | 0.8476 | 0.4626
consistency
Robustness | 0.9924 | 0.9871 | 0.9683 | 0.9746
(w/o log)
Prob. of 0.6829 | 0.5225 | 0.1998 | 0.2763
consistency

Table 2.8: Robustness and probability of consistency and after 50 transactions

inserted data. This is not enough for dynamic closed-world databases where updates
and deletions may affect the validity of a rule, as we discussed earlier.

In addition to predictive accuracy, [Clark and Niblett, 1989] proposed using
significance in rule induction to measure the correlation between the antecedents
and consequent of a rule by computing the likelihood ratio of the data coverage
of a rule. Rough set theory [Pawlak, 1991] has been applied in many knowledge
discovery applications [Ziarko, 1995] and is useful for measuring whether a given set
of attributes is sufficient to represent a target concept. Like predictive accuracy,
however, the significance measure and the theory of rough sets are defined with
regard to data instances rather than database states, and thus do not address our
problem.

Reasoning about the consistency of beliefs and knowledge after changes to closed-
world relational data is an important research subject in nonmonotonic and uncer-
tain reasoning [Ginsberg, 1987, Shafer and Pearl, 1990]. Our emphasis on trans-
actions in our definition of robustness is analogous in spirit to the notion of ac-
cessibility in the possible worlds semantics of modal logic [Ramsay, 1988]. The
formalism proposed by [Bacchus, 1988],[Halpern, 1990], and [Bacchus et al., 1992,
Bacchus et al., 1993, Bacchus et al., 1994] for uncertain reasoning, in spite of the
different motivation, is quite similar to robustness. [Bacchus et al., 1992] defines the
degree of belief in a given logic sentence ¢ as the probability of the set of worlds where
@ is true. They further define this probability as the ratio between the number of

all possible worlds and worlds where ¢ is true. This is the same as Definition 2.1, if
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we consider a database as a model of “worlds.” [Bacchus et al., 1992] also surveys
early philosophical work on probability that discuss related uncertainty measures.

The main difference of our work on robustness and Bacchus et al.’s work on
degree of belief is in our assumption about the certainty of transactions. ! We assume
deterministic transactions and that the only change to the world is by transactions,
but we do not assume that the system is certain what transaction will be performed.
Therefore, we propose an estimation approach to assign the robustness of rules based
on the probability of transactions. Their work, in contrast, allows nondeterministic
transactions, but their system assumes that a transaction will be taken definitely and
tries to figure out the probabilities of different outcomes. Both views do not capture
all aspects of uncertainty but since database transactions are indeed deterministic,
our assumption is more appropriate for database applications.

The research work described in [Widmer and Kubat, 1993] and [Helmbold and
Long, 1994] attempts to solve the problem of learning drifting concepts from dynamic
environments where a target concept may gradually change over time. Their solution
is to incrementally modify a learned concept description to minimize its disagreement
with most recently observed examples. In particular, [Helmbold and Long, 1994]
shows that the error rate of a learned description is guaranteed to be smaller than a
constant if the number of recent examples that are taken into account is larger than
a polynomial of the error rate. The problem of learning semantic rules from changing
databases can be considered as learning drifting concepts. However, to apply their
results to the problem, the learner will need to take a set of recent database states to
achieve a low error rate. Database states could be very large and make it impractical
to take even a small number of them as input. Instead, since performing transactions
is the only way to generate new database states, we can use a transaction log to
inversely derive recent database states, and verify whether learned description is
consistent with them. Robustness estimation uses transaction logs to predict the
probability of inconsistency between learned knowledge and future database states.
Since transaction logs are considerably smaller than database states, robustness

estimation is more practical and appropriate for learning from large databases. It

!Transactions in general can be considered as actions that change world states and we will refer
to actions as transactions in the following discussion.
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seems that we can derive a similar bound on the number of transactions required to

guarantee a small error rate. This, however, would require further investigation.

2.7 Discussion

Robustness is an appropriate and practical measure for machine learning and knowl-
edge discovery from closed-world databases that change frequently over time. An ef-
ficient estimation approach for robustness enables effective knowledge discovery and
maintenance. This chapter has defined robustness as the complement of the prob-
ability of rule-invalidating transactions, and described an approach to estimating
robustness. We demonstrated empirically the feasibility of our robustness estimate
approach.

Our study of robustness will allow a learning system for semantic query opti-
mization to deal with the problem of database changes. The learner can apply the
robustness estimation approach to guide the learning and maintenance of seman-
tic rules. Based on this estimation approach, we have developed a rule pruning
approach which can help to prune antecedents of a machine-generated rule into a
highly robust and widely applicable rule. This approach estimates the robustness of
a partially pruned rule and searches for the pruning that yields robust rules. This
approach will be discussed in Section 3.4 of Chapter 3. We can also apply the ro-
bustness estimation approach to rule maintenance in a manner similar to our rule
pruning approach. When detecting an inconsistent rule, the rule maintainer may
propose and search for a set of rule repairing operators to repair the rule.

Robustness estimation can guide the search so that the repaired rule is more ro-
bust than the original one. As the learner collects more transaction log information,
robustness estimation may be increasingly accurate and eventually minimizes the
need of rule maintenance. Robustness estimation can also be applied to other Al
applications for information gathering and retrieval from heterogeneous, distributed
environment on the Internet. These applications require the system to extract a
compressed description (e.g. a temporary concept description) of data and the con-
sistency of the description with the database is important. Robustness can guide
the system to extract robust descriptions so that they can be used with a minimal

maintenance effort.
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Chapter 3

Learning for Semantic Query Optimization

This chapter presents our learning approach to the knowledge acquisition problem
for semantic query optimization. This approach is developed to learn operational se-
mantic rules that are effective in cost-reduction and robust against database changes.
The robustness estimation approach will be applied here to guide the learning for

robust rules.

3.1 Overview of the Learning Approach

Figure 3.1 illustrates the organization of an information system equipped with an
SQO optimizer and its learning system. The optimizer uses semantic rules stored
in a rule bank to optimize an input query, and then sends the optimized query to a
database management system (DBMS) to retrieve data. When the DBMS encoun-
ters an expensive input query, it triggers the learning system to learn a set of new
rules from the data, and saves them in the rule bank to optimize subsequent queries.
This way, the system will gradually collect sufficient rules for query optimization.
This model of learning is similar to that in LEX [Mitchell et al., 1983], which uses
example problems to trigger the learning of heuristics for solving mathematical in-
tegration.

Figure 3.2 illustrates a simplified scenario for learning semantic rules. The learn-
ing system consists of two components, an inductive learning component, and a
pruning component. An expensive query is given to the learner as the training
query to trigger the learning. Receiving a training query, the learner applies an

inductive learning algorithm to induce a low-cost alternative query equivalent to
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Figure 3.1: Structure of information system with SQO optimizer and learner

the training query. The pruning component then takes the training query and the
learned alternative query to derive a set of semantic rules. Previously, [Yu and
Sun, 1989] showed that semantic rules for SQO can be derived from two equiva-
lent queries. However, they do not show how to automatically generate equivalent
queries. Qur approach can automatically induce a low-cost equivalent query for an
expensive training query. The resulting rules will thus match query patterns and be
effective for SQO in optimizing expensive queries into low-cost equivalent queries.

In Figure 3.2, data instances (or tuples) are labeled as positive (+) if they satisfy
the training query and negative (=) otherwise. The learned alternative query must
cover all positive instances but no negative instances so that it will retrieve the same
data as the training query and thus is equivalent to the training query. Given a set
of data instances classified as positive or negative, the problem of inducing a descrip-
tion that covers all positive data instances but no negatives is known as supervised
inductive learning in machine learning [Shavlik and Dietterich, 1990]. Since a query
is a description of the data to be retrieved, inductive learning algorithms that learn
descriptions expressed in the query language can potentially be used in our approach.
In this example, the learner constructs an alternative query with a single condition
(A1 = ‘Z’) which covers the positive instance and excludes all negative instances.
This alternative is less expensive since it is simpler than the input query.

Most supervised inductive learning algorithms are designed for accurate clas-
sification of unseen data instances. In our problem, however, the learning algo-
rithm is also required to induce a low-cost description, that is, a low-cost alternative
query that can be evaluated by the DBMS efficiently. Previously, we have devel-

oped an inductive learning algorithm that learns low-cost queries from single-table

34



Example query:
(A2<0) A3 =2)

Al A2 A3 I nducti ve Description Formation

A 1 2 |~ __( Alternative query:
B 1 2 |- - Al=Z

z 0 2 |+

—

—_— —

Qperationalization (Al=Z2) O (A2<0)
(A1=2) O (A3=2)
(A2<0) [0 (A3=2) A1=2)

Rules to be Learned

(A2<0)[(A3=2) = (Al=2)

Y

Equivalent Queries

Figure 3.2: A simplified learning scenario

databases [Hsu and Knoblock, 1993a]. Section 3.2 will describe in detail a more ad-
vanced algorithm that learns conjunctive Datalog queries from relational databases.
This algorithm allows the learner to learn relational rules, a very important class
of rules for detecting redundant relational joins in the optimization. We can ex-
tend this algorithm further for databases with more advanced data models, such as
object-oriented and deductive databases.

The pruning component generates operational semantic rules that allow an op-
timizer to deduce the equivalence of an training query and the induced alternative
query. This involves two stages. The first stage is to transform the equivalence of
two queries into a set of Horn-clause rules. We call this stage operationalization
because it turns induced queries into operational rules that are ready to be used
in the optimization. The second stage is to prune the antecedent literals of the
resulting operational rules. The pruning is guided by the robustness estimation, so
that the learner can obtain robust semantic rules. The pruning also increases the
applicability of learned rules by reducing the number of antecedent literals.

Back to the example in Figure 3.2. In the operationalization stage, the equiva-

lence of the two queries is transformed into two implication rules:
(1)(42 < 0) A (43 =2) — (41 = “27)
(2)(41 = ‘Z2°) — (A2 < 0) A (A3 =2)

Rule (2) can be further expanded to satisfy the Horn-clause syntax requirement:
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(3)(a1 = ‘2°) — (A2 < 0)
(4)(A1 = ‘2°) — (A3 =

After the transformation, the learner has generated rules (1), (3), and (4) that are
operational for the optimization. In the second stage, the learner tries to prune the
antecedents of the operationalized rules. In our example, rules (3) and (4) have only
one literal as antecedent, so no further pruning will be performed. If a rule has many
antecedent literals, then the learner will search for the maximally robust semantic
rules by selecting a combination of the antecedent literals to prune. To prune rule
(1), the learner can prune the first literal (A2 < 0) or the second literal (A3 = 2)
based on the estimated robustness of the resulting rules. During the pruning, the
learner will check to see if the pruned rule is still consistent with the data and will
not prune a literal if it results in an inconsistent rule. The only pruning that yields
a consistent rule is to prune (A3 = 2) from rule (1). If its estimated robustness is
higher than the original rule (1), the learner will perform the pruning and generate

the rule
(A2 < 0) — (&1 = ‘Z°).

Note that this is an overly simplified example. In actual learning situations, the
number of the antecedents of operationalized rules is usually 5 to 8 and could be as
large as 20, depending on input training queries. Pruning is important for increasing
the applicability of the learned rules. Also, there will be plenty of rules during the
pruning for the learner to search for robust ones.

The remainder of this chapter is organized as follows. Section 3.2 describes the
inductive learning algorithm for generating an alternative query given a training
query. Section 3.3 presents the algorithm to transform an equivalence between two
queries into operational Horn-clause rules. Section 3.4 describes the pruning algo-
rithm. The last section discusses two potential issues of our learning approach, the

utility problem and rule maintenance.

3.2 Learning Alternative Queries

The previous section has described an overview of our learning approach which
consists of two component: an inductive learning component and a pruning com-

ponent. This section describes the inductive learning component that inductively
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geoloc (name, glc_cd,country,latitude, longitude) s
seaport (name, glc_code,storage,rail,road,anch off shore),
wharf (wharf id,glc_code,depth,length,crane qty).

Table 3.1: Schema of a geographic database

forms low-cost alternative queries. The scenario shown in Figure 3.2 is a simple
example where the database consists of only one table. In contrast, in real-world
information systems, such as a relational database, there are usually many tables
of relations, and users can specify joins to associate different relations in a query.
Consider a database with three relations: person, car, and company. A query about
persons might involve the companies they work for, or the cars they drive, or even
the manufacturers of their cars. An effective semantic rule should reflect these as-
sociations. Our inductive learning algorithm can learn low-cost conjunctive Datalog
queries with relational joins to generate effective relational rules. This algorithm
can select relevant join paths and attributes automatically instead of requiring users
to do this difficult and tedious task. With relational rules, the SQO optimizer is
able to delete redundant database literals or insert beneficial database literals and
achieve higher optimization performance.

Before we discuss the approach, we need to distinguish two forms of constraints
implicitly specified in a Datalog query. Consider the database schema for the ge-
ographic location database Geo in Table 3.1. Some example constraints for this
database are shown as fragments of a query in Table 3.2. Among these constraints,
CO and C1 are internal disjunctions, which are constraints on the values of a single
attribute. An instance of seaport satisfies CO if its ?storage value is less than
150,000. In this case, there is only one disjunct. In another example C1, there are
three disjuncts defined on the same attribute. An instance of geoloc satisfies C1 if
its 7cty value is "Tunisia" or "Italy" or "Libya". The other form of constraints
is a join constraint, which specifies a constraint on values of two or more attributes
from different relations. A pair of instances of geoloc and seaport satisfy join con-
straint C2 if they share common values on the attribute glc_cd (geographic location
code).

Our inductive learning algorithm is extended from the greedy algorithm that

learns internal disjunctions from a single-table database developed by [Haussler,
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CO:seaport(?name,_, ?storage,_,_,_),
?storage <= 150000.
Cl:geoloc(?namel,_, ?cty,_, ),
member (?cty, ["Tunisia","Italy","Libya"]).
C2:geoloc(?namel,?glccd,_,_, ),
seaport(?name2,?glccd,_,_,_,.).

Table 3.2: Two forms of constraints used in queries

1988]. Of the many inductive learning algorithms, Haussler’s was chosen because
its concept description language is the most similar to database query languages.
His algorithm starts from an empty hypothesis of the concept description to be
learned. The algorithm proceeds by constructing a set of candidate constraints that
are consistent with all positive instances, and then using a gain/cost ratio as the
heuristic function to select and add candidates to the hypothesis. This process of
candidate construction and selection is repeated until no negative instance satisfies
the hypothesis.

We extended Haussler’s algorithm to allow join constraints in the description
of hypotheses, i.e., alternative queries to be learned. To achieve this, we extended
the candidate construction step to allow join constraints to be considered, and we
extended the heuristic function to evaluate both internal disjunctions and join con-
straints. The result of our extension is Algorithm 3.1. The input of the algorithm
includes a training query and data in a given database. To explain the algorithm we
use Q3.1 shown in Table 3.3 and the database fragment in Table 2.2 as an example.

We define the primary relation of a query as the relation that must be accessed
to answer the training query. For example, the primary relation of Q3.1 is geoloc
because the output variable, 7name, of the query is bound to an attribute of geoloc.
If there is more than one output variable and they are bound to attributes from
different relations, then there will be more than one primary relation. In this case, a
pre-processor can be used to partition the output variables into disjoint sets of the
variables bound to attributes of the same primary relation. Then for each set of the
partitioned variables, the preprocessor will generate a new query whose parameter
list is the set of variables, and the query body is the same as that of the original

training query. As a result, each newly generated training query will have exactly
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Q3.1: answer(?name):-—
geoloc(?name,_,"Malta",_, ).

Table 3.3: Example training query

one primary relation. Therefore, we can assume that the input training query has
exactly one primary relation.

In order to guarantee that the semantic rules generated by the operationalization
component is consistent with data, the induced alternative query must be equivalent
to a training query in the sense that they are satisfied by the same set of instances
in the primary relation. We will explain why this is the case in Section 3.3 (see
also [Yu and Sun, 1989]). Therefore, when identifying the primary relation and the
parameter list of the training query, the learner also needs to make sure that the
output variables can uniquely determine the instances in the primary relation so that
the learner can determine whether the induced alternative query is equivalent to the
training query by sending them to the database and comparing the answers (line
10). A straightforward approach to ensuring that the output variables can uniquely
determine the instances in the primary relation is to include variables bound to the
primary key of the relation in the parameter list.

Initially, the learner determines the primary relation of a training query and
labels the instances in the relation as positive or negative. An instance is positive
if it satisfies the training query; otherwise, it is negative. In our example, the
primary relation is geoloc and its instances are labeled according to Q3.1 as shown in
Table 2.2. The next subsection will describe how to construct and evaluate candidate
constraints, which can be either an internal disjunction or a join constraint. Then
Section 3.2.2 will describe a preference heuristic to restrict the number of candidate

constraints in each iteration.

3.2.1 Constructing and Evaluating Candidate Constraints

For each attribute of the primary relation, the learner can construct an internal
disjunction as a candidate constraint by generalizing attribute values of positive

instances. A constructed constraint is consistent with positive instances if it is
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Algorithm 3.1 (Inducing an alternative query)

1 INPUT () = training query; DB = database relations;

2 LET r = primary relation of (); LET A= alternative query (initially empty);
3 LET C = set of candidate constraints (initially empty);

4 construct candidate constraints on r and add them to C;

5 REPEAT

6 evaluate gain/cost of candidate constraints in C;

7 LET ¢ = candidate constraint with the highest gain/cost in C;

8 IF gain(c¢) > O THEN

9 merge ¢ with AQ, and C = C — ¢;

10 IF AQ) < () THEN RETURN AQ;
11 IF ¢ is a join constraint on a new relation r’ THEN
12 construct candidate constraints on ' and add them to C;

13 UNTIL gain(e) = 0O;
14  RETURN fail, because no A is found to be equivalent to @;

satisfied by all positive instances. In our example database, for attribute country,

the learner can generalize from the positive instances a candidate constraint:

geoloc(?name,_,7cty,_,.), 7cty = "Malta",
because the country value of all positive instances is Malta.

Similarly, the learner considers a join constraint as a candidate constraint if it
is consistent with all positive instances. Given a relation r, we can construct a join
constraint over any attribute of r and another attribute of a relation in the database,
but very few of them are meaningful. For example, we can construct a join between
geoloc and seaport over their attributes glc_code. This join is meaningful, because
the glc_code values of geoloc and seaport are defined in the same domain, and
the join associates a seaport with a geographic location. In contrast, joins over the
attributes name is not meaningful because names of geographic locations may not
associate with names of seaports. To avoid constructing meaningless join constraints,
the learner can limit its search to the joins specified in the training query. This way,
however, the resulting alternative query will not include joins not specified in the
training query and may fail to build an optimally efficient alternative query. In some
databases, the information about meaningtul joins is available as a part of database
schema. If that is the case, the learner can use the information to construct join
constraints. Otherwise, the learner will simply construct join constraints based on

the joins given in the training query. In our example, suppose the learner has the
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information that geoloc can be joined with seaport and wharf over the attribute
glc_code, it will construct join constraints based on the information.

To determine whether a join constraint can be a candidate, the learner will
check whether all positive instances satisfy the join constraint. Suppose the learner
is verifying whether the join constraint C2 in Table 3.2 can be a candidate. Since for
all positive instances, there is a corresponding instance in seaport with a common
glc_cd value, the join constraint C2 is satisfied and is considered as a candidate
constraint that will be evaluated later.

Once we have constructed a set of candidate internal disjunctive constraints and
join constraints, we need to evaluate which one is the most promising and add it to
the hypothesis. In Haussler’s algorithm, the evaluation function is a gain/cost ratio,
where gain is defined as the number of negative instances excluded and cost is defined
as the syntactic length of a constraint. Note that the negative instances excluded in
previous iterations will not be counted as the gain for the constraints being evaluated.
The gain/cost heuristic is based on the generalized problem of minimum set covering
where each set is assigned a constant cost. Haussler uses this heuristic to bias the
learning for short hypotheses. In our problem, we want the learner to learn a query
specification with the lowest execution cost. We define the gain part of the heuristic
as the number of excluded negative instances in the primary relation, and define
the cost of the function as the estimated execution cost of the candidate constraint.
The motivation of this formula is also from the generalized minimum set covering
problem. The gain/cost heuristic has been proved to generate a set cover within a
small ratio bound (Inn + 1) of the optimal set covering cost [Cormen et al., 1989],
where n is the number of input sets. In this problem, the cost of a set is a constant
and the total cost of the entire set cover is the sum of the cost of each set. However,
this is not always the case for database query execution, where the cost of each
constraint is dependent on the execution ordering. To estimate the actual cost of a
constraint is expensive. We therefore use an approximation here.

The execution cost of individual constraints can be estimated using standard
query size estimation techniques [Ullman, 1988]. A set of simple estimates is shown
in Table 3.4. For an internal disjunction on a non-indexed attribute of a relation
D, the query execution system has to scan the entire relation to find all satisfying

instances. Thus, its execution cost is proportional to |D|, the size of D. If the
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‘ Type of the constraints ‘ Cost estimates ‘

internal disjunctions, on non-indexed attribute |D|
internal disjunctions, on indexed attribute z
join, over two non-indexed attributes |D1| - | Ds|
join, over two indexed attributes %

Table 3.4: Cost estimates of constraints in a query

internal disjunction is on an indexed attribute, then its cost is proportional to the
number of instances satisfying the constraint, denoted as 7.

For join constraints, let D; and Dy denote the relations that are joined, and
71, Iy denote the number of the distinct attribute values used for the join. Then
the execution cost for the join over D; and D, is proportional to |D;| - |Dy| when
the join is over attributes that are not indexed, because the query processor must
compute a cross product to locate pairs of satisfying instances. If the join is over
indexed attributes, the execution cost is proportional to the number of instance pairs
returned from the join, % [Ullman, 1988]. This estimate assumes that distinct
attribute values distribute uniformly in instances of joined relations. If possible, the

learner may sample the database for more accurate estimation.

For the example at hand, two candidate constraints are the most promising:

C3:geoloc(?name,_,"Malta",_,_).
C4:geoloc(?name,?glccd,_,_,.),
seaport(_,?glccd,_,_,_,.).

Suppose |geoloc| is 30,000, and |seaport| is 800. The cardinality of glc_cd
for geoloc is 30,000 again, and for seaport is 800. Suppose both relations have
indices on glc_cd. Then the execution cost of €3 is 30,000, and C4 is 30,000 *
800/30,000 = 800. The gain of €3 is 30,000 — 4 = 29,996, and the gain of C4 is
30,000 — 800 = 29,200, because only 4 instances satisfy C3 (See Table 2.2) while 800
instances satisfy C4. (There are 800 seaports, and all have a corresponding geoloc
instance.) So the gain/cost ratio of C3 is 29,996/30,000 = 0.99, and the gain/cost
ratio of C4 is 29,200/800 = 36.50. The learner will select C4 and add it to the
hypothesis.
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name = "Valletta" V "Marsaxlokk" V...

glc_cd = 8002V 8003 V ...

name = "Grand Harbor" V "Marsa" V "St Pauls Bay"...
country = "Malta"

latitude = ...

geol o rail = Yes
longitude = ... seaports
join on glc_cd with seaports storage > 2000000
channel
join on name with ?seaports . 4
join on name and port_name with channel []
join on glc_cd with channel (]

. join on glc_cd with geoloc

(]

’ [}

]

Figure 3.3: Candidate constraints to be selected

3.2.2 Searching the Space of Candidate Constraints

When a join constraint is selected, a new relation and its attributes are introduced
into the search space of candidate constraints. The learner can consider adding
constraints on attributes of the newly introduced relation to the partially constructed
alternative query. In our example, a new relation seaport is introduced to describe
the positive instances in geoloc. The search space is now expanded into two levels,
as illustrated in Figure 3.3. The expanded constraints include a set of internal
disjunctions on attributes of seaport, as well as join constraints from seaport to
other relations. If a new join constraint has the maximum gain/cost ratio and is
selected later, the search space will be expanded further. Figure 3.3 shows the
situation when a new relation, say channel, is selected, and the search space is
expanded one level deeper. At this point, candidate constraints will include all
unselected internal disjunctions on attributes of geoloc, seaport, and channel, as
well as all possible joins with new relations from geoloc, seaport and channel.
Exhaustively evaluating the gain/cost of all candidate constraints is impractical
when learning from a large and complex database.

We adopt a search method that favors candidate constraints on attributes of
newly introduced relations. That is, when a join constraint is selected, the learner
will estimate only those candidate constraints in the newly expanded level, until
the learner constructs an alternative query that excludes all negative instances (i.e.,
reaches the goal) or no more consistent constraints in the level with positive gain

are found. In the later case, the learner will backtrack to search the remaining
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constraints on previous levels. This search control bias takes advantage of underlying
domain knowledge in the schema design of databases. A join constraint is unlikely to
be selected on average, because an internal disjunction is usually much less expensive
than a join. Once a join constraint (and thus a new relation) is selected, this gives
strong evidence that all useful internal disjunctions in the current level have been
selected, and it is more likely that useful candidate constraints are on attributes of
newly joined relations. This bias works well in our experiments. But certainly there
are cases when the heuristic prunes out useful candidate constraints.

A time complexity analysis of Algorithm 3.1 is briefly given as follows. Let r be
the largest relation in the database, A be the maximal number of attributes for a
relation and J be the maximal number of meaningful joins associated with a relation.
Constructing candidate constraints (line 4 and line 12 of Algorithm 3.1) requires
accessing the database O(1 4 J) times, because constructing internal disjunctions
on a relation needs one database access and each join constraint needs an additional
database access. Each gain/cost evaluation requires a database access (line 6). The
maximal number of new candidates that can be constructed after each new relation
is introduced is A 4 J, because there are at most A internal disjunctions for each
attribute and at most J join constraints. Since we constrain the search for the new
candidates generated after each new relation is introduced, line 6 takes O(A + J)
database accesses. Therefore, in each iteration of starting from line 5, the maximal
number of database accesses is bounded by 1 +.J+ A+ .J = O(A+ J), In the worst
case, each iteration only excludes a negative instance and we will need at most |r|
iterations to exclude all negative instances. Therefore, let d be the maximal time
for a database access, Algorithm 3.1 requires O(|r| - (A + J) - d) database accesses
to complete learning in the worst case. Without search constraints, the complexity
would be O(|r|* - (A + J) - d) because the number of candidate constraints needed
to be evaluated may increase by (A 4+ J) in each iteration. We note that |r| could
be as large as 10,000 in real applications.

Returning to the example, since the candidate constraint C4 was selected, the
learner will expand the search space by constructing consistent internal disjunc-
tions and join constraints on seaport. Assuming that the learner cannot find any
candidate on seaport with positive gain. It will backtrack to consider candidates

on geoloc again and select the constraint on country (see Figure 3.3). Now, all
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Q3.2: answer(?name):-—

geoloc(?name, 7glc _cd,"Malta",_, ),
seaport(_,?glccd,_,_,_,_).
Q3.1 < Q3.2:
geoloc(?name,_,"Malta",_, )
& geoloc(?name,?glccd,"Malta",_,_) A
seaport(_,?glccd,_,_,_,.).

Learned rule:
R3.1: geoloc(_,?glc.cd,"Malta",_, )
= seaport(_,?glccd,_,_,_,.).

Table 3.5: Results of learning given the example training query Q3.1

negative instances are excluded. the learner thus learns the query Q3.2 shown in
Table 3.5. The pruning component will then take the equivalence of the input query
Q3.1 and the learned query Q3.2 as input and will transform this statement into a
new operational rule that can be used to reformulate Q3.1 into Q3.2. Since the size
of geoloc is considerably larger than that of seaport (30,000 vs. 800), next time
when a query asks about geographic locations in Malta, the optimizer can reformu-
late the query to access the seaport relation first and save the cost of scanning the
entire geoloc relation.

We can apply the result of the gain/cost heuristic of the minimal set covering
to analyze the asymptotic quality of alternative queries. The problem of minimal
set covering is to search for a minimal-cost set cover containing a collection of sets
whose union covers a given collection of elements. As we have discussed earlier,
the cost of a set cover is the sum of the cost of each set and the cost of each
member set is constant. [Cormen et al., 1989] shows that the gain/cost heuristic
allows an algorithm to generate a set cover within a small ratio bound (Inn + 1)
of the optimal set covering cost, where n is the number of input sets. Based on
this result, given a training query, if the execution cost of a query is proportional
to the sum of the execution cost of each literal, we can have the same ratio bound
between the cost of the optimal equivalent query and alternative query generated
by Algorithm 3.1. In this case, the ratio bound is (In/ 4 1) where [ is the number

of candidate constraints considered during the learning. Nevertheless, this is an
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approximation because usually query execution cost is not additive with regard to

the cost of literals.

3.2.3 Related Work in Rule Induction and Data Mining

Inductive Logic Programming (ILP) [Muggleton and Feng, 1990, Quinlan, 1990,
Lavra¢ and Dzeroski, 1994, Raedt and Bruynooghe, 1993] is closely related to
the problem of learning alternative queries. Both problems learn definitions from
databases with multiple relations. Our inductive learning approach uses a top-down
algorithm similar to FOIL [Quinlan, 1990] to build an alternative query. A differ-
ence between our approach and FOIL is that they learn descriptions in a different
language. FOIL learns Horn-clause definitions where each clause covers a subset
of positive instances but no negative instances. Our approach learns conjunctive
queries which must cover all positive instances but no negative instances. Another
difference is their search heuristics. FOIL uses an information-gain heuristic while
our approach uses a set-covering heuristic for learning a low-cost specification.
Research work on data mining for association rules [Agrawal et al., 1993, Man-
nila et al., 1994] is related to our work in that they also generate rules from large
databases. Their approach generates a set of data patterns from a table, and then
converts those patterns into association rules. The data patterns are generated after
the system scans the database a few times. In each pass, the system revises a set
of candidate patterns, by proposing new patterns and eliminating existing patterns,
as it reads in a data tuple. A “support” counter for each pattern that counts the
number of tuples showing a given pattern is used to measure the interestingness of
patterns. A tuple scanning approach is not appropriate when joins are allowed to
express a rule because the learner must consider data patterns in many relations
at the same time. Also, in their approaches, the “support” counters for measuring
interestingness of rules can be efficiently updated and estimated during the tuple
scanning process, while the effectiveness of semantic rules for SQO is difficult to

measure and estimate in that manner.
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Algorithm 3.2 (Operationalize equivalent queries)

1 INPUT (); = training query, (), = alternative query;

2 LET P = primary database literal of (J,; R = empty;

3 FOR each literal L in (), except P

4 LET L;, = the shortest join path from P to L;

6 LET consequent of r = L;

7 LET antecedent of r = (literals in ;) U (Ljp, — L);
8 IF antecedent of r [~ [ THEN add r to R;

9 RETURN R

3.3 Operationalization

Once the learner induces an alternative query from the given data, it needs to
transform the equivalence of two queries into operational rules. This transformation
problem can be generalized as follows. Given a statement of the equivalence of two
conjunctive formulas:

PN AP, & QA ANQ,,

where P;’s and ();’s are literals, deductively transform the statement into a set of
Horn-clause rules (implications with exactly one literal as the consequent). The
transformed implication rules must be the logical consequences of the equivalence.
If the conjuncts in the statement are propositional, then the transformation is simply
to decompose a two-directional implication into a set of one-directional implications

for each literal:
PPN NPy = @, for 1 < 4

n
Qi A oA @ = P, forl < g m

IAIA

However, if the conjuncts are predicate logic literals that involve variables and rela-
tions, like the database queries discussed here, then care must be taken to arrange
variables during the transformation. This section describes how to transform an
equivalence of relational queries into operational rules.

Algorithm 3.2 lists the top level algorithm of the operationalization. This al-
gorithm takes a training query and the corresponding learned alternative query as
input, and then for each literal in the alternative query, generates a Horn-clause rule
with the literal as the consequent. The same algorithm can be applied to generate

rules with the literals in the training query as the consequents.
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Training query:
Q3.3: answer(?name,?code):-

1 seaport(?name,?code, _,_,_,) A

2 wharf(_,?code,?depth,_,?crane) A
3 geoloc(?name,_, 7country,_,.) A

4 ?country = "Malta" A

5 ?depth < 50 A

6 ?crane > 0.

Alternative query:
Q3.4: answer(?name,?code):-

7 seaport(?name,?code, _,_,_,) A
8 wharf(_,7code,_,?length, ) A
9 ?length > 1200.

Table 3.6: Equivalent queries to be operationalized into Horn-clause rules

The main task of the algorithm is to compute a join path for each literal from
the primary relation. A join path in a query from a database literal L, to another
literal L is a sequence of literals (L, ..., L) so that for any two consecutive database
literals in this sequence, there is a common variable , or a relational join, occurring in
both database literal. A join path indicates how one literal associates with another
literal by joins of relations. For example, a join path between literal 2 and literal 3
of the query in Table 3.6 is (literal 2, literal 1, literal 3), because literal 2 and literal
1 share the common variable ?code, and literal 1 and literal 3 share the common
variable ?name.

We use the example in Table 3.6 to explain the algorithm. Suppose that Q3.3 is
a training query and Q3.4 is the induced alternative query by the learner for Q3.3.
The primary relation in this case is seaport, and the primary database literal is
literal 1 and literal 7 for Q3.3 and Q3.4, respectively. The loop from line 3 to line 8
attempts to generate a rule for each literal in each iteration. To generate a rule with
literal 9 as the consequent, the system first computes the shortest join path from
literal 7 to literal 9. In this case, the resulting join path is (literal 7, literal 8, literal
9). This join path shows how a range constraint on ?length can be associated with
?name and 7code values of seaport. Next, the literals on the join path except the
last literal will be combined with the literals of Q3.3 to form the antecedent and

generate a new rule. Duplicate database literals that refer to the same instances in a
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R3.2: ?length > 1200 <«

1 wharf (_,7code, ?depth, ?length,?crane) A
2 seaport(?name,?code, _,_,_,) A
3 geoloc(?name,_, 7country,_,.) A
4 ?country = "Malta" A
5 ?depth < 50 A
6 ?crane > 0.
R3.3: geoloc(_,7code,_,_,.) <
7 wharf(_,?code,_,_,_) A
8 seaport(?name,?code, _,_,_,) A
9 ?name = "Long Beach'.

Table 3.7: Example rules to be pruned

relation will be removed from the resulting antecedent. In this example, since literal
7 and literal 1 are exactly identical, and literal 8 and literal 2 are defined on the
same relation wharf, and the common variable ?7code bound to the key attribute of
wharf so that the two literals refer to the same wharf instances. Therefore, neither
literal in the join path is included in the antecedent. Line 8 of the algorithm is to
exclude tautologies. The resulting rule is shown as R3.2 in Table 3.7.

We note that to guarantee that the rules generated from Algorithm 3.2 are consis-
tent with the database, the input queries must return the same answer. Furthermore,
the answer must uniquely determine the instances in their primary relation. Other-
wise, even though two queries returns the same answer, they might be satisfied by
two different sets of instances of the primary relation. If that is the case, we can not
assert the implications between the constraints specified in the two queries. This is
why we require the output variables of a training query must uniquely determine

the instances of the primary relation.

3.4 Pruning Rules for High Utility

Since training queries tend to have many literals, the rules generated from the op-
erationalization are usually too long and overly specific to a training query. For
instance, R3.2 contains six literals as the antecedent, which is unlikely to be ap-

plicable to queries other than Q3.3. The section presents a rule pruning approach
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which can increase the applicability of the learned rules by pruning the antecedent
literals. The pruning is guided by robust estimation so that the resulting rules are
more widely applicable than the original rule as well as more robust. This rule prun-
ing approach can be applied on top of other rule induction and data mining systems

to prune overly specific rules into highly robust and applicable rules.

3.4.1 Background and Problem Specification

Although robustness is a desirable property of machine-generated knowledge, using
robustness alone is not enough to guide the learning. The tautologies such as

False = seaport(_,?glccd,_,_,_,.), and

seaport(_,?glccd,_,_,_,.) = True
are extremely robust (have a robustness equal to one), but they are not useful.
Therefore, we should use robustness together with other measures of usefulness to
guide the learning. Omne of the measures of usefulness is applicability, which is
important no matter what our application domains are. This section focuses on the
problem of pruning learned rules so that they are both highly applicable and robust.
In particular, we will use length to measure the applicability of rules. Generally
speaking, a rule is more applicable if it is shorter. In other words, if the number of
antecedent literals of a rule is smaller, then it is more widely applicable because it
is less specific.

In addition to our inductive learning approach for SQO, inductive logic pro-
gramming also concern the problem of generating Horn-clause classification rules
from data represented in relations similar to those in relational databases. How-
ever, the learned rules are usually too specific and not robust against database
changes. Instead of generating desired rules in one run, we propose using these
existing algorithms to generate rules, and then use a rule pruning algorithm to
prune the antecedent literals so that it is highly robust and applicable (short).
The rationale is that rule construction algorithms tend to generate overly-specific
rules, but taking the length and robustness of rules into account in rule construc-
tion could be too expensive. This is because the search space of rule construction
is already huge and evaluating robustness is not trivial. PRODIGY-EBL [Minton,
1988], a speedup learning approach for problem solving, includes a compressor to

prune learned rules. Previous work in classification rule induction [Cohen, 1993,
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Algorithm 3.3 (Pruning rule literals)

1 INPUT R = rules (initially the rule to be pruned), B = beam size;
2 LET O = results; (initially empty);

3  WHILE (R is not empty) DO

4 move the first rule r in R to O;

5 prune r, LET R = resulting rules;

6 remove visited, dangling or inconsistent rules in R';

7 estimate and sort on the robustness of rules in R’;

8 retain top B rules in R’ and remove the rest;

9 merge sorted R’ into R in sorted order of the robustness;

10  RETURN O;

Coohen, 1995b, Furnkranz and Widmer, 1994] also shows that dividing a learning
process into a two-stage rule construction and rule pruning can yield better results
in terms of classification accuracy as well as the efficiency of learning. These results
may not apply directly to our rule induction problem, nevertheless, a two-stage sys-
tem is simpler and more efficient. Another advantage is that the pruning algorithm
can be applied on top of existing rule generation systems.

The specification of our rule pruning problem is as follows: take a machine-
generated rule as input, which is consistent with a database but potentially overly-
specific, and remove antecedent literals of the rule so that it remains consistent but

short and robust.

3.4.2 The Pruning Algorithm

Algorithm 3.3 searches for a subset of antecedent literals to remove until any further
removal will make the rule inconsistent with the database. Since the search space can
be exponentially large with respect to the number of literals in a rule, and checking
the consistency of a partially pruned rule needs a database access, which could be
expensive, we present a beam-search algorithm to trim the search space.

The algorithm applies the estimation approach described in Chapter 2 to estimate
the robustness of a partially pruned rule and guide the pruning search. The main
difference of our pruning problem from previous work is that there is more than
one property of rules that the learner is trying to optimize, and these properties —

robustness and length — may interact with each other. In some case, a long rule may
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be more robust, because a long rule is more specific and covers fewer instances in the
database. These instances are less likely to be selected for modification, compared
to the case of a short rule, which covers more instances. On the other hand, since a
long rule has more literals, it is more likely that a simple change would violate one
of the literals and make the rule inconsistent. To address this issue, we propose a
beam search algorithm so that for each set of equally short rules, the algorithm will
search for the rule that is as robust as possible while still being consistent. We will
use rules R3.2 and R3.3 shown in Table 3.7 to illustrate how the algorithm works.

Let B denote the input beam size, Algorithm 3.3 expands the search by pruning
one literal from the input rule in each search step (starting from line 3), preserves the
top B robust rules, and repeats the search until no further pruning is possible. The
pruner will return all rules being expanded and then we can use an additional filter
to selects those with a good combination of length and robustness. The selection

criterion may depend on how often the application database changes.

In line 6 of Algorithm 3.3, the pruner removes the pruned rules that are inconsis-
tent. To identify an inconsistent rule, the pruner can consult the database directly.
The pruner also discards those pruned rules with any dangling literals. In a rule, a
set of literals are dangling if the variables occurring in those literals do not occur in
any other literals (including the parameter list). For example, in the following rule,
P, (?z,7w) is dangling:

Q(7x) < P(7x,7y), P (?7z,%7w),%y > 100.
Dangling literals are not desirable because they may mislead the search and compli-

cate the robustness estimation. Removing a built-in literal in a query never results
in dangling literals. To ensure that removing a database literal L in the rule does

not yield dangling literals, . must satisfy the following conditions:

1. No built-in literal in the antecedents of the rule is defined on the variables

occurring in L.

2. If a variable occurring in the consequent of r also occurs in L, this variable

must occur in some other database literals in the rule.

3. Removing L from the rule does not disconnect existing join paths between any

database literals in the rule.

We use examples to explain these conditions. Condition 1 is clear, because

otherwise, there will be a dangling built-in literal. For Condition 2, consider literal

52



Rule | Antecedents (abbr.) | Robustness | Remarks |

R32 | WS GCrDCt 0.9784990

rl WSGDCGCt 0.9814620

r2 WS GCrCt 0.9784990

r3 WSGCrD 0.9784991

r4 WSCrD Inconsistent
rh WS GGt 0.9814620

r6 WSGD 0.9814620

r7 WS GCr 0.9896200

r8 WDC Inconsistent
r9 WS Cr Inconsistent
rl0 WS G 0.9814620

rll WSD Inconsistent
rl2 W G Cr Dangling
rl3 WGD Dangling
rl4 W Cr Inconsistent
rlb WS Inconsistent
rl6 W G Dangling
rl7 WD Inconsistent
rl8 W Inconsistent

Table 3.8: Result of rule pruning on a sample rule

1 of R3.2 in Table 3.7. It is not removable because the variable ?length in this
literal is used in the consequent. But literal 7 in R3.3 is removable, even though its
variable ?code is used in the consequent. This is because ?code also occurs in literal
8 of the same rule and the variable can still be associated with the antecedents. An
example where a literal is not removable due to Condition 3 is literal 2 of R3.2. This
literal is not removable because the join path between literal 1 and literal 3 will be
disconnected if we remove it, and as a result, literal 3 will be dangling. Therefore,
literal 2 is not removable. Note that if later the pruner removes literal 3 from R3.2
first, literal 2 will become removable because no join path would be disconnected if

it were dropped.

3.4.3 Empirical Demonstration of Rule Pruning

We conducted a detailed empirical study on rule R3.2 using the same database
as in Section 2.5. Since the search space for this rule is not too large, we ran an

exhaustive search for all pruned rules and estimated their robustness. The entire
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r7: ?length > 1200 <«
wharf (_,7code, ?depth, ?length, ?crane) A
seaport(?name,?code, _,_,_,) A
geoloc(?name,_, 7country,_,.) A
?crane > O.

r10:?length > 1200 <
wharf (_,7code, ?depth, ?length, ?crane) A
seaport(?name,?code, _,_,_,) A
geoloc(?name,_, 7country,_, ).

Table 3.9: Pruned rules

search process took less than a second (0.96 seconds). In this experiment, we did
not use the transaction log information in the robustness estimation.

The results of the experiment are listed in Table 3.8. To save space, we list
the pruned rules with their abbreviated antecedents. Each term represents a literal
in the conjunctive antecedents. For example, ”W” represents the database literal
on wharf (literal 1 in Table 3.7), 7Cr” and "Ct” represent the literals on 7crane
and 7country, respectively. Inconsistent rules and rules with dangling literals are
identified accordingly. In this example, the pruner detected three pruned rules with
dangling literals.

The relationship between length and robustness of the pruned rules is illustrated
in Figure 3.4. The best rule will be the one located in the upper right corner of
the graph, with short length and high robustness. On the top of the graph is the
shortest rule r10, whose complete specification is shown in Table 3.9. Although this
is the shortest rule, it is not desirable because it is too general. The rule states
that wharves in seaports will have a length greater than 1200 feet. However, we
expect that there will be data on wharves shorter than 1200 feet. Instead, with the
robustness estimation, the pruner can select the most robust rule r7, also shown in
Table 3.9. This rule is not as short but still its length is short enough to be widely
applicable. Moreover, this rule makes more sense in that if a wharf is equipped with
cranes, it is built to load/unload heavy cargo carried by a large ship, and therefore
its length must be greater than some certain value. Finally, this pruned rule is more
robust and shorter than the original rule. This example shows the utility of the rule

pruning with the robustness estimation.
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Figure 3.4: Pruned rules and their estimated robustness

3.5 Utility Problem and Rule Maintenance

This section discusses the utility problem that may arise when we consider the
collective effect of learned semantic rules in query optimization. The utility problem,
originally identified in [Minton, 1988], refers to situations when learning degrades
the performance of a system. Though this problem is identified in problem solving
systems that apply explanation-based learning (EBL) [Mitchell et al., 1986, DeJong
and Mooney, 1986, Rosenbloom and Laird, 1986, Minton et al., 1989], it may arise
in our learning problem because a similar rule application approach is used for
performance improvement. The utility problem may arise in a rule-based system
because the utility of a rule is determined not only by its saving and applicability,
but also by the cost for the system to locate it. This observation leads to the

following formula of utility:

Utility of Search Control Rules [Minton, 1988]
Utility = Average_Saving x Application_Frequency — Match_Cost (3.1)

According to this formula, we need to decrease the match cost to increase the
utility of a rule, otherwise, the utility problem may arise. Roughly speaking, the

match cost may increase either because there are too many rules (average growth
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effect [Tambe and Rosenbloom, 1993]) or because individual rules are too complex
to be matched efficiently. Many approaches have been developed to decrease the
match cost and address the utility problem. They can be classified into two general
approaches. One approach is to organize rules so that an applicable rule can be
efficiently matched. For example, the RETE algorithm [Forgy, 1982] and its more
advanced descendants [Tambe, 1991, Doorenbos et al., 1992] are in this category.
The other approach is to use a rule maintainer to remove redundant and low utility
rules so as to decrease the number of rules. Redundant rules are logical consequences
of other rules in a rule set. [Greiner and Likuski, 1989] and [Etzioni, 1992] show that
redundant macro-operators are guaranteed to slow down a problem solver. [Yu and
Sun, 1989] extends the SQO optimizer to identify logically redundant rules. Low
utility rules are those rarely applicable or yield small saving. A simple approach to
removing this class of rules is to monitor the saving yielded by rules and remove
those with small saving [Minton, 1988].

The utility problem in SQO can be alleviated by an alert query optimizer that
can give up its attempt to match more rules and send the original query to the
database system. This strategy is adopted in [Shekhar et al., 1988] so that the
query execution cost is always at most as high as or slightly higher than the cost
without optimization. Therefore, even in the worst case an SQO optimizer will not
slow down the query execution significantly. Our learning approach may constrain
the the number of learned rules by triggering the learning selectively, and the pruning
approach may reduce the complexity of rules and thus the match cost of an individual
rule. If the match cost is still so high to cause the utility problem, we can apply the
approaches surveyed in this section to our query optimizer.

Another issue that we have not addressed is rule maintenance. Although learned
semantic rules are robust, they may not be invariants and some of them may be-
come inconsistent in a new database state. We can use a rule maintainer to repair
inconsistent semantic rules. The simpliest approach to repairing inconsistent rules is
to discard them, because our learner can learn robust rules and only few of the rules
will become inconsistent after database changes. After removing inconsistent rules,
the optimizer will still have sufficient rules for query optimization and minimize the
need of learning from similar queries that have been used in training. In other rule-

based applications where consistency of rules is important but the learned rules are
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not robust, we may need a more sophisticated rule maintainer. As an additional
advantage, the robustness estimation approach can also be used to guide the rule
repairing. A rule repairing system can estimate the robustness of a partially repaired
rule and search for the one that is the most robust. With the robustness estimation,
an inconsistent rule can be repaired into a robust rule and eventually the need for

repairing will be reduced.
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Chapter 4

Semantic Optimization of Query Plans

Semantic rules generated by the learning approach described in the previous chapter
can be applied in semantic query optimization for a stand-alone database system as
well as an information system with multiple sources. New applications of information
systems, such as electronic commerce and healthcare information systems, need to
integrate heterogeneous information sources. A promising solution to this problem
is through the use of information mediators that can automatically generate a query
plan to retrieve and combine data from heterogeneous information sources. Existing
query optimization techniques can provide local optimization for a query plan by
optimizing subqueries to individual databases. However, due to the complexity of
queries and the heterogeneity of databases, it is difficult for these techniques to
provide global optimization. This chapter presents an extended semantic query
optimization approach that uses learned semantic rules to optimize a query plan
and describes how our learning approach can support this new query optimization

approach.

4.1 Information Mediators and Query Plans

Integrating heterogeneous multidatabases is an important problem for the next gen-
eration information systems. A wide-area health-care information systems, for ex-
ample, would require integrating many different types of information for physicians
in the course of their work. A promising approach to integrating heterogeneous
multidatabases is through the use of information mediators [Wiederhold, 1992,
Arens et al., 1993, Knoblock et al., 1994, Levy et al., 1995, Hammer et al., 1995,
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Arens et al., 1996] that can select appropriate databases over which to retrieve data
and generate an efficient plan to combine the data automatically for users. With
information mediators, users can access heterogeneous databases without knowing
the implementation details such as their locations, query languages, platforms, etc.

Given a declarative query, the main task of an information mediator is to generate
a correct and efficient query plan to retrieve and combine data. Generally speaking,
a query plan is a graph with its nodes as plan steps and its edges as the order
constraints on the plan steps. Each plan step contains a subquery to be sent to a
source database site where the data will be retrieved or manipulated. The order
constraints of a plan specifies data flow directions as well as the order in which the
plan steps should be executed.

For example, suppose an information mediator receives a query as follows:

Query: Retrieve the classes of active ships with container capability that
can dock in the wharves with cranes at Long Beach seaport; list by ship

class name and wharf id.

To be precise, a ship can dock in a wharf if the whart is long and deep enough to
accommodate the ship. Suppose the data required to answer this query are spread
over two remote databases: Geo for the data about geographical locations, seaports
and wharves, and Assets for ships, ship classes, aircrafts, etc. The schema of these
databases is given in Table A.1. Given this query, the information mediator will
generate a query plan illustrated in Figure 4.1, which shows a query plan as a
diagram of subqueries and their data flow order.

In this example query plan, the first subquery retrieves data about ships from
the remote database Assets, the second subquery retrieves data about seaports and
wharves from database Geo, and the third subquery compares data retrieved by the
previous subqueries and joins the results. A subquery begins with a predicate name
as the site that the data will be retrieved, followed by a list of parameters. For
example, Subquery 1 begins with the site name assets followed by the parame-
ters ?ship_class, ?draft and 7length. To execute this query plan, the mediator
will send the first two subqueries to their corresponding remote database servers
to retrieve data, and then join the partial results in the local system according to

the conditions specified in Subquery 3. Each remote database server has a wrapper
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subquery 1: subquery 2:

assets(?ship_class,?draft,?length):- geo(’)wharf id,?depth, ’?Wlength) -
ship_class(?ship_class, ,?draft,?length,Y")| seaport("Long Beach",?glc_code,_,_,_, ),
ship(_,?ship_class,"Active",_, ). wharf(?wharf_id,?glc_code ’?depth 2wlength,?crane, ),
?crane > 0.

subquery 3:

sims(?ship_class,?wharf_id):-
assets(?ship_class,?draft,?length),
geo(?wharf_id,?depth,?wlength},
?depth > ?draft,
?wlength > ?length.

Figure 4.1: Example query plan that retrieves heterogeneous multidatabases

that will translate a subquery into the query language, say, SQL, of that particular
server, and translate the retrieved data into a format that is readable by the medi-
ator. This allows the information mediator to retrieve and combine the data from
heterogeneous sources using subqueries expressed in some uniform language. In our
example, this uniform language is Datalog.

The query plan is optimal in terms of the number of subqueries because the
desired data are spread over two databases Assets and Geo and those subqueries
cannot be merged. However, this plan could still be expensive because the system
needs to retrieve and transmit lots of redundant ship class and wharf data that
will eventually be discarded when executing Subquery 3. Also in Subquery 1, the
system needs to execute a join over the large ship relation. Conventional query
optimizers [Apers et al., 1983, Jarke and Koch, 1984, Ullman, 1988] can be applied
to optimize individual subqueries, but still, the amount of redundant intermediate
data would not be reduced.

This chapter presents an extension of semantic query optimization that can com-
plement conventional techniques to overcome the heterogeneity and considerably
reduce redundant data transmission. The remainder of this chapter describes our
optimization approach. The next section reviews the basic semantic query optimiza-
tion algorithm, which is used as a part of our optimization approach. Section 4.3
describes the new optimization approach. Section 4.4 compares our approach with

related work in query optimization. Section 4.5 discusses the issues of applying our
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learning approach to support query plan optimization. The last section reviews the

contributions.

4.2 The Basic SQO Algorithm

The goal of semantic query optimization is to search for the optimal semantically
equivalent query of an input query based on the given semantic knowledge. Two
queries are defined to be semantically equivalent if they return identical answers
from a database state that is consistent with the semantic knowledge. Generally

speaking, the basic semantic query optimization consists of two stages:

1. proposing sequences of one or more reformulation operations (e.g., to delete a

literal or insert a new literal) from semantic knowledge; and

2. selecting and applying the optimal reformulation based on a cost model of

query execution.

These two stages may be repeated until the optimizer determines that it has found
the optimal equivalent query [Chakravarthy et al., 1990, King, 1981, Shekhar et al.,
1988, Siegel, 1988]. However, such a generate-and-test algorithm may miss applica-
ble rules and hence miss optimization opportunities because an applicable rule to
a query may become inapplicable if some literals are deleted from the query. To
address this problem, when the optimizer detects an redundant literal, instead of
deleting the literal immediately, it should retain the literal and delay the deletion
until all applicable rules have been located. This can be achieved by computing an
implication closure of semantic knowledge to propagate the results of rule applica-
tions [Sun and Yu, 1994, Hsu and Knoblock, 1993b, Shenoy and Ozsoyoglu, 1989,
Yu and Sun, 1989]. An implication closure contains all redundant literals existing in
an input query that are implied by other literals and all of the new literals derived
from semantic rules. This way, the optimizer can consider all possible literal dele-
tions and insertions implied by the semantic rules and will not miss any optimization
opportunities.

Algorithm 4.1 lists the abstract-level steps of the state-of-the-art semantic query

optimization algorithm. We illustrate how this algorithm works using the semantic
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Algorithm 4.1 (Basic semantic query optimization)

1 INPUT () = conjunctive query; KB = semantic knowledge;
2 LET [ = implication closure (initially empty);
3 derive the most restrictive ranges of the variables in @)
using the range facts in KA B;
update [ and () with the derived range constraints;
IF a literal in () contradicts a range fact THEN RETURN NULL;
FOR all applicable rules in KB
LET A — B be the applicable rule after variable substitution;
IF () refuted THEN RETURN NULL;
ELSE add B to I, LET @ = @Q U {B};
10 search for a subset D of literals in I, so that ) = @ — D is optimal;
11 RETURN @)’ and [;

© 0 ~N O 0

knowledge in Table 4.2 and the example query Q4 in Table 4.1 as input. This query
retrieves all ship classes and their maximal draft so that their container capability
is ‘Y’ their draft is less than 50 feet, and that there is at least one active ship in
this class.

Initially, the optimizer uses range facts and the literals in the query to derive
the most restrictive ranges of the variables in the query (line 3 to 5). For example,
from the range fact F1 and the literal 7draft < 50, the optimizer derives that the
most restrictive range of the variable ?draft is the interval [12,50) and inserts a
new literal ?draft >= 12 to the query. Similarly, the optimizer derives ranges of
other variables and inserts two new literals on ?length to the query. The optimizer
also saves the derived literals in the implication closure I.

Next, from the semantic rules, the optimizer derives more new literals as well as
redundant literals and saves the results in the implication closure (line 6 to 9). In
this example, the optimizer detects that the literal on the database relation ship
is redundant because from R4.1 in Table 4.2, the literal ?status = "Active" is
redundant, and because the relational rule R4.2 states that if a ship class has con-
tainer capability (specified as "Y"), then there must exist some ships in that ship
class. That is, the join over the relations ship_class and ship on the variable

?class is redundant and can be eliminated !. The optimizer also derives a new

1See [Sun and Yu, 1994] for a detailed discussion on detecting redundant relational joins in
semantic query optimization.
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Q4: assets(?ship_class,?draft):-
ship_class(?shipclass,_,?draft,_,?container),
ship(_, ?ship_class,?status,_,_),

?status = "Active",
?container = "Y",
?draft < 50.

stage 1:

Q4.1: assets(?ship._class,?draft):-
ship_class(?ship.class,?length,?draft,_,?container),
ship(_,?ship_class,?status,_, ?year-built),
?length >= 580,

?length <= 950,
?status = "Active",
?year-built > 1945,
?draft >= 12,
?container = "Y",
?draft < 50.

stage 2:

Q4.2: assets(?ship._class,?draft):-
ship_class(?shipclass,_,?draft,_,?container),
?container = "Y",

?draft < 50.

Table 4.1: Example results of semantic query optimization in different stages

literal ?year-built < 1945 from R4.3. The resulting query is given as Q4.1 in Ta-
ble 4.1, where the underlined literals are those derived from the semantic knowledge
and saved in the implication closure.

The optimizer then searches for a subset of the literals in the implication closure
to retain and deletes the rest so that the resulting query is the least expensive (line
10). Since it could be difficult to identify the optimal combination in all cases (an
NP-complete problem [Sun and Yu, 1994]), the optimizer needs to apply heuristics
to guide the search. Usually, the heuristics are derived from a cost model of query
execution. In this case, the optimizer chooses to delete all of them and optimize the
input query into Q4.2 shown in Table 4.1.

When the optimizer applies semantic knowledge, it also checks whether there
exists any literal that is not satisfiable. If this is the case, the optimizer can conclude
that the entire query is not satisfiable and return NULL as the answer of the query

without accessing the database at all (line 5 and 8).
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Semantic Rules:
R4.1: If the mazimum draft of a ship 1s less than 50 then its status is active.
ship_class(?class,_,?draft,_,_) A ship(_,?class,?status,_,_) A ?draft < 50
= 7?status = "Active"
R4.2: If a ship class has container capability, then there must exist some
ships that belong to that ship class in the database.
ship_class(?class,_,_,_,"Y") = ship(_,?class,_,_,_)
R4.3: If a ship is active, then it was built after 1945.
ship(_,?class,_,"Active",?year-built) = ?year-built > 1945
R4.4: The depth of wharves at Long Beach is at most 50 feet.
seaport("Long Beach'",?code,_,_,_,-) A wharf(_,?code,?depth,_,_)
= 7?depth < B0
R4.5: The length of wharves with at least one crane at Long Beach is greater than 1200 feet.
seaport("Long Beach",?code,_,_,_,_) A
wharf(_,?code,_,?length,?crane) A ?crane > 0
= 7length > 1200

Range Facts:
F1: 12 < ship._class.draft < 72.
F2: 325 < ship._class.length < 950.
F3: ship.class.containercap € {"Y","N"}.
F4: ship.status € {"Active","Inactive","Resigned"}.
F5: 7 < wharf.depth < 100.
F6: 580 < wharf.length < 2700.
F7: 0 < wharf.craneqty < 7.

Table 4.2: Example semantic rules and range facts

Since an implication closure contains all literals implied by other query literals
given the semantic knowledge, we can extract the most restrictive ranges of variables
from implication closures and use the information to optimize complex query plans.
The next section presents an optimization approach for query plans based on this

idea.

4.3 The Optimization Approach for Query Plans

Our approach extends the basic semantic query optimization to optimize query plans.
The optimizer in our approach optimizes each subquery using the basic SQO algo-
rithm for conjunctive queries, as the one described in the previous section, and at
the same time, uses semantic knowledge to derive range constraints of the data that

will be transmitted among database sites. From the derived ranges, the optimizer
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Algorithm 4.2 (Query plan optimization)

1 INPUT P = query plan; A B; = semantic knowledge learned from databases;
2 LET KB = KBy, Sy = an empty stack;

3 LET S; = a stack of subqueries in the data flow order specified in P
4 WHILE S; is not empty DO

5 LET s = pop(S;);

6 optimize s by calling Algorithm 4.1 with input s and KB;

7 update KB with newly inferred more restrictive ranges of variables;
8 push optimized s into Sp;

9 WHILE S, is not empty DO

10 LET s = pop(Sy);

11 IF 5 is a subquery that combines or manipulates intermediate data THEN
12 determine required variables V;

13 extract and move newly inferred literals to L;

14 ELSE (s is a subquery that retrieves data from a remote database)

15 remove variables not in V' from the parameter list of s;

16 insert literals in L to s if they are defined on variables in s;

17 IF s is changed THEN

18 optimize s by calling Algorithm 4.1 with input s and K Bg;

19 push s onto S¢;

20 update P with S;; RETURN P;

can reduce data transmission by inserting new literals to appropriate subqueries
to filter out redundant data, or by eliminating useless variables in the parameter
lists of subqueries. Algorithm 4.2 gives the top level algorithm of our optimization
approach.

Algorithm 4.2 takes a query plan and semantic knowledge, including semantic
rules and range facts of attribute values as input. The algorithm traverses the in-
put query plan twice by maintaining two stacks of subqueries. The first traversal
optimizes each subquery and propagates inferred range information forward in the
data flow order. The second traversal propagates backward the insertions and dele-
tions of query literals made by the optimizer in the first traversal to perform global
optimization on the query plan. We explain the algorithm as it takes the example

query plan in Figure 4.1 and the semantic knowledge shown in Table 4.2 as input.
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7 <wharf.depth 400

580 swharf.length Z700
R4: if Long Beach seaport
U wharf depth< 50

12 < ship_class.draft & R5: if Long Beach [Grane >0
325 sship_class.length @50 O wharf length> 1200
subquery 1: l subquery 2:
assets(?ship_class,?draft,?length):— geo(?wharf_id,?depth,?wlength):-
ship_class(?ship_class,_,?draft,?length,Y")| seaport(‘Long Beach",?glc_code,_,_,_, ),
ship(_,?ship_class,"Active",_, ). wharf(?wharf_id,?glc_code,?depth,?wlength,?crane,_),
?crane > 0.

12 < ?draft <2

<? 7 < ?depth 50
325<7length 950 1200 <?wlength 2700

\ /

subquery 3:

sims(?ship_class,?wharf_id):—
assets(?ship_class,?draft,?length),
geo(?wharf_id,?depth,?wlength},
?depth > ?draft,
?wlength > ?length.

?draft <50

Figure 4.2: Propagating inferred range information forward to optimize subqueries

4.3.1 Forward Propagation

In the first traversal, that is, the loop from line 4 to line 8, the plan graph is traversed
forward in the data flow order. During the traversal, each subquery is optimized
by calling Algorithm 4.1, the basic semantic query optimization algorithm. The
optimizer also infers the range of each variable in the parameter list of the subquery
using the semantic knowledge. If a more restrictive range is inferred, it will be
propagated forward for the optimization of the succeeding subqueries (line 7). This
inference is computed at the same time when the optimizer applies Algorithm 4.1
to optimize the subquery. Algorithm 4.1 computes an implication closure from the
semantic knowledge and the subquery (line 4 and line 6 to 9 in Algorithm 4.1). The
optimizer can extract the most restrictive range of a variable that can be inferred
from the semantic knowledge from the implication closure and the literals in the
subquery.

This step is illustrated in Figure 4.2. Subquery 1 is optimized but no reformu-

lation is found to be appropriate. However, based on the range facts, the ranges
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Given L =7z >7x2 in a query:
1 IF min(?z1) > mawx(Tzy) THEN delete L.
2 IF (max(?z1) = mazx(Tx2)) A (maz(?x1) > min(Tx) > min(Tx1))
THEN insert 7z; > min(7xs2).
3 IF (max(?ze) > max(Tx1) > min(Tz1)) A (min(?e1) = min(?z2))
THEN insert Tus < max(?zy1).
4 IF max(Tra) > max(Tey) > min(Tes) > min(Tey)
THEN insert 7az; > min(7z3) and insert 7us < maz(?xy).
5 IF max(?x2) > min(Tze) > max(?zy) > min(Tzy)
THEN refute L.
6 IF max(?x2) > max(?xy) > min(Te1) > min(Tea)
THEN insert Tus < max(?zy1).
7 IF max(?x1) > max(Te2) > min(Tee) > min(Tey)
THEN insert 7uz; > min(7zs).
8 IF (max(Tze) > min(Tze) > min(Tz1)) A (min(Tx:) = maz(Tx))
THEN refute L.
9 IF (max(?z1) = min(Tz1) = max(Tx2)) A (min(?e1) > min(?r2))
THEN insert Tus < max(?zy1).
10 IF (maz(7x1) = maz(Tz2) = min(7z2)) A (maz(Tz1) > min(Tz1))
THEN refute L.
11 IF (maz(Tx1) = min(Tz1) = min(Tz2)) A (maz(Tz2) > min(Trs))
THEN refute L.
12 IF (maz(?x2) > min(Txs) > min(?z1)) A (maz(Te1) > min(?x1))
THEN insert 7uz; > max(7z2).
13 IF (maz(?xy) > min(?z1)) A (maz(Te) > max(?ey) > min(?es))
THEN insert Tus < max(?zy1).
14 IF (maxz(?x2) > min(?x2)) A (maz(Te1) > max(Tee) > min(?ey))
THEN insert 7z; > max(Tzs)
15 IF max(?21) = maz(Tey) = min(Tz1) = min(Tzy) THEN refute L.
16 OTHERWISE no action.

Table 4.3: Axioms for 7y >7x,

of variables ?draft and ?length are inferred and propagated to Subquery 3. Simi-
larly, the optimizer does not reformulate Subquery 2, but it uses semantic knowledge
and the constraints specified in the subquery to infer the most restrictive ranges of
?depth and 7wlength, and propagates the results to optimize Subquery 3.

A subquery might include literals that the basic SQO algorithm cannot optimize,
such as comparisons between two variables (e.g., 7depth > ?draft), set operators
(e.g., intersection and union), and other data manipulation operators. To opti-
mize these literals, we include a set of axioms for reasoning about these operators.

Table 4.3 gives the axiom for the operator >. Given the ranges of the variables
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occurring in a special literal, the optimizer will propose one of the following four

reformulations using the axioms:

e deleting the literal when the literal is found redundant,

e adding new built-in literals when more restrictive range is inferred,

e refuting the literal when the given ranges show that the literal is
unsatisfiable,

e no action.

In our example, when optimizing Subquery 3, the optimizer infers that 7wlength
is always greater than ?length because the minimal value of ?wlength is greater
than the maximal value of ?length. Therefore, the literal 7wlength > 7length is
redundant and can be deleted (from Axiom 1 in Table 4.3). Meanwhile, for the
literal ?depth > 7draft, the optimizer inferred a new literal 7draft < 50, because
the maximal value of ?depth is 50. This inferred literal is inserted into the subquery

(from Axiom 13).

4.3.2 Backward Propagation

After the optimizer finishes optimizing a subquery and inferring ranges of variables,
it pushes the subquery into another stack 5, for the second query plan traversal
(line 9 to line 19). The optimizer pops out subqueries from S, during the traversal,
which corresponds to a backward traversal in the data flow order of the query plan.
Each subquery is processed differently depending on whether a subquery retrieves
data or process intermediate data. This step is illustrated in Figure 4.3.

There are two cases. The first case (line 11 to 13) is when the subquery is to
combine or process intermediate data (e.g., Subquery 3). The optimizer examines
the optimized subquery and determines the required variables (line 12). Since some
literals were deleted by the optimizer during the forward traversal, there is no need
to retrieve or compute the values of the variables occurring in those literals. The
optimizer can propagate this information to optimize the preceding subquery that
retrieve data values of those variables. In our example, the optimizer takes optimized
Subquery 3 and determines that in this subquery, all the variables are required except

7wlength and ?length, because the literal Pwlength > 7length has been deleted
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subquery 1: subquery 2:

assets(?ship_class,?draft,?length):- geo(?wharf_id,?depth,?wlength):-
ship_class(?ship_class,_,?draft,?length,1Y")] seaport("Long Beach",?glc_code, ,_,_, ),
ship(_,?ship_class,"Active", , ). wharf(?wharf_id,?glc_code,?depth,?wlength,?crane,_),
?draft <50 ?crane > 0.
subquery 3:

sims(?ship_class,?wharf_id):—
assets(?ship_class,?draft,?lengt
geo(?wharf_id,?depth,?wlength},
?depth > ?draft,
?wlength > ?length.

>

),

?draft <50

Figure 4.3: Propagating newly derived literals backward to optimize query plan

from Subquery 3 and neither variable is used for output or in any other constraints.
The optimizer saves the required variables in V' and removes the references to the
two redundant variables from the database literals in Subquery 3.

Next, the optimizer extracts newly inserted built-in literals from the optimized
subquery if the values of their variables are retrieved in one of preceding subqueries.
If a built-in literal satisfies this condition, then the optimizer will move the literal
from the subquery to a set L temporarily so that later in the traversal, the optimizer
can insert 1t into an appropriate preceding subquery. This allows the system to
evaluate the literal as early as possible to reduce intermediate data. In Subquery
3 there is a newly inserted built-in literal ?draft < 50, which involves a variable
initially defined in Subquery 1. The optimizer thus moves this literal to L for further
processing.

The second case (line 14 to 18) is when the subquery is to retrieve data from
a remote database. The optimizer first removes any variable in the parameter list
not in the set V of the required variables, and then inserts literals collected in
L previously into the subquery if the literals involve variables generated in this
subquery. In our example, when the optimizer encounters Subquery 2 — a subquery
that retrieves data from a remote database, the optimizer finds that the variable
?wlength is not a required variable and removes it from the parameter list, as well
as the reference to this variable in the database literal on wharf. The optimizer
continues its traversal and encounters Subquery 1. Similarly, it finds that ?length

in this subquery is not required and removes the variable from the subquery. The
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subquery 1: subquery 2:

assets(?ship_class,?dr igth):— geo(?wharf_id,?dep yth):—-
ship_class(?ship_class, ,?d ngth,|Y")| seaport("Long Beach",?glc_code,_,_,_, ),
. wharf(?wharf_id,?glc_code,?der. gth,?crane,_),
2draft < 50. Perane > 0.
subquery 3:
sims(?ship_class,?wharf_id):—
assets(?ship_class,?d 1gth),
geo(?wharf_id,?def gth),

?depth > ?draft,
n.

Figure 4.4: Optimized query plan

optimizer also finds that in the set L, there is a literal ?draft < 50 involving the
variable ?draft that is defined initially in Subquery 1. Therefore, the optimizer
move the literal to this subquery and completes the traversal.

If a subquery is modified in the previous steps (line 15 and 16), the optimizer
invokes the basic semantic query optimization algorithm to optimize this subquery
again to see if there are additional optimization opportunities. Since both Subquery
1 and 2 are modified, the optimizer will invoke Algorithm 4.1 to optimize both of
them. At this moment, Subquery 1 is identical to the example query Q4 in Table 4.1.
The optimization for Subquery 1 is also the same as that for Q4 as we have discussed
in the previous section. The resulting plan is shown in Figure 4.4, where terms in

bold font are inserted new terms, and terms under shaded regions are deleted.

4.3.3 Analysis of the Query Plan Optimization

The rationale of the forward-propagation is to use literals specified in subqueries to
specialize the semantic knowledge as much as possible for more effective optimiza-
tion on succeeding subqueries. The backward-propagation step attempts to detect
unnecessary data retrieval and move newly derived literals to subqueries that re-
trieves remote databases so that the literals can be evaluated as early as possible in
a query plan and reduce intermediate data.

Since the loop for each traversal repeats the time proportional to the number
of subqueries, and in each repetition, the time required for the basic SQO is the

dominant factor, the time complexity of Algorithm 4.2 is O(2 - n - Ty,), where n
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is the number of subqueries in the input query plan, and Tj,, is the maximal time
required to perform the basic semantic query optimization for each subquery.

The correctness of Algorithm 4.2 can be verified as follows. In each step, the
inferred ranges of variables propagated forward are always larger than the ranges of
variables in the answers; and therefore, no data will be lost due to the modifications
to subqueries. Since the inferred ranges of variables are always at least as restrictive
as the literals specified in the query, no undesired data will be retrieved due to the
modifications to subqueries. We can also establish that moving literals backward
will not change the semantics of a query access plan. The proof is similar to the
proof for the correctness of the predicate push-down techniques [Ullman, 1988, Levy
et al., 1994]. Consequently, the resulting query plan of Algorithm 4.2 will return the
same answer as an input query plan, as long as the given database state is consistent
with the semantic knowledge.

The resulting plan may also be much less expensive than an input plan. In our
example, since the system does not need to transmit ?wlength and ?length, and a
more restrictive constraint ?draft < 50 is inserted to Subquery 1, the intermediate
data transmitted from remote databases to the local system is significantly reduced.
Furthermore, Subquery 1 can be executed more efficiently because the system does
not need to retrieve and compute a join over the large relation ship. In our ex-
periment, it takes 3.17 seconds to execute the original plan while it takes only 1.78
seconds to execute the optimized plan, including 0.03 second of optimization time.
This amounts to a 43.8 percent reduction. Therefore, our optimization approach

can effectively optimize this query and reduce the execution cost.

4.4 Related Work in Query Optimization

The section compares this approach with related work in semantic query optimiza-
tion for conjunctive queries, predicate move-around and semi-joins, a conventional
syntactic query optimization technique for distributed databases.

The query plan optimization approach presented here is elaborated from our pro-
totype approach described previously in [Hsu and Knoblock, 1993b]. Our approach
extends previous work in SQO (e.g., [Yu and Sun, 1989, Shenoy and Ozsoyoglu, 1989,

Sun and Yu, 1994]) to optimize query plans generated by an information mediator.
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The main extensions include the ability to make inference about data manipulation
operators (e.g., comparisons, disjunctions, set operators, etc.) and move literals in-
ferred from semantic knowledge between subqueries in a query plan to provide global
optimization. As a result, our approach can optimize complex queries that includes
complex data operations, as long as a complex query is decomposed into a query
plan of conjunctive subqueries.

Optimizing a query plan by moving literals is previously studied in the work
on predicate push-down [Ullman, 1988], and predicate move-around [Levy et al.,
1994]. Predicate push-down is a commonly used query optimization technique. By
pushing data selection predicates down the hierarchical access graph of a query,
predicate push-down allows the selections to be applied as early as possible during
query execution. Predicate move-around is a generalization of predicate push-down.
This technique optimizes queries that involve views by moving predicates across
subqueries in a query graph. Similar to the forward and backward propagations of
query literals, predicate move-around moves predicates up in a query graph as an
intermediate step before pushing them down.

Our optimization approach for query plans differs from those techniques in the
use of semantic knowledge. Since semantic knowledge may enlarge the search space
of optimization, the potential savings of their knowledge-free techniques may not
be as much as what our algorithm can achieve. Though predicate move-around
does not apply semantic rules in optimization, it can apply functional dependencies
of attribute values to infer the ranges of variables. For example, if there exists
a functional dependency A — B, and both A and B are used in a query, their
optimizer can replace B with f(A) and infer new predicates. Our approach does not
apply functional dependencies in this manner. However, since Horn-clause rules can
express functional dependencies, it should be straightforward to extend our approach
to apply functional dependencies.

The most significant difference between predicate move-around and our approach
is that they assume that literals are not expensive. Their system may insert a new
literal to a subquery even if it is very expensive. Our approach, in contrast, is able
to apply the basic semantic query optimization algorithm to replace an expensive

new literal with less expensive ones if necessary.
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Compared to conventional syntactical optimization techniques for distributed
database systems, such as semi-joins [Apers et al., 1983, Jarke and Koch, 1984,
Ullman, 1988], our approach is more appropriate in a heterogeneous environment.
The result of a semi-join of relation R by relation S is the R tuples extracted from
the result of the join of R and 5. The semi-join technique optimizes a cross-database
join of R and S by joining S and the semi-join of R by S computed in the database
server where R resides. This requires merging data from one remote database to
the other. However, in many applications of heterogeneous information systems,
database servers might have write-protection against external data and prohibit an
optimizer from computing semi-joins. Even if there is no write-protection, in a
heterogeneous environment, two databases could be quite different and data may
need to be translated before they can be merged. This implies that we need to
build translators between each pair of databases integrated, which amounts to O(n?)
translators if there are n databases. Our approach optimizes query plans for an
information mediator that requires only n wrappers of translators for n databases.
The overhead at run time for our approach is smaller because the optimization does
not require access to remote databases. By the same token, our approach applies to
the applications that involve databases with write-protection.

More importantly, since our optimization approach does not depend on how an
individual database server executes a subquery, it can be incorporated easily on top
of existing query optimizers. When a new database is integrated to a multidatabase
system, the optimizer can be used without changing its code. This unique feature

is crucial for the extensibility of an information mediator.

4.5 Learning for Query Plan Optimization

Though a query plan retrieves data from multidatabases, semantic rules that express
regularities in a single database can still be used by the query plan optimization
approach to perform global optimization. Therefore, semantic rules required for
optimizing multidatabase queries can be learned by the learning approach developed
in Chapter 3 from each individual database integrated in the multidatabase system.
Information mediators that access the same databases can share the semantic rules

learned from that database, regardless of what other databases are integrated.
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To trigger the learning for optimizing a multidatabase query, the learner can use
a query planner to generate subqueries to single databases, and trigger the learning
using the subqueries.

Since our optimization approach for query plans is more effective when the opti-
mizer is able to infer more accurate ranges of variables, we can “bias” the learning
of the alternative query to prefer a built-in literal defined on an output variable.
That way, the learner will generate range rules about output variables that allow

the optimizer to infer accurate ranges.

4.6 Discussion

This chapter presented a novel query optimization approach to reducing the cost
of query plans generated by an information mediator. Our approach optimizes a
query plan by modifying subqueries in the query plan using semantic knowledge
about data. To efficiently execute a complex multidatabase query, it is crucial to
reduce redundant intermediate data. The approach presented here can use semantic
knowledge to infer the ranges of intermediate data accurately and yield arbitrarily
large additional savings for complex multidatabase queries.

In addition to its effectiveness, the approach is more general and flexible than
previous work in semantic query optimization in many aspects. This approach opti-
mizes a larger class of queries, exploits more expressive semantic knowledge, and de-
tects more optimization opportunities than previous work. This global optimization
approach can be implemented on top of existing query optimizers in a heterogeneous

environment and hence supports the extensibility of multidatabase systems.
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Chapter 5

Empirical Evaluation

This chapter describes the empirical evaluation on the proposed learning and query
optimization approaches. For this purpose, these approaches were implemented
in a learning system and a query optimization system and incorporated with an
information mediator that integrates heterogeneous databases.

The evaluation consists of four experiments. Section 5.2 describes the first ex-
periment which is to evaluate the effectiveness of the rules generated by the learning
approach when they are applied to optimize queries in a given database state. The
experiment compares the optimization performance produced by the rules learned
by BASIL with hand-coded rules.

The second experiment, described in Section 5.3, is to evaluate our approach to
dealing with database changes. Since it is too expensive to replay and control a
continuous sequence of the mix of queries and data modification transactions that is
sufficiently long to simulate real-world database usage, we cannot fully demonstrate
the net savings yielded by applying our learning and optimization approach. How-
ever, by showing the accuracy of the robustness estimation, it suffices to affirm that
a learner can minimize its effort in rule learning and maintenance while provide high
utility rules for the optimizer.

The third experiment examines the interaction between effectiveness and robust-
ness of a semantic rules. The experiment compares a variety of properties of the
learned rules — optimization performance, robustness and applicability. Section 5.4
describes and reports the results of this experiment.

The fourth experiment compares the utility of relational rules and range rules.

This experiment aims to verify that in general, relational rules are more widely
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applicable and produce higher savings, but less robust against database changes.
Section 5.5 reports the results of the comparisons.

To demonstrate the feasibility of the learning and optimization approaches, Sec-
tion 5.6 reports the execution time statistics of the learning and optimization sys-
tems. Finally, Section 5.7 summarizes the conclusions drawn from the results of

these experiments.

5.1 Environment for the Experiments

The rule induction system BASIL! is an implementation of the learning approach to
the acquisition of high utility semantic rules for SQO. BASIL learns semantic rules for
PESTO,? an implementation of the query plan optimization approach. PESTO uses
semantic rules learned by BASIL to optimize query plans for an information media-
tor. These systems are developed to empirically evaluate the approaches developed
in this research. They are incorporated with the SIMS information mediator [Arens et
al., 1993, Knoblock et al., 1994, Arens et al., 1996]. SIMS applies a variety of Al tech-
niques to build an integrated intelligent mediator between users and distributed, het-
erogeneous multidatabases so that users can access those databases without knowing
the implementation details such as their locations, query languages, platforms, etc.
SIMS invokes PESTO to optimize query plans, and PESTO in turn invokes BASIL to
learn the required semantic rules. Figure 5.1 shows the organization of sIMS with
the query plan optimizer and the learner.

SIMS takes as input a query expressed in the LOOM knowledge representation
language [MacGregor, 1990], which is also used as the representation language to
build an integrated model of databases. To optimize queries for SIMS, PESTO has
a component to translate a LOOM subquery into an internal representation similar
to Datalog to facilitate optimization, and a component to translate the result back
to LOOM. The semantic rules are expressed in the same internal representation.
By attaching different translation component, PESTO can optimize queries in other

query languages. BASIL uses the same internal representation to express the semantic

!BAyesian Speedup Inductive Learning.
?Plan Enhancement by SemanTic Optimization.
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Figure 5.1: Complete organization of SIMS with BASIL and PESTO

rules it learns. When it needs to read data or information about database (e.g.,
schema), BASIL sends a query to SIMS to obtain the required information.

To monitor the generation, optimization, and execution of query plans, SIMS
provides a graphical interface for users to compose and send queries to SIMS. Af-
ter optimizing a query plan, PESTO can explain how query plans are optimized by
tracing rule application sequences that reformulate a query literal. Figure 5.2 shows
an example snapshot of the interface screen. The SIMS interface is divided into
three main panes: the interface/trace pane (lower right quadrant), the query pane
(lower left quadrant), and the graph pane (upper half). In this example, the graph
pane displays a graph of the query plan generated by siMS. The user can select to
optimize the query plan through the interface by invoking PESTO. The subqueries
that are reformulated by the optimizer will be highlighted and the user can click
on a highlighted subquery to see an explanation on how it was reformulated. To
display the explanation, the interface will open a new window to show the origi-
nal subquery and the optimized subquery. Meanwhile, the interface will highlight
query literals that are different in the two subqueries and display the explanation
of the reformulation if the user clicks on a highlighted query literal, as shown in
Figure 5.2. This explanation allows the user to examine the rules used by PESTO in
query optimization.

For the purpose of our experiments, SIMS is connected with two remote ORA-

CLE relational databases via the Internet. These databases originally are part of a
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Figure 5.2: siMS interface provides explanations of optimization operations

real-world transportation logistic planning application. Table 5.1 summarizes the
contents and the sizes of these databases. Together with the databases, there are
29 sample queries written by the users of the databases. We also have 3 queries
written for the purpose to test different functionalities of the SIMS query planner,
and 4 queries to test PESTO, especially to test its ability to detect null queries (i.e.,
queries that return an empty set). That is a total of 36 queries. Among these 36
queries, 18 are multidatabase queries that require access to multiple databases to
retrieve the answer. Table 5.2 lists some properties of the multidatabase queries. To
train the learner, BASIL, 23 queries are selected to server as the training queries The
selection is based on the similarity of queries. Because we found that BASIL learns
nearly identical sets of rules using similar queries, to save experimentation time, we
remove some similar queries from the training set. In addition to the learned rules,

PESTO uses 271 range facts compiled from the databases for the optimization. SIMS,
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| Databases | Contents | Relations | Tuples | Size(MB) | Server |

Geo Geographical locations 15 56124 10.48 HP9000s
Assets Air and sea assets 16 4881 0.51 Sun SPARC 4

Table 5.1: Sample databases in a transportation logistic planning domain

PESTO and BASIL were running on a Sun SPARC-20 workstation during the experi-
ments. We synthesized 123 sample transactions that represent possible transactions
of the experimental databases based on the semantics of the application domain to
evaluate the accuracy of the robustness estimation. The set of transactions contains
27 updates, 29 deletions and 67 insertions, a proportion that matches the likelihood

of different types of transactions in this domain.

5.2 Effectiveness of Learned Rules

The first experiment is to evaluate whether the learning approach can generate
effective rules for cost reduction in a given database state. This experiment applies
a k-fold cross validation [Cohen, 1995a) to test the effectiveness of the learned rules.
The 23 training queries are randomly divided into four sets, three of them contain
6 queries, and one contains 5 queries. For each set of queries, BASIL takes the
remaining three sets of queries as training queries to learn a set of semantic rules.
The selected set of queries is combined with the 13 additional queries to form the
test set of queries. Next, SIMS takes the test set as input and invokes PESTO to
optimize the queries using the learned semantic rules. After collecting performance
data, the learned rules are discarded and the process repeats for the next set of
queries. The experiment will thus generate four sets of performance data.

The beam size for the rule pruning search in BASIL is set to three. To avoid
learning identical rules, each query is optimized using existing learned rules before
the learner generates training queries. We also remove logically redundant rules after
the learning to reduce the number of learned rules.

Prior to this experiment, we have hand-crafted a set of 112 semantic rules to
demonstrate the effectiveness of the query plan optimizer PESTO, These rules were

carefully designed after several iterations of debugging and modifications to allow
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Number of | Query | Size of

ID | Short description Subquery | Length | Answer

205 | T-countries’ airports, by name, 3 22 7
where C-5 aircraft can land at wartime

206 | T-countries’ airports, by name, where fully 3 22 1

loaded DC-8-61s can takeoff at wartime
213 | wharves with container cranes at Long Beach,

by pier name and berth ID, where slow 3 51 108
Container/Breakbulk ships can dock
214 | wharves at Long Beach with RORO ramps, 3 43 54

by pier name and berth ID where

METEOR ships can dock

215 | For each ship class-subclass with LASH cargo
capacity, list all wharves at Long Beach, 3 51 864
by pier name and berth ID, where such class
of ship can dock

216 | ships which can handle RORO cargo and can dock 3 30 3
in T-country

217 | ship classes, by ship class name, seaport name,
and berth-type name which can handle container 3 25 272
and can dock at S-port or T-port

218 | ship classes, by ship class name, seaport name,

and berth-type name which can handle container 3 27 360
and can dock at S-port or T-port
226 | low-altitude airports where a Ch can land” 3 21 4
227 | airports in T-country where a Ch can land” 3 19 9

Table 5.2: Multidatabase queries used in the experiments

the optimizer to explore as much optimization opportunity as possible for the sample
queries. We report the optimization performance produced by the hand-coded rules
for the purpose of comparison.

The performance data contains the total elapsed time of each query execution,
which includes the time for database accesses, network latency, as well as the over-
head for semantic query optimization. To reduce inaccuracy due to the random
latency time in network transmission, all elapsed time data are obtained by execut-
ing each query 10 times and then computing their medians. Then for each query,
the percentage time savings are obtained by computing the ratio of the total time
saved due to the optimization over the total execution time without optimization.

Table 5.3 shows the average of the savings for all queries, the average of savings
for multidatabase queries and the standard deviations. The data shows that the
learned rules can produce a significant savings on the test queries, with a ten percent

higher savings for multidatabase queries. The data also shows that the learned rules

80



Test Average | hand-coded
1 2 3 4 savings rules
All 28.99% 31.60% 33.94% 29.86% | 31.07% 25.84%
s=2.20%
Multidb 39.43% 42.51% 42.61% 39.63% | 41.05% 36.19%
s=1.75%
# of Rules 101 119 106 118 111 112
s=91
opt time (s) | 0.038 0.047 0.041 0.054 0.045 0.044
s=0.007

Table 5.3: Performance data of learned rules and hand-coded rules

outperform hand-coded rules in all four tests. We note that some of our test queries
are already very cost-effective, and there is not much room for optimization for those
queries. But for some expensive multidatabase queries, the savings can reach as high
as 70 to 90 percent. This result is significant given that the standard deviations are
low, and because all tests use about the same number of rules and optimization time.

To examine the cumulative effects of training, Figure 5.3 presents the result of
our investigation on the relation of the number of training queries and the coverage
of rules, that is, the number of queries for which the learned rules are found to
be applicable. The result is obtained from an incremental k-fold cross-validation
procedure. As in the k-fold cross-validation, we randomly divide the 23 test queries
into four sets of five or six queries and combine one set and the additional queries as
the test set, and the other three sets as the training set. Recall that in Chapter 4,
we have discussed that given a training query, if it is a multidatabase query, the
learner will invoke the query planner to decompose the query into subqueries to
single databases before it can be used to trigger the learning. Also, if there is more
than one primary relation in a training query, the learner will use a preprocessor to
partition the parameter list and generate a set of training queries with one primary
relation. As a result, for each query used for training, there are about four to five
queries generated to train the learner. We call the generated queries trigger queries

to distinguish them from the given queries that are used for the purpose for training.
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Figure 5.3: The effect of training and rule coverage in BASIL

Therefore, for each set of training queries, there are about 28 trigger queries actually
used to train the learner.

The incremental k-fold cross-validation proceeds as follows. For each set of 28
trigger queries, the procedure starts by shuffling the set of trigger queries. The first
trigger query is selected and included in the training set to train BASIL. Then the
procedure calls PESTO to optimize test queries and counts the number of queries
covered by the learned rules. The procedure includes the next trigger query in the
training set and repeats the train-and-count process. This repeats for eight times.
After that, the procedure increases the size of the training set by two trigger queries
for four times, and then by four for three times. This yields a sequence 15 data
of the rule coverage after BASIL is trained on 1,2,...,8,10,...,16,20,24, 28 trigger
queries. After all four sets of trigger queries are used, the procedure will yield four
sets of 15 data for each size of training trigger queries. Figure 5.3 is a plot of the
average rule coverage data over the four sets of trigger queries against the size of
training trigger queries.

Figure 5.3 shows that the learning curve of BASIL has a characteristic shape,
which grows quickly and flattens out. The curve shows two plateaus, the first and
short one is between 6 to 10 trigger queries, and the next one is after there are 20

trigger queries. This is probably because our sample queries can be roughly divided
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into two categories: queries about seaports and ships, and queries about airports
and airplanes. Most of queries in one category are covered after BASIL is trained
with 6 queries and then it takes on average another 4 trigger queries to learn more
rules that cover queries in the other category. Remarkably, it takes just 20 trigger
queries, which could be generated from about four or five original training queries,
to cover most of the 18 test queries. This result supports the claim that the learning
approach can generate general rules that can be applied to a wide range of queries

for query optimization with a small number of training queries.

5.3 Accuracy of Robustness Estimation

This experiment evaluates the accuracy of robustness estimation so as to establish
the claim that using the robustness estimation allows a learner to minimize the
cost of dealing with database changes. The experiment design can be outlined as
follows: train BASIL to learn a set of rules and estimate their robustness, use the 123
synthesized data modification transactions to generate a new database state, then
check if high robust rules have a better chance to remain consistent with the data
in the new database state.

Table 5.4 converts numeric estimation of robustness into four discrete levels based
on the number of transactions. Suppose the robustness of a rule is estimated as
p. From the definition of robustness, it is equivalent to say that the probability
that an invalidating transaction of this rule will not be performed is estimated as
p. Assuming that each transaction is probabilistically independent, then given 123
transactions, the probability that none of these transactions will invalidate the rule
can be estimated as p'??. That is, the probability that the rule will remain consistent
after 123 transactions based on the estimated robustness is p'?*. We denote this
probability as P.(r,n) = (robust(r))™, the probability of consistency for a rule r
after n transactions, or simply P.. Clearly, we have 0 < P. < 1. We divide P, values
into four quarters to determine four levels of robustness thresholds. Table 5.4 shows
the P. values and their corresponding estimated robustness values.

In this experiment, we let BASIL exhaust the search space during the rule pruning
by setting the beam size to positive infinity so that it will not remove low robust

partially pruned rules. We use all 23 training queries to train BASIL, which results
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‘ ‘ very high ‘ high ‘ low ‘ very low ‘
P. 0.75 0.50 0.25 0.00
Robustness | 0.99766 | 0.99438 | 0.98879 | 0.00000

Table 5.4: Probability of consistency and corresponding robustness after 123 trans-
actions

‘ ‘ Consistent Inconsistent ‘ Total ‘

very high 40 7 47
high 49 13 62
low 19 22 41
very low 151 54 205
Total 259 96 355

Table 5.5: The joint distribution of the actual and estimated robustness

in 355 rules. Meanwhile, BASIL estimates the robustness of these rules during the
pruning. We use another set of 202 sample transactions to assist the robustness
estimation. Most of those transactions are synthesized for our earlier experiment
in Chapter 2. After generating the rules and collecting their robustness, we apply
the set of 123 transactions to the two relational databases connected to siMS and
generate a new database state. Next, we check the consistency of all 355 rules and
identify 96 inconsistent rules in the new database state. Table 5.5 shows the number
of rules in each levels of robustness against the number of actual consistency of rules.
We perform a statistic significance test on the result in the table. Since we obtain
x? = 19.4356 from this table, and under the null hypothesis that the consistency
of a rule and its estimated robustness are independent, the probability to get a x?
value this high is less than 0.01, we conclude with a 99 percent confidence that
the robustness estimation accurately reflects the likelihood of whether a rule may
become inconsistent after data modification transactions.

In order to evaluate the predictive power of the robustness estimation, we define
two measures
|1 N L

1]

recall =
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Consistent Inconsistent

(1) (1) Total
P.>0.75 40 7 47
(—L)
P, <0.75 219 89 308 | precision =
(L) 28.89%
Total 259 96 355

recall = 92.70%

Table 5.6: The joint distribution of the actual and estimated robustness

11|
L

precision =

where [ is the set of inconsistent rules and L is the set of rules that are estimated
as likely to become inconsistent. The definitions are analogous to their definitions
in natural language processing and information retrieval research. Intuitively, recall
indicates the proportion of inconsistent rules being identified as likely to become
inconsistent rules, and precision indicates the proportion of the estimatedly low
robust rules that actually become inconsistent.

Consider that a threshold for low robust rules is set to be P. < %. That is, if the
probability of consistency for a rule is less than 0.75, then it is predicted to become
inconsistent after 123 transactions. From Table 5.6, this threshold produces a recall
of 92.7 (= 89 / 96) percent and a precision of 28.89 (= 89 / 308) percent. That
is, with this threshold, BASIL can accurately point out 92.7 percent of inconsistent
rules. But on the other hand, among all those rules that are classified as likely
to become inconsistent, only 28.89 percent actually become inconsistent. This is
not surprising because the robustness estimation may overestimate the probability
of invalidating transactions of a rule in situations where enumerating all possible
invalidating transactions is too expensive. In fact, by raising the threshold, we can
obtain a higher recall while maintain the precision to be around 28 percent. For
example, if we set P. < 0.95 as the threshold, then we can obtain a high recall of
98.95 percent, and a precision of 28.27 percent. Consequently, since the robustness

estimation can accurately point out low robust rules, by properly adjusting the
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Average Average Avg opt.

savings # of rules time (s)
very high (P. > 0.75) | 12.54% s=1.89% | 28.5 s=6.45 | 0.0287 s=0.008
high (P. > 0.50) 13.11% s=2.71% | 50.25 s=10.24 | 0.0393 s=0.010
low (P. > 0.25) 13.54% $=0.93% | 63.0 s=11.1 | 0.0362 s=0.004
very low (P, > 0.00) | 31.07% $=2.20% | 111.0 s=8.91 | 0.038 s=0.038

Table 5.7: Performance data of rules with different robustness thresholds

threshold, the estimated robustness values can provide the sufficient information for

rule learning and maintenance to deal with database changes.

5.4 Effectiveness versus Robustness

Intuitively, a low robust rule that expresses specific data regularity in a given
database state might produce a high cost reduction, while a high robust rule such
as an integrity constraint on the gender of pregnant patients in a hospital infor-
mation system might not be effective for query optimization. However, there is no
empirical data that verifies this intuition. This section describes an empirical study
For the

purpose of this study, BASIL uses the four robustness levels as shown in Table 5.4

of the interaction between effectiveness and robustness of semantic rules.

in the rule pruning to filter learned rules into four different levels of robustness. We
designed three experiments to compare the utility of the learned rules. The first
experiment compares their average savings. The second experiment compares the
converging rate of the coverage of the learned rules. The third experiment verifies
our assumption on the interaction between the robustness, length and applicability
of the learned rules.

We note that it is possible that an individual rule yields high cost reduction
together with a set of rules but low with another set. Since how much an individual
rule can contribute to the cost reduction can only be determined in the context
of the entire rule set used for the optimization, we do not have any experiment to

compare the effectiveness and robustness on an individual rule basis.

86



15

o o
i O 4t
2 -t
ey G — @~
O 7
E 7/
@ /
o o
2 7
S 101 / )
8
= s XX
-g / s
o / ’
2 000
2 o} KK =K ==K
5 R
=] o 7
g ¥
5 i !
B 57 ! ! 1
£ / /
3 Q/****** X Allrules
% +// *  Very high robust
= ! I
g Iy +  high robust
< O,// O low robust rules
/
ok s F : ‘ ‘ ‘
0 5 10 15 20 25 30

Number of training trigger queries

Figure 5.4: Rule coverage rates for rules of different robustness levels

In the first experiment, for each level of robustness threshold, BASIL is modified
so that it will discard a partially pruned rule if its estimated robustness is below the
threshold during the rule pruning search. Then we apply a k-fold cross-validation as
described in Section 5.2 to obtain the average savings produced by the learned rules.
Table 5.7 shows the average performance data with the standard deviations. The
data show that the rules learned with the robustness thresholds may not produce
savings as high as those with no robustness threshold. However, since there are
more than twice as many rules in the “very low” (i.e., no threshold) case as in other
cases, the low savings might be ascribed to the lack of sufficient number of rules. It
is remarkable that using the set of 28.5 very high robust rules can still produce a
12.54 percent savings.

We apply the incremental k-fold cross-validation as described in Section 5.2 to
obtain the data on the converging rate for different robustness thresholds. Figure 5.4
shows the plot of the data. Interestingly, the four curves for different thresholds have
almost the same shape, that is, they converge at about the same rate. But with
higher thresholds, the number of optimized queries is smaller than the case where
no robustness threshold is applied.

In Section 3.4, we use length to measure the applicability of a rule and we assume

that robustness may also interact with applicability. The next experiment attempts
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Figure 5.5: Relation between application frequency and estimated robustness

to verify this hypothesis. In this experiment, PESTO uses the 355 rules learned for the
experiment in Section 5.3 to optimize all of our 36 queries, and count the application
frequency for each rule, that is, how many times a rule is located as an applicable
rule during the query optimization. Based on the data, we produce a scatterplot
to visualize the relation between the P. values and the applicability of a rule, as
shown in Figure 5.5. As we expect, for most of rules, the probability of consistency
is inversely proportional to their application frequency, because a high density of
the rule population is distributed below the curve y = 1/2. We note that there is a
significant population of rules positioned on the right-upper corner — they are both
effective and robust. Figure 5.6 shows the scatterplot of the length of rules against
their application frequency. The plot suggests that with few exceptions, widely

applicable rules are short, but short rules are not necessarily widely applicable.

5.5 Utility of Relational Rules

One of the important features of BASIL and PESTO is their capability to learn and use
relational rules for semantic query optimization. The consequent of a relational rule
is a database literal, while the consequent of a rule in the other class (i.e., the range

rules) is a built-in literal. Relational rules allow the optimizer to identify redundant
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Figure 5.6: Relation between application frequency and length of rules

Average | # of | Avg. app. | Avg est. #

savings | rules | frequency | robustness | invalid
Range 13.22% | 163 2.219 0.98466 32
rules s=1.14% s=2.57 s=0.019
Relational | 26.28% | 192 5.135 0.82115 66
rules $=9.94% $s=5.26 s=0.2329

Table 5.8: Comparing range rules and relational rules

relational joins and eliminate the cost to access a redundant relation. Relational
rules also allow the optimizer to infer a cost-reducing relation join. Relation joins
are usually the dominant factor in query execution cost. As a result, relational
rules may potentially produce higher savings. However, relational rules are less
robust compared with range rules. One explanation is that relational rules are
more sensitive to database changes than range rules because they express the subset
relationship between attribute values of two different relations. In contrast, range
rules are less sensitive to database changes because they express the value range
of a single attribute under certain conditions. This section describes an empirical

comparison between relational rules and range rules to verify our assumptions.
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Length | Number of | Elapsed real time | Database

of query | rules learned | for learning (s) accesses
Average 8.39 6.02 57.94 50.46
s= 3.92 11.17 58.08 36.14
Max 18 61 378.15 157
Median 7 2 44.73 42
Min 3 0 5.7 9

Table 5.9: Learning time statistics of BASIL on training trigger queries

Table 5.8 shows the average performance data and the standard deviations. The
average savings data are obtained using a k-fold cross-validation as described in
Section 5.2, except that before PESTO optimizes the test queries, a filter is used
to remove range rules or relational rules from the rule bank. The data shows that
using only relational rules yields about twice as much savings as using only range
rules. The other data in the table are collected from the 355 rules learned for
the experiment in Section 5.3. The average robustness and the actual number of
inconsistent rules after 123 transactions show that relational rules are on average
less robust than range rules, while the average application frequency data, together
with the average savings, provide strong evidence that relational rules are much
more effective. This may suggest using different robustness thresholds for relational
rules and range rules during the rule pruning so that the learner can generate more

effective relational rules and filter out more low robust range rules.

5.6 Efficiency of Learning and Optimization

When conducting the experiment in Section 5.3, we collect the execution time statis-
tics of BASIL, which takes 59 trigger queries generated from the set of all 23 training
queries as input and generate 355 rules. Table 5.9 shows the average learning time
statistics. Since the standard deviations are quite large, the table also provides the
maximum, median, and minimum values. The median learning time is less than a

minute but in some case learning could take up to 7 minutes.
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Previous sections have reported the average optimization time data whenever
they present the data on average savings. The data shows that in all our experiments,
with about 100 rules, PESTO takes about 0.03 seconds to optimize a query plan. This
optimization time is very small compared to the average query execution time, which

is about 1.2 seconds without optimization.

5.7 Discussion

This section describes our experiments to evaluate the learning and optimization
approaches. The results show the utility of the learned rules for query optimiza-
tion. The experiments also verify some of our assumptions in the previous chapters.
In summary, we review the results and the conclusions we can draw from these

experiments.

e The performance data on average savings shows that BASIL learns sufficient
rules for PESTO to produce substantial savings and outperform the hand-coded
rules. PESTO provides better savings for multidatabase queries. The learning
curve shows that the learned rules quickly converge to cover most of 18 test
queries after BASIL is trained by about four training queries. Therefore, the
learning approach can generate general rules that can be applied to a wide

range of queries for query optimization.

e The robustness estimation of BASIL achieves a recall score of 92.7 percent and
precision of 28.89 percent in the experiment that compares the estimated ro-
bustness and the actual inconsistent rules in a new database state generated
from 123 transactions. The estimated robustness values allow us to increase the
recall score without sacrificing the precision by raising the robustness thresh-
olds. Since the robustness estimation accurately reflects the actual robustness
of rules, it allows a learner to minimize the cost of dealing with database

changes.

e Comparisons between the performance of the rules learned with different ro-
bustness thresholds reinforces the intuition that robustness may interact with

effectiveness. The scatterplot of the probability of consistency against the
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application frequency matches our assumption that the robustness is roughly
inversely proportional to the applicability of a rule. The scatterplot of the
length against the application frequency shows that long rules are unlikely to

be widely applicable.

Comparisons between different properties of range rules and relational rules
provide evidence that relational rules may on average produce higher savings
than range rules for query optimization, but they are also on average less

robust than range rules.

The performance data shows that BASIL and PESTO can efficiently learn se-

mantic rules and optimize queries in our experiments.
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Chapter 6

Conclusions and Future Work

Fragrant and robustly flavored, basil is pesto’s key ingredient.
Its sweet blend of anise, clove and mint is essential

to many French, Southeast Asian,ltalian and Greek dishes.

— How to Use Herbs, The Green House

This dissertation presents a solution to the knowledge acquisition problem of
semantic query optimization and a novel query plan optimization approach that
can utilize the learned rules effectively. The integrated learning and optimization
approaches allow an information system to reduce the query execution cost sig-
nificantly. In addition to their contributions to query optimization, the individual
approaches developed in this dissertation can potentially solve many important prob-
lems in applying machine learning to information system applications, including rule
maintenance, learning view definitions and imprecise query answering. Meanwhile,
this research raises many questions that deserve further investigation. This chapter
summarizes the research results and briefly discusses the potential applications and

future work.

6.1 Summary of Results

This section summarizes the results obtained from this research and its contributions.
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6.1.1 Robustness of Knowledge

A practical approach to learning from a real-world database must address the issue
of database changes. Chapter 2 formalizes the notion of the robustness against
database changes by defining the robustness of a rule r in a given database state d

as

Robust(r|d) = Pr(=t|d) = 1 — Pr(t|d),

where t represents the transactions on d that invalidate r. This definition localizes
the database states of concern to those that are accessible from a given database
state, and thus allows a learner to estimate the robustness efficiently. The robust
estimation problem otherwise would be intractable because a learner must estimate
combinatorial numbers of database states that are inconsistent with a rule.

The robustness estimation approach estimates probabilities of rule invalidating
transactions in a relational database environment. This approach decomposes the
probability of a transactions into local probabilities that can be estimated using
Laplace law or m-probability. Users do not need to provide additional information
for the estimation because the estimator can utilize information such as transac-
tion logs, database schema, and ranges of attribute values that is available from a
database management system. Even if the information is incomplete or unavailable,
the approach can still derive a reasonable estimation. Our experiments show that

the approach can accurately estimate the robustness of semantic rules.

6.1.2 Learning for Semantic Query Optimization

Chapter 3 presents a two-stage rule induction approach to learning effective and
robust rules for semantic query optimization. The first stage of the rule induction
is an inductive learning approach that forms a desirable optimized query, called an
alternative query, for a training query. The second stage generates semantic rules
that allow an optimizer to reformulate the training query into the alternative query.
The inductive learning approach uses a general minimal set covering heuristic that
guarantees a ratio bound O(In ), where [ is the number of candidate literals, between
the execution cost of a resulting alternative query and the optimal execution cost of

the equivalent queries composed of the candidate literals. Therefore, semantic rules
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learned by this approach will allow an optimizer to reformulate a training query into
a low cost equivalent query.

The pruning approach used in the second stage prunes literals in a semantic rule
so that they are not specific to the training query, but can be applied to a wide class
of similar queries. The pruning approach uses a beam search algorithm guided by
the estimated robustness of partially pruned rules to search for highly robust and

widely applicable rules.

6.1.3 Semantic Optimization of Query Plan

Chapter 4 presents an extension of semantic query optimization to optimize query
plans for integrated heterogeneous information sources. Using semantic knowledge
allows our approach to significantly reduce redundant data transmission. A key ad-
vantage of our approach over previous work in query optimization is that it can infer
the range constraints of intermediate data from semantic knowledge and propagate
them around a query plan graph. Another advantage of this approach is that it can
use a set of axioms to optimize comparisons, set operators and other complex data
manipulation operators. As a result, the approach can effectively optimize a wide
range of complex queries using learned semantic rules.

A new feature of our learning and optimization approaches is that they can learn
and use relational rules. Our experiment confirms that relational rules are useful in

semantic query optimization but less robust on average.

6.2 Potential Applications and Extensions

This section briefly discusses potential applications of the ideas developed in this
research. These ideas may provide solutions to a wide variety of problems of learning
for knowledge-intensive database services. In addition, the robustness of knowledge
might provide an answer to a long sought quest in epistemology: the justification of

induction.
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6.2.1 Machine Learning in Databases

A database system can apply machine learning algorithms to automatically learn
required knowledge from data for knowledge-intensive services. However, since the
learned knowledge may become inconsistent after changes to the data, a database
system may incur an additional overhead of knowledge maintenance in applying
machine learning. The robustness estimation approach solves this key problem in
applying machine learning in database systems. Though it does not eliminate the
need for knowledge maintenance, robustness estimation allows a database system to
control and minimize the overhead of maintaining learned knowledge. In addition,
the inductive learning approach and the pruning approach can also be applied to
learn other types of knowledge from data. We briefly discusses some of specific

applications as follows.

Rule maintenance

Rule maintenance involves two issues: identifying inconsistent rules and repairing
inconsistent rules. The robustness estimation approach can provide a solution to
both issues with minor modifications. For example, the templates of invalidating
transactions for a rule used for robustness estimation can be applied to allow a sys-
tem to identify inconsistent rules efficiently. When a transaction changes the data
in a database, the system can identify an inconsistent rule by check whether the
transaction implies an invalidating transaction of a rule. We note that a similar ap-
proach to identifying inconsistent rules has been proposed and studied substantially
for deductive databases [Lloyd, 1987]. The difference is that previous work requires
computing the information that allows the system to identify affected rules each
time the system performs a transaction. In our case, the information for robustness
estimation is ready and can be reused directly for inconsistent rule identification.
To repair an inconsistent rule, the system can guide the repair using estimated
robustness of partially pruned rules so that the repaired rule can become more
robust and eventually converge on rules that remain consistent. The algorithm for
rule repair in this approach will be similar to Algorithm 3.3 for pruning rule literals.

A preliminary algorithm is to propose a set of rule repairing operators, such as,
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changing constants specified in a literal, or eliminating a literal, and then apply the

one that yields the most robust new rule until a consistent rule is found.

Learning View Definitions

A view in a relational database [Ullman, 1988] is a virtual relation that is not present
physically in the database. Data tuples of a view will be extracted from physical
relations during query evaluation time. For example, we can define a view called
military-airports as a subset of the physical relation airports for airports used
for military purposes. A view is usually defined in the same language as a query.
Executing a query to a view efficiently is an important problem. Some views may
be expensive to access. In that case, the system can apply the inductive learning
approach for alternative queries to learn a less expensive alternative view definition
from data so that the system can access a view efficiently. The alternative view
would be used repeatedly, so even a small improvement could provide significant
savings.

Similarly, we can apply the inductive learning algorithm to learn less expensive
definitions of information sources [Levy et al., 1996], or less expensive concept defini-
tions in an integrated domain model in an information mediator [Arens et al., 1993,
Knoblock et al., 1994, Arens et al., 1996]. In both cases, definitions are expressed
as queries. When applying the inductive learning approach to these problems, we
can extend the robustness estimation approach to estimate the robustness of learned

definitions so that they can be robust against database changes.

Imprecise Query Answering

Imprecise query answering retrieves data that does not precisely satisfy a given query.
Examples of imprecise query answering include intentional query answering [Chu
and Chen, 1994], which assumes that an input query only specifies a subset of the
data that a user intends to retrieve, and query answering with uncertainty, which
retrieves data that satisfies a given query along some measure of uncertainty. The
approaches developed in this dissertation can potentially be extended for imprecise
query answering as follows. The system learns in advance a set of rules and assigns

to each rule a certainty factor, such as robustness. When answering a query, the
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system can reformulate the query as in semantic query optimization, but using those
uncertain rules that may not be exactly consistent with the data. The system can
control the quality of retrieved data by reasoning about the certainty factors of the
rules applied during the query reformulation. This way, a system can achieve desired

behavior of query answering depending on the application domain.

6.2.2 Justification of Induction

Robustness of knowledge in its general sense provides a partial solution to the justi-
fication of induction raised in [Goodman, 1946]. The problem is to evaluate the two

induced rules:
1. All emeralds are green.

2. All emeralds are grue, which means green if observed before tomorrow, and

blue if observed then after.

Evaluating these statements is difficult because both of them are consistent with
the current state of the world. The situation is similar to our learning problem where
the learned rules are consistent with a current state of the world, but it is unknown
whether the rules will remain consistent in the future. Robustness of knowledge in
its general sense can be defined as 1 — Pr(a), where a represents the event that an
action is performed to change the world state into a new state in which the given
knowledge is invalid.

We apply this general definition of the robustness to evaluate these two state-
ments. Consider the probability of an action that invalidates statement 1, which will
become invalid when some action is performed to change the color of all emeralds
in the world. Since to change the color of an emerald would require some difficult
chemical reaction, it is very unlikely that the color of all emeralds will be changed
and statement 1 is thus very robust. On the other hand, an action that invalidate
statement 2 is to make sure that nothing happens to one of the emeralds in the
world tomorrow to change its color to blue. This is very likely, and statement 2 is
thus not robust. Therefore, we should induce statement 1. Certainly, to draw this
conclusion we will need to accumulate enough knowledge about actions that change

the color of an emerald.
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Previously, [Russell, 1989] provided a survey of solutions to the problem and
proposes a solution of his own using determinations. He argues that since there
is a determination between the type of an object and its color, we should prefer
statement 1. However, he confesses that the determination may not provide a good
justification when we replace emeralds with chameleons in both statements. In
contrast, robustness applies to the chameleon case equally well. Since we know that
the color of a chameleon can be changed easily if the chameleon moves to a place
with a background of different color, when taking this probability into account, the
robustness can still provide a good evaluation.

Though Russell’s solution may not be as general as ours, unlike early philosoph-
ical work that seeks an objective justification, he points out that the justification of
an induction should rest on the knowledge of a learner. Using robustness requires
a learner to possess the knowledge about actions that change world states. It will
be interesting to examine how general robustness can server as the justification of

induction.

6.3 Further Inquiries

This research leaves many questions unanswered that deserve further investigation.

Some of the questions are given as follows:

e What are the characteristics of queries that can be optimized effectively by

semantic query optimization? How often is an input query suitable to be

optimized effectively by SQO?

o What are the characteristics of a database state where a query can be optimized

effectively by semantic query optimization?

e Is there a bound on the number of rules for an optimizer to achieve certain level
of performance? Is there any bound on the number of training queries to learn

sufficient semantic rules? Should a semantic query optimizer stop learning?

e How many transactions in a transaction log is sufficient to estimate robustness

accurately?
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Figure 6.1: Learning for SQO as an instance of general autonomous learning

6.4 Conclusion

Semantic query optimization can dramatically speed up database query answering
by knowledge intensive reformulation, but the problem of how to learn the required
semantic rules has not been previously solved. This dissertation provides a solu-
tion to the problem with an inductive learning approach that applies robustness
estimation to allow the learner to learn effective and robust semantic rules.

In a sense, the problem of learning for SQO fits well in the general framework
of autonomous learning (or learning from dynamic environment) [Russell, 1986,
Shen, 1989, Laird and Rosenbloom, 1990, Sutton, 1990, Gil, 1992, desJardins, 1992,
Kaelbling, 1993, Parr and Russell, 1995], where an agent learns to improve its perfor-
mance by interacting with a dynamic world where it is situated. Figure 6.1 illustrates
the instantiation of learning for SQO in this framework. In our case, the task for
the agent is semantic query optimization, and the world around the agent is a soft-
ware environment of databases and information systems. Compared with previous
work in autonomous learning, the learning agent in our problem must deal with a
more complex database environment. Though database environments are man-made
environments, the learner for SQO must deal with combinatorially many possible
database states (on the order of billions or more for a relatively small database) and
a large number of different queries. Database environments are beyond the control
of the machine learning researchers. It is difficult to fully predict their dynamics.
Researchers can not freely assume what type of information or knowledge would
be available to the learner in a database environment. Consequently, a solution
to the knowledge bottleneck problem of semantic query optimization represents a

significant step toward autonomous learning in a software environment.
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Appendix A

Terminology

This appendix chapter defines the basic terminology used throughout this disserta-
tion, including databases, queries and semantic knowledge.

A.1 Databases

In this dissertation, we consider databases organized in the relational data model
because it 1s well-defined and widely used in practice. A database consists of a set
of relations. A relation is then a set of instances (or tuples). Each instance is a
vector of attribute values. The number of attributes is fixed for all instances in a
relation. The values of attributes can be either a number or a string, but with a fixed
type. Table A.1 shows the schema of two example databases. In database Assets,
the relation ship_class stores information about ship classes, and ship contains
data about individual ships. The other database Geo is built for geographic location
information. Here we list the schema of two relations on seaports and wharves
related to our examples.

Assets database:
ship_class(class name,ship type,max draft,length,container cap),
ship(ship name,ship_class,status,fleet,year built).
Geo database:
geoloc (name, glc_cd,country,latitude, longitude) s
seaport (name, glc_code,storage,rail,road,anch off shore),
wharf (wharf id,glc_code,depth,length,crane qty).

Table A.1: Schema of example databases
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1 assets(?ship_class,?draft):-

2 ship_class(?ship_class,_, ?draft,_,"Y"),
3 ship(_,?ship_class,"Active",_,_),

4 ?draft < 50.

Table A.2: An example query

A.2 Queries

The queries considered in this dissertation are conjunctive Datalog queries, which
corresponds to the select-from-where subset of SQL.} A query begins with a
predicate name as the site that the data will be retrieved, followed by a list of
parameters. For example, the query in Figure A.2 begins with the site name assets
followed by the parameters ?ship_class, 7draft and 7length. Variables always
start with a 7 mark. We refer to literals on a database relation as database literals.
For example, the literals listed from line 1 to line 3 in the example query are all
database literals. We refer to literals on built-in relations such as > and member,
between a single variable and a set of constants as built-in literals (e.g., 7crane >
0). Literals on built-in relations between two or more variables are comparisons
(e.g., 7depth > 7draft). We allow negations for built-in literals and comparisons.
In addition to arithmetic comparisons, we also allow predicates for data manipulation
operations including disjunctions, set operators (e.g., intersection and union) and
group-bys and aggregate operators.

A.3 Semantic Knowledge

Our approach uses two forms of semantic knowledge: semantic rules and range facts.
Semantic rules, represented in terms of Horn-clause rules, express the regularity
of data in an individual database. We adopt standard Prolog terminology and
semantics as defined in [Lloyd, 1987] in our discussion of rules. Semantic knowledge
is interpreted under the closed-world assumption. That is, a database literal is true
with regard to a database if and only if in the database there exists an instance that
satisfies the literal. Semantic knowledge should be consistent with the database. To
distinguish a rule from a query, we show queries using Datalog syntax and semantic
rules in a standard logic notation. Table A.3 shows some example semantic rules.

'In our implementation, however, queries are expressed in the LooM knowledge representation
language [MacGregor, 1990]. It is also used as the representation language to build an integrated
model of databases. For the simplicity of presentation, we choose Datalog to express queries because
modeling is not the subject of this dissertation and Datalog is well-known to both the database
and Al research communities.
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Rules:
Ri: If the mazimum draft of a ship is less than 50 then its status is active.
ship_class(?class,_,?draft,_,_) A ship(_,?class,?status,_,_) A ?draft < 50
= ?status = "Active"
R2: If a ship class has container capability, then there must exist some
ships that belong to that ship class in the database.
ship_class(?class,_,_,_,"Y") = ship(_,?class,_,_,_)
R3: If two seaports share the same geographic location code, than their names are also
tdentical.
seaport(?namel,?code,_,_,_,_) A seaport(?name2,?code,_,_,_,_)
= 7?namel = 7name2
R4: For all the geographic location codes of wharves, there is a seaport with
the same code.
wharf(_,?code,_,_, ) = seaport(_,?code,_,_,_,_)

Table A.3: Example semantic rules

We make distinction between two types of rules. The first type, referred to as
a range rule, are rules with their consequent a positive built-in literal (e.g., R1).
The second type consists of rules with their consequent a database literal (e.g.,
R2), referred to as a relational rule. Range rules are useful for inferring ranges of
attribute variables during the global optimization of multidatabase queries. They are
also useful for deriving redundant built-in literals for deletions and introducing cost-
reducing built-in literals for insertions. Relational rules are used to derive redundant
retrievals and joins to a database relation. They can also be used for introducing
cost-reducing relations.

Horn-clause rules can express a variety of database integrity constraints. R4 is
an example of a referential integrity constraint, a special case of relational rule. A
functional dependency can also be expressed in Horn-clause such as R3. Functional
dependencies are useful in inferring a precise range of a variable so as to delete or
insert a beneficial literal to a query.

Generally speaking, a rule is applicable to a query if the antecedent part of the
rule is a logical consequence of the literals of ). This can be determined by applying
SLD-refutation [Lloyd, 1987] to a target rule and query, where the goal comprises
the antecedents of R and the body of the query corresponds to the program clauses.
Unlike general theorem proving, the program clauses only contains query literals.
They will never induce new subgoals and the refutation process is decidable and can
be computed efficiently. We note that the use of SLD-refutation is the reason why
our approach can apply any Horn-clause rules in optimization, an advantage over
previous work.

Range facts state the range of the values of a given database attribute. For
numeral attributes, their range facts show the minimal value and the maximal value.
For string-typed attributes, their range facts enumerate the possible values. In our
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Range Facts:
F1: 12 < ship.class.max draft < 72.
F2: 325 < ship._class.length < 950.
F3: ship.class.containercap € {"Y","N"}.
F4: ship.status € {"Active","Inactive","Resigned"}.

Table A.4: Range facts state the range of attribute values

implementation, range facts of a string-typed attribute will not be used if there are
more than 20 possible values. Table A.4 gives some examples.

A.4 Database States and Transactions

A database state at a given time t is the collection of the instances present in the
database at the time t. We use the closed-world assumption (CWA) to interpret
the semantics of a database state. That is, information not explicitly present in the
database is taken to be false. A rule is said to be consistent with a database state
if all variable instantiations that satisfy the antecedents of the rule also satisty the
consequent of the rule. A straightforward approach to identifying an inconsistent
rule is to transform the negation of a rule €' + A into a query ~C' A A and send it
to the database system. If the query returns an answer that is not empty, then the
rule is inconsistent.

A database can be changed by transactions. A transaction can be considered as
a mapping from a database state to a new database state. There are three kinds of
primitive transactions — inserting a new tuple into a relation, deleting an existing
tuple from a relation, and updating an existing tuple in a relation.
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Appendix B

Templates of Robustness Estimates

This appendix describes the complete templates for two classes of Horn-clause
rules: range rules and relational rules. For each class, a set of transaction templates
and templates of estimates for the probability of those transactions are presented.

Before presenting the templates, we first explain the terminology and notation.
We use a notation to represent the repeatedly used parameters in the templates.
Table B.1 gives this notation. Parameters of the form N(...) can be obtained by
counting data in a given database. To evaluate the parameters of the form 7(...)
needs to access transaction log information. When no transaction log available, their
default values are zero. Also, if a literal is of the form A(...,7xz,...), then A.x is
used to denote the attribute of A where 7x values are instantiated.

B.1 Range Rules

Consider a range rule of the form

(9(?$)<: /\ Ai/\ /\ B]‘/\ /\ Lk,

1<i<T 1<5<J 1<k<K

where 6 is a predicate composed of a built-in predicate and constants (e.g., we can
define 0(7x) =?x > 100), A/’s are database literals where 72 occurs, and Lj;’s are
built-in literals. Three mutually exclusive classes of invalidating transactions and
the templates to estimate their probabilities are given as follows.

e T1: Update a tuple of A; or B; covered by the rule so that a new 7x value
satisfies the antecedent but does not satisfy 6(7x).

Pr(T1) = > w(An Ave)+ Y > wu(Bj,y)

1<i<TI 1<j<J yeAttr(By)
where for a relation A and one of its attribute A.z,

u(A, Az) = uq - ug - us - ug - Us,
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Symbol | Meaning

A | Antecedents of the rule
R | Number of relations

) | The set of attributes of a relation A
N(A) | Number of tuples in a relation A

) | Number of tuples in a relation A, satisfying a set of literals ¢

Pr(A € ¢) | Probability that an A tuple satisfies ¢
Pr(A.a € ¢) | Probability that the value of an attribute A.a satisfies ¢
7 | Number of all transactions

7(t) | Number of a certain type of transactions (e.g., updates)
7(t, A) | Number of a certain type of transactions on a relation A
7(t, Alp) | Number of a certain type of transactions on A satisfying ¢
7(t, A.a) | Number of a certain type of transactions on some attribute A.a

Table B.1: Notation

T(update) 4 1
T4+ 3
T(update, A) 4 1
- T(update) + R
T(update, A|A) + 1
N(A)

T(update, A) + NCATAT

U1 =

Us =

_ 7(update, A.z) + 1
~ 7(update, A) + |Attr(A)|
us = Pr(A.z € =0(7x) N A).

o T2: Insert a new tuple to a relation A; or B; so that the tuple satisfies all the

antecedents but not §(7x).

Pr(T2)= " s(A)+ > s(Bj),

1<i<T 1<5<J

where for a relation A,
s(A) = 8182 83,
T(insert) + 1
t+3
T(insert, A) + 1
T(insert) + R
s3 = Pr(A € =0(Tz) N A).

S1 =

S9 =
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e T3: Update one tuple of a relation A; or B; not covered by the rule so that
the resulting tuple satisfies all the antecedents but not 6(7x).

Pr(13)= 3. 3 o(Ajw)+ > > u(Bjy),

1<i<T weAttr(A;)—{A.x} 1<5<T yeAttr(B;)
where for a relation A and its attribute A.z,
v(A,A.z) = vy vy 03 vy Us,

T(update) 4 1
T4+ 3
T(update, A) 4 1
- T(update) + R
T(update, AJANO(T2)) + 1
BEeT N(4)

T(update, A) + N

v =

T(update, A.z) + 1
T(update, A) + |Attr(A)|
vs = Pr(A.z € =0(7z) N A).

Vg4 =

B.2 Relational rules

Consider a relational rule of the form

C(?l’)<: /\ A; A /\ B]‘/\ /\ Lk,

1<i<T 1<5<J 1<k<K

where C'(7x) is the abbreviation of C(..., 7z, ...) for a relation C' in the database, A;
and B;’s are database literals, and Lj;’s are built-in literals. Five mutually exclusive
classes of invalidating transactions and the templates to estimate their probabilities
are given as follows.

e T1: Update an attribute of a tuple of A; or B; covered by the rule so that
the new value allows a new 7x value satisfies the antecedents but not the
consequent.

Pr(T1) = > (A Avz)+ Y > wu(By)

1<i<T 1<5<J yeAttr(By)
where for a relation A and one of its attribute A.z,
u(A, Az) = uq - ug - us - ug - Us,
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T(update) 4 1
T4+ 3
T(update, A) 4 1
- T(update) + R
T(update, A|A) + 1

T(update, A) + %

_ 7T(update, A.z)+ 1
~ 7(update, A) + |Attr(A)|
us = Pr(A.z € =C(Tz) N A).

U1 =

Us =

o T2: Insert a new tuple to A; or B; so that the new tuple allows a new 7z
value satisfies the antecedents but not the consequent.

Pr(12)= 3 s(A)+ > s(Bj),

1<i<T 1<5<J

where for a relation A,
s(A) = 8182 83,
T(insert) + 1
t+3
T(insert, A) + 1
T(insert) + R
s3 = Pr(A € -~C(Tx) N A).

S1 =

S9 =

e T3: Update an attribute of a tuple of A; or B; not covered by the rule so
that the new value allows a new 7x value satisfies the antecedents but not the
consequent.

Pr(T3)= 3 v(Apw)+ Y Y. u(Biy),
1<i<T weAttr(A4;)—{A.z} 1<5<J yeAttr(Bj;)
where for a relation A and its attribute A.z,
v(A,A.z) = vy vy 03 vy Us,

T(update) 4 1
T4+ 3
T(update, A) 4 1
- T(update) + R

v =
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T(update, A|JAN C(T2)) + 1

N(4
T(update, A) + 7N(A|CE?92)/\A)

1)3:1—

_ 7T(update, A.z)+ 1
~ 7(update, A) + |Attr(A)|
vs = Pr(A.z € =C(Tz) N A).

o T4: Update C.x of all C tuples that share a certain C.x value that satisfies
the antecedents to a new value that does not satisfies the antecedents.

Pr(T4) = Z p(X)N(C|O.ac:X)7

Xel,

where 7, is the set of distinct values of C.x, and p(X) is the probability that
the update is applied to C' tuples whose C.x = X. Pr(T'4) can be approximated
by

PH(T4) < ny - (Y},
where ny is the minimal number of C' tuples that is grouped by the same C.z
value denoted as Y, ny is the number of all distinct C.x values, and

p(Y) = D1 Pz P3-pa-Ps,
where
T(update) 4 1
T4+ 3
T(update, C) + 1
- T(update) + R
T(update, C|C.x =Y) 41

p3 =
T(update, C') + N(C]\(Ci:y)

P =

_ 7(update,C.x) 41
~ 7(update, C') + |Attr(C)|
ps = Pr(C.x € = A).

o T5: Delete all C' tuples that share a certain C.x value that satisfies the an-
tecedents of the rule.

Pr(T5)= > d(X)N(CICr=X),

Xel,

where 7, is the set of distinct values of C.x, and d(X) is the probability that the
deletion is applied to C' tuples whose C.a = X. Pr(7T4) can be approximated
by

Pr(T5) <ng-d(Y)™,
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where ny is the minimal number of C' tuples that is grouped by the same C.z
value denoted as Y, ny is the number of all distinct C.x values, and

d(Y) — dl . d2 . d3,

where
T(delete) + 1
d=——-"—
T+ 3
g — T(delete,C') 41
2T T(delete) + R

T(delete, C|C.a=Y)+ 1

ds =
’ T(delete, C') + 7]\,(070(?:)/)
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Appendix C

Optimization and Learning of Sample Query

This appendix gives in detail the output produced by the optimization and learning
for a sample multidatabase query. The data provided here include an original input
query, subqueries generated by the SIMS query planner, subqueries optimized by
PESTO, a trace of rule and range fact application in the optimization, and semantic
rules and their estimated robustness learned by BASIL using one of the subqueries
as the training trigger query. The queries and rules are expressed in the LOOM
knowledge representation language [MacGregor, 1990]. Please refer to the SIMS
manual [Ambite et al., 1995] for a formal definition of the syntax of the LoOM
language.

(214 ”List all wharves at Long Beach with RORO ramps, by pier name and berth
ID where METEOR ships can dock”
(sims-retrieve (PNAME ?BERTHID)
(:AND (SHIP_CLASS 7SHIP)
(SHIP_CLASS.SH_CLASS ?SHIP "METEQR”)
(SHIP_CLASS.LENGTH ?SHIP ?SH-LENGTH)
(SHIP_CLASS.BEAM 7SHIP ?BEAM)
(SHIP_CLASS.MAX DRAFT ?SHIP ?DRAFT)
(SHIP_CLASS.HEIGHT ?SHIP ?SH-HEIGHT)
(CHANNEL_HARBORS.LEAD_CHNM ?CHANNEL-HARBOR#75578
?CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#75578
7CODE75550)
(SEAPORTS ?SPORT)
(SEAPORTS.GLC_CD ?SPORT ?TEMP75623)
(SEAPORTS.PORT NM ?SPORT ”Long Beach”)
(CHANNELS 7CHANNEL)
(CHANNELS.GLC_CD ?"CHANNEL ?TEMP75624)
(CHANNELS.CH_NM ?CHANNEL ?TEMP75625)
(CHANNELS.CH_.WIDTH_FT "CHANNEL ?CH-WIDTH)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(CHANNELS.CH_.OVERHEAD_CLEARANCE ?CHANNEL ?CH-HEIGHT)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP75626)
(PIERS.PIER_NM ?PIER ?PNAME)
(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP75627)
(WHARVES.STERN_RAMP_FLAG ?WHARF 7Y”)
(WHARVES. WHARF_BERTH_ID ?WHARF ?BERTHID)
(WHARVES. WHARF_LENGTH_FT WHARF ?WH-LENGTH)
(WHARVES. WHARF_WATER DEPTH_FT ?WHARF WH-DEPTH)
?TEMP75623 7CODE75550)
?TEMP75625 ?CH-NAME)
?TEMP75624 7CODE75550)
?TEMP75626 7CODE75550)
?TEMP75627 7CODE75550)
?TEMP75624 "TEMP75623)
?TEMP75626 "TEMP75623)
?TEMP 75627 "TEMP75623)
?TEMP75626 "TEMP75624)
?TEMP75627 "TEMP75624)

s A
L L 1 1 T B
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(= *TEMP75627 "TEMP75626)))

(#plan<5=12; O=0; U=0>

(11

;; step id of subquery

(RETRIEVE (?SH-HEIGHT ?BEAM ?DRAFT ?SH-LENGTH)
(:AND (SHIP_CLASS ?SHIP)

(9

(SHIP_.CLASS.SH_CLASS ?SHIP "METEOR”)
(SHIP_CLASS.LENGTH 7SHIP ?SH-LENGTH)
(SHIP_CLASS.BEAM 7SHIP ?BEAM)
(SHIP_CLASS.MAX DRAFT ?SHIP !DRAFT)
(SHIP_CLASS.HEIGHT ?SHIP ?SH-HEIGHT))))

(RETRIEVE
(?PNAME ?BERTHID

?CH-HEIGHT
?"CH-DEPTH
7CH-WIDTH
'WH-DEPTH
?WH-LENGTH)

(:AND (CHANNEL_HARBORS CHANNEL-HARBOR#75578)

(7

(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#75578
7CH-NAME)

(CHANNEL_HARBORS.GLC_CD ?CHANNEL-HARBOR#75578
7CODET5550)

(SEAPORTS 7SPORT)

(SEAPORTS.GLC_CD ?SPORT ?TEMP75623)

(SEAPORTS.PORT_NM 7SPORT ”Long Beach”)

(CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD ?CHANNEL ?TEMP75624)

(CHANNELS.CH.NM ?CHANNEL ?TEMP75625)

(CHANNELS.CH.WIDTH_FT ?CHANNEL ?CH-WIDTH)

(CHANNELS.CH.DEPTH_FT ?CHANNEL ?CH-DEPTH)

(CHANNELS.CH_.OVERHEAD_CLEARANCE ?CHANNEL ?CH-HEIGHT)

(PIERS ?PIER)

(PTERS.GLC_CD ?PIER ?TEMP75626)

(PTERS.PTER_NM ?PIER PNAME)

(WHARVES 'WHARF)

(WHARVES.GLC_CD *WHARF ?TEMP75627)
(WHARVES.STERN_RAMP_FLAG TWHARF "Y”)
(WHARVES.WHARF_BERTHID *WHARF ?BERTHID)
(WHARVES.WHARF_LENGTH.FT *WHARF *WH-LENGTH)
(WHARVES.WHARF_WATER DEPTH.FT "WHARF ?WH-DEPTH)
TTEMP75623 ?CODET5550)

TTEMP75625 ?CH-NAME)

TEMP75624 ?CODET5550)

TEMP75626 ?CODET5550)

TTEMP75627 CODET5550)

TTEMP75624 ?TEMP75623)

TEMP75626 *TEMP75623)

TTEMP75627 ?TEMP75623)

TTEMP75626 ' TEMP75624)

TTEMP75627 ?TEMP75624)

TTEMP75627 ?TEMP75626))))

s
L I T T I T}

((< ’SH-HEIGHT 7CH-HEIGHT)

(< ’DRAFT ?CH-DEPTH)

(< ?BEAM ?CH-WIDTH)

(< ’DRAFT ?WH-DEPTH)

(<= ?SH-LENGTH ?WH-LENGTH))))

(#plan<5=12; O=0; U=0>

(11

(RETRIEVE (7SH-HEIGHT ?DRAFT)

(9

(:AND (SHIP_CLASS 7SHIP)
(SHIP_CLASS.SH_CLASS ?SHIP "METEQR”)
(SHIP_CLASS.HEIGHT ?SHIP ?SH-HEIGHT)
(SHIP_CLASS.MAX DRAFT ?SHIP ?DRAFT)
(< ?DRAFT 37)))) ;; additional built-in constraint

;; note the literals and joins being removed
(RETRIEVE (?PNAME ?BERTHID ?CH-HEIGHT WH-DEPTH)

(:AND (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD ?CHANNEL ?TEMP75624)

(CHANNELS.CH_.OVERHEAD_CLEARANCE ?CHANNEL ?CH-HEIGHT)

(PIERS ?PIER)

(PTERS.GLC_CD ?PIER ?TEMP75626)
(PTERS.PTER_NM ?PIER PNAME)

(WHARVES 'WHARF)

(WHARVES.GLC_CD *WHARF ?TEMP75627)
(WHARVES.STERN _RAMP_FLAG TWHARF »Y”)
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(WHARVES. WHARF_BERTH_ID ?WHARF ?BERTHID)
(WHARVES.PIER_NM ?WHARF ?R16
(WHARVES. WHARF_WATER DEPTH_FT ?WHARF "WH-DEPTH)
= ?TEMP75627 "TEMP75626)
(= ?TEMP75626 ?TEMP75624)
(MEMBER ?R16 (”B” ?C” "D”)) ;; additional built-in constraint
(<= ?WH-DEPTH 37)))) ;; additional built-in constraint

7

((< "SH-HEIGHT ?CH-HEIGHT) (< ’DRAFT ?WH-DEPTH))))

f—
(:AND (>= ?SH-HEIGHT 102)
(<= 7SH-HEIGHT 213))
is INFERRED from range information:
(:IN SHIP_CLASS.HEIGHT (:THROUGH 102 213))
(:AND (>= ?DRAFT 12) (<= 7DRAFT 40))
is INFERRED from range information:
(:IN SHIP_CLASS.MAX DRAFT (:THROUGH 12 40))
(:AND (>= ?BEAM 56) (<= ?BEAM 106))
is INFERRED from range information:
(:IN SHIP_CLASS.BEAM (:THROQUGH 56 106))
(:AND (>= ?SH-LENGTH 273)
(<= ?SH-LENGTH 947))
is INFERRED from range information:
(:IN SHIP_CLASS.LENGTH (:THROUGH 273 947))
A NEW cost-reducing concept and relational join
(:AND (GEOLOC ?GEOGRAPHIC-LOCATION#7549)
(GEOLOC.GLC_CD ?GEOQGRAPHIC-LOCATION#7549 CODE7544)
(= 7CODE7544 "TEMP1733))
are DERIVED from:
23100006:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD ?CHANNEL ?TEMP7555))
(:THEN (GEOLOQOC 7GEOGRAPHIC-LOCATION#7549)
(GEOLOC.GLC_CD ?GEOGRAPHIC-LOCATION#7549 7CODE7544)
(= "CODE7544 ?TEMP7555))
A NEW cost-reducing clause
(:AND (>= ?CH-WIDTH 260)
(<= ?7CH-WIDTH 1800))
is DERIVED from:
21300000:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7"CHANNEL ?TEMP16189)
(CHANNELS.CH_.NM ?CHANNEL ?CHANNEL-NAME)
(CHANNELS.CH_.WIDTH_FT "CHANNEL ?CHANNEL-WIDTH))
(:THEN (>= ?CHANNEL-WIDTH 260)
(<= ?CHANNEL-WIDTH 1800))
A NEW cost-reducing clause
(:AND (>= ?CH-HEIGHT 155)
(<= 7CH-HEIGHT 999))
is DERIVED from:
21300001:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP16189)
(CHANNELS.CH_.NM ?CHANNEL ?CHANNEL-NAME)
(CHANNELS.CH_.OVERHEAD_CLEARANCE 7CHANNEL
?CHANNEL-LEAST-OVERHEAD-CLEAR-HEIGHT))
(:THEN (>= ?CHANNEL-LEAST-OVERHEAD-CLEAR-HEIGHT
155)
(<= ?CHANNEL-LEAST-OVERHEAD-CLEAR-HEIGHT 999))
A NEW cost-reducing clause
((= ?TEMP1733 "NPTU”))
is DERIVED from:
23101007:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD ?CHANNEL ?TEMP7553))
(:THEN (= ?"TEMP7553 "NPTU”))

((= *TEMP1733 "NPTU"))

is REDUNDANT from range information:

((= *TEMP1733 "NPTU"))

((= 7CODE1659 "NPTU"))

is INFERRED from range information:

(:IN CHANNEL_HARBORS.GLC_CD (:ONE-OF "NPTU”))
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(MEMBER ?CH-NAME
(”Back” "Long Beach” ”Queens Gate”)))

is INFERRED from range information:
(:IN CHANNEL_HARBORS.LEAD_CH_NM (:ONE-OF ”Back” "Long Beach” ”"Queens Gate”))
(:AND (>= ?CH-WIDTH 260)

(<= "CH-WIDTH 1800))
is INFERRED from range information:
(:IN CHANNELS.CH_WIDTH_FT (:THROUGH 260 1800))

(:AND (>= ?CH-HEIGHT 155)
(<= "CH-HEIGHT 999))
is INFERRED from range information:
(:IN CHANNELS.CH_OVERHEAD_CLEARANCE (:THROUGH 155 999))

((= *TEMP1733 "NPTU"))
is INFERRED from range information:
(:IN CHANNELS.GLC_CD (:ONE-OF "NPTU”))

==>
(:AND (>= ?CH-DEPTH 41)

(<= "CH-DEPTH 60))
is INFERRED from range information:
(:IN CHANNELS.CH_DEPTH_FT (:THROUGH 41 60))
((MEMBER ?TEMP1734

(”Back” ”Cerritos”
7?Long Beach”
?Queens Gate”)))
is INFERRED from range information:
(:IN CHANNELS.CH_.NM (:ONE-OF ”Back” ”Cerritos” "Long Beach” ”"Queens Gate”))
((MEMBER 7PNAME
(77177 77277 77A77 77B77 77C77 77D77 77F77 77G77 77J77)))

is INFERRED from range information:
(ZDIN PIERS.PIER_NM (:gONE_OF 77177 77277 77A77 77B77 77C77 77D77 77F77 77G77 77J77))
((= *TEMP1735 "NPTU"))
is INFERRED from range information:
(:IN PIERS.GLC_CD (:ONE-OF "NPTU"))
(:AND (>= ?WH-DEPTH 30)

(<= 'WH-DEPTH 50))
is INFERRED from range information:
(:IN WHARVES WHARF_WATER DEPTH_FT (:THROUGH 30 50))

(:AND (>= ’WH-LENGTH 580)
(<= 'WH-LENGTH 2700))
is INFERRED from range information:
(:IN WHARVES WHARF_LENGTH_FT (:THROUGH 580 2700))
((MEMBER ?TEMP1856 ("N” "Y")))
is INFERRED from range information:
(:IN WHARVES.STERN_RAMP_FLAG (:ONE-OF "N” 7Y"))

((= ?TEMP1736 "NPTU”))
is INFERRED from range information:
(:IN WHARVES.GLC_CD (:ONE-OF "NPTU"))
(> ?CH-WIDTH 7BEAM)
is DELETED because
(:AND (>= ?CH-WIDTH 260)
(<= ?7CH-WIDTH 1800))
(:AND (>= ?BEAM 56) (<= ?BEAM 106))
(> ?CH-DEPTH ?DRAFT)
is DELETED because
(:AND (>= ?CH-DEPTH 41)
(<= 7CH-DEPTH 60))
(:AND (>= ?DRAFT 12) (<= 7DRAFT 40))
A NEW cost-reducing concept and relational join
(:AND (GEOLOC ?GEOGRAPHIC-LOCATION#7549)
(GEOLOC.GLC_CD ?GEQGRAPHIC-LOCATION#7549 CODE7544)
(= 7CODE7544 "TEMP1733))
are DERIVED from:
23100006:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD ?CHANNEL ?TEMP7555))
(:THEN (GEOLOQOC 7GEOGRAPHIC-LOCATION#7549)
(GEOLOC.GLC_CD ?GEOGRAPHIC-LOCATION#7549 7CODE7544)
(= "CODE7544 ?TEMP7555))
A NEW cost-reducing clause
(:AND (>= ?CH-WIDTH 260)
(<= ?7CH-WIDTH 1800))
is DERIVED from:
21300000:
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(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP16189)
(CHANNELS.CH_.NM ?CHANNEL ?CHANNEL-NAME)
(CHANNELS.CH_.WIDTH_FT "CHANNEL ?CHANNEL-WIDTH))
(:THEN (>= 7CHANNEL-WIDTH 260)
(<= 7CHANNEL-WIDTH 1800))
A NEW cost-reducing clause
(:AND (>= ?CH-HEIGHT 155)
(<= "CH-HEIGHT 999))
is DERIVED from:
21300001:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP16189)
(CHANNELS.CH_.NM ?CHANNEL ?CHANNEL-NAME)
(CHANNELS.CH_.OVERHEAD_CLEARANCE 7CHANNEL
?CHANNEL-LEAST-OVERHEAD-CLEAR-HEIGHT))
(:THEN (>= ?CHANNEL-LEAST-OVERHEAD-CLEAR-HEIGHT
155)
(<= ?CHANNEL-LEAST-OVERHEAD-CLEAR-HEIGHT 999))
A NEW cost-reducing clause
((= ?"TEMP1733 "NPTU"))
is DERIVED from:
23101007:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD ?CHANNEL ?TEMP7553))
(:THEN (= ?TEMP7553 "NPTU"))
((= 7CODE1659 "NPTU"))
is INFERRED from range information:
(:IN CHANNEL_HARBORS.GLC_CD (:ONE-OF "NPTU”))
(MEMBER ?CH-NAME
(”Back” "Long Beach” ”Queens Gate”)))
is INFERRED from range information:
(:IN CHANNEL_HARBORS.LEAD_CH_NM (:ONE-OF ”Back” "Long Beach” ”"Queens Gate”))
(:AND (>= ?CH-HEIGHT 155)
(<= "CH-HEIGHT 999))
is INFERRED from range information:
(:IN CHANNELS.CH_OVERHEAD_CLEARANCE (:THROUGH 155 999))
(:AND (>= ?CH-DEPTH 41)
(<= "CH-DEPTH 60))
is INFERRED from range information:
(:IN CHANNELS.CH_DEPTH_FT (:THROUGH 41 60))

(:AND (>= ?CH-WIDTH 260)
(<= "CH-WIDTH 1800))
is INFERRED from range information:
(:IN CHANNELS.CH_WIDTH_FT (:THROUGH 260 1800))
((MEMBER ?TEMP1734
(”Back” ”Cerritos”
7?Long Beach”
?Queens Gate”)))
is INFERRED from range information:
(:IN CHANNELS.CH_.NM (:ONE-OF ”Back” ”Cerritos” "Long Beach” ”"Queens Gate”))

((= *TEMP1733 "NPTU"))
is INFERRED from range information:
(:IN CHANNELS.GLC_CD (:ONE-OF "NPTU”))
((MEMBER 7PNAME
(77177 77277 77A77 77B77 77CH 77D77 77F77 77G77 VVJVV)))
is INFERRED from range information:
(IN PIERSPIER_NM (ONE_OF 77177 77277 77A77 77B77 77CH 77D77 77F77 77G77 77J77))
((= *TEMP1735 "NPTU"))
is INFERRED from range information:
(:IN PIERS.GLC_CD (:ONE-OF "NPTU"))

==>
(:AND (>= ?WH-DEPTH 30)
(<= 'WH-DEPTH 50))
is INFERRED from range information:
(:IN WHARVES WHARF_WATER DEPTH_FT (:THROUGH 30 50))
(:AND (>= ’WH-LENGTH 580)
(<= 'WH-LENGTH 2700))
is INFERRED from range information:
(:IN WHARVES WHARF_LENGTH_FT (:THROUGH 580 2700))
((MEMBER ?TEMP1856 ("N” "Y")))
is INFERRED from range information:
(:IN WHARVES.STERN_RAMP_FLAG (:ONE-OF "N” 7Y"))
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((= *"TEMP1736 "NPTU"))
is INFERRED from range information:
(:IN WHARVES.GLC_CD (:ONE-OF "NPTU"))
(:AND (>= ?SH-HEIGHT 102)

(<= ?SH-HEIGHT 213))
is INFERRED from range information:
(:IN SHIP_CLASS.HEIGHT (:THROUGH 102 213))
(:AND (>= ’DRAFT 12) (<= 'DRAFT 40))
is INFERRED from range information:
(:IN SHIP_CLASS.MAX DRAFT (:THROUGH 12 40))
(:AND (>= ?BEAM 56) (<= ?BEAM 106))
is INFERRED from range information:
(:IN SHIP_CLASS.BEAM (:THROUGH 56 106))
(:AND (>= ?SH-LENGTH 273)

(<= ?"SH-LENGTH 947))
is INFERRED from range information:
(:IN SHIP_CLASS.LENGTH (:THROUGH 273 947))
»

>

21400000:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CHNM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(= *TEMP2920 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (>= ?CH-DEPTH 45)
(<= "CH-DEPTH 60))

(robustness = 0.9966760129361756)

21400001:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CHNM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(WHARVES.STERN_RAMP_FLAG ?WHARF "TEMP4043)
(= ?TEMP2923 ?TEMP2920)
(= ?TEMP2920 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (>= ?CH-DEPTH 45)

(<= "CH-DEPTH 60))

(robustness = 0.9960218766038714)

21400002:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CHNM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= *TEMP2922 ?TEMP2920)
(= *TEMP2920 ?CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (>= ?CH-DEPTH 45)
(<= "CH-DEPTH 60))

(robustness = 0.9960983269085316)

21400003:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CHNM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(WHARVES ?WHARF)

(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(WHARVES.STERN_RAMP_FLAG ?WHARF "TEMP4043)
(= TTEMP4043 "Y”)

(= ?TEMP2923 ?TEMP2920)

(= *TEMP2920 7CODE3846)
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(= *TEMP3921 7CH-NAME))
(:THEN (>= ?CH-DEPTH 45)
(<= "CH-DEPTH 60))

(robustness = 0.9960238466742531)

21400004:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CHNM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(WHARVES.STERN_RAMP_FLAG ?WHARF "TEMP4043)
(= ?TEMP2923 7TEMP2922)
(= *TEMP2922 7TEMP2920)
(= *TEMP2920 ?CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (>= ?CH-DEPTH 45)

(<= "CH-DEPTH 60))

(robustness = 0.9954441905762275)

21400005:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CHNM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(PIERS ?PIER)

(PIERS.GLC_CD ?PIER ?TEMP3922)

(WHARVES ?WHARF)

(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(WHARVES.STERN_RAMP_FLAG ?WHARF "TEMP4043)

?TEMP4043 "Y")

?TEMP3923 ?TEMP3922)

?TEMP3922 ?TEMP3920)

?TEMP3920 ?CODE3846)

= ?TEMP3921 TCH-NAME})

(:THEN (>= ?CH-DEPTH 45)

(<= "CH-DEPTH 60))

(robustness = 0.9954441905762275)

21400006:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= 7CH-DEPTH 45))
(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(= 7CH-NAME ?TEMP2921))

(robustness = 0.9251198590629485)

21400007

(:IF (CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)

(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)

(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)

(>= CH-DEPTH 45)

(PIERS ?PIER)

(PIERS.GLC_CD ?PIER ?TEMP3922)

(= *TEMP2922 ?TEMP2920))

(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)

(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(= 7CH-NAME ?TEMP2921))

(robustness = 0.9245421730353045)

21400008:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)

(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)

(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)

(>= TCH-DEPTH 45)

(WHARVES ?WHARF)

(WHARVES.GLC_CD ?WHARF ?TEMP3923)

(= *TEMP2923 7TEMP2920))

(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)

(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(= 7CH-NAME ?TEMP2921))

(robustness = 0.9244657227306444)

21400009:

(:IF (CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= TCH-DEPTH 45)
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(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= *TEMP2923 7TEMP2922)
(= *TEMP2922 7"TEMP2920))
(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(= 7CH-NAME ?TEMP2921))
(robustness = 0.9238880367030005)
21400010:
(:IF (CHANNELS 7CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH))
(:THEN (WHARVES TWHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= "TEMP2923 7TEMP2920))
(robustness = 0.9007692097122991)
21400011:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= 7CH-DEPTH 45))
(:THEN (WHARVES 'WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= "TEMP2923 7TEMP2920))
(robustness = 0.9008421451878443)
21400012:
(:IF (CHANNELS 7CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= "TEMP2923 7TEMP2920))
(robustness = 0.8994024432908254)
21400013:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= TCH-DEPTH 45)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= "TEMP2923 7TEMP2920))
(robustness = 0.8994024432908254)
21400014:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= "TEMP2922 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= 7TEMP2923 7TEMP2920))
(robustness = 0.8988585181349269)
21400015:
(:IF (CHANNELS 7CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= CH-DEPTH 45)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= "TEMP2922 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
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(= "TEMP2923 7TEMP2920))

(robustness = 0.8988585181349269)

21400016:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846))

(:THEN (WHARVES TWHARF)

(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= "TEMP2923 7CODE3846))

(robustness = 0.72188082919790244)

21400017:

(:IF (CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD 7CHANNEL-HARBOR#3874 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= "TEMP2922 7CODE3846))

(robustness = 0.8994024379998201)

21400018:

(:IF (CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= TCH-DEPTH 45)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)

(WHARVES.GLC_CD ?WHARF ?TEMP3923)

(= "TEMP2922 7CODE3846))

(robustness = 0.8994024379998201)

21400019:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD 7CHANNEL-HARBOR#3874 7CODE3846)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= ?TEMP2922 ?TEMP2920)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)

(WHARVES.GLC_CD ?WHARF ?TEMP3923)

(= "TEMP2923 7CODE3846))

(robustness = 0.8988585128439216)

21400020:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= TCH-DEPTH 45)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD 7CHANNEL-HARBOR#3874 7CODE3846)
(PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= ?TEMP2922 ?TEMP2920)
(= *TEMP3921 7CH-NAME))
(:THEN (WHARVES TWHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= "TEMP2922 7CODE3846))

(robustness = 0.8988585128439216)

21400021:

(:IF (WHARVES *WHARF)

(WHARVES.GLC_CD ?WHARF ?TEMP23923))
(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= 7CODE3846 ?TEMP3923))

(robustness = 0.9263016551779618)

21400022:

(:IF (CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH FT "CHANNEL ?CH-DEPTH))

(:THEN (PIERS ?PIER)

(PIERS.GLC_CD ?PIER ?TEMP3922)

(= "TEMP2922 ?TEMP2920))
(robustness = 0.5598601188032083)
21400023:
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(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= 7CH-DEPTH 45))
(:THEN (PIERS PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= "TEMP2922 ?TEMP2920))

(robustness = 0.5598601188032083)

21400024:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= "TEMP2922 ?TEMP2920))

(robustness = 0.5583643246244873)

21400025:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)

(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)

(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)

(>= TCH-DEPTH 45)

(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)

= ?TEMP3921 7CH-NAME))

(:THEN (PIERS ?PIER)

(PIERS.GLC_CD ?PIER ?TEMP3922)
= TTEMP3922 ?TEMP3920))

(robustness = 0.5583643246244873)

21400026:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= "TEMP2923 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= "TEMP2922 ?TEMP2920))

(robustness = 0.5577101882921831)

21400027:

(:IF (CHANNELS 7CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= TCH-DEPTH 45)
(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= "TEMP2923 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= "TEMP2922 ?TEMP2920))

(robustness = 0.5577101882921831)

21400028:

(:IF (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846))

(:THEN (PIERS ?PIER)

(PIERS.GLC_CD ?PIER ?TEMP3922)
(= "TEMP2922 7CODE3846))

(robustness = 0.5601925175095908)

21400029:

(:IF (CHANNELS ?CHANNEL)

(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= *TEMP3921 7CH-NAME))
(:THEN (PIERS ?PIER)
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(PIERS.GLC_CD ?PIER ?TEMP3922)
(= "TEMP2922 7CODE3846))
(robustness = 0.5583643246244873)
21400030:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= TCH-DEPTH 45)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
= ?TEMP3921 7CH-NAME))
(:THEN (PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
= TTEMP3922 TCODE3846))
(robustness = 0.5583643246244873)
21400031:
(:IF (CHANNELS 7CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= ?TEMP2923 7TEMP2920)
= ?TEMP3921 7CH-NAME))
(:THEN (PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
= TTEMP3922 TCODE3846))
(robustness = 0.5577101882921831)
21400032:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= TCH-DEPTH 45)
(CHANNEL_HARBORS CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.LEAD_CH.NM ?CHANNEL-HARBOR#3874 "CH-NAME)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(WHARVES ?WHARF)
(WHARVES.GLC_CD ?WHARF ?TEMP3923)
(= ?TEMP2923 7TEMP2920)
(= *TEMP3921 7CH-NAME))
(:THEN (PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP3922)
(= "TEMP2922 7CODE3846))
(robustness = 0.5577101882921831)
21400033:
(:IF (PIERS ?PIER)
(PIERS.GLC_CD ?PIER ?TEMP23922))
(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= 7CODE3846 ?TEMP3922))
(robustness = 0.926370365920408)
21400034:
(:IF (CHANNELS 7CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH FT "CHANNEL ?CH-DEPTH))
(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= 7CODE3846 ?TEMP3920))
(robustness = 0.9251198590629485)
21400035:
(:IF (CHANNELS ?CHANNEL)
(CHANNELS.GLC_CD 7CHANNEL ?TEMP3920)
(CHANNELS.CH_NM ?CHANNEL ?TEMP3921)
(CHANNELS.CH_DEPTH_FT "CHANNEL ?CH-DEPTH)
(>= 7CH-DEPTH 45))
(:THEN (CHANNEL_HARBORS 7CHANNEL-HARBOR#3874)
(CHANNEL_HARBORS.GLC_CD CHANNEL-HARBOR#3874 7CODE3846)
(= 7CODE3846 ?TEMP3920))
(robustness = 0.9251198590629485)

121



Appendix D

Performance Data

This appendix provides the detailed numeric data from the experiments discussed

in Chapter 5. All execution time data are in seconds. Key: “id” = query id, “w/o

opt.” = execution time without optimization, “w/ opt.”

execution time with

optimization, “savings” = percentage time saved due to the optimization, “opt” =

optimization time.

Performance of Hand-coded Rules

[id [ w/o opt. w/ opt. [ savings | opt.
1 0.5440.03 0.5440.03 0.0% 0.0240.00
2 1.0440.01 0.7140.05 32.0% 0.0440.04
3 0.4740.00 0.4840.03 -2.0% 0.0240.00
4 0.7840.02 0.7340.04 6.0% 0.0540.04
5 0.7840.01 0.8040.04 -3.0% 0.0840.04
12 0.661+0.00 0.6940.03 -5.0% 0.0340.03
13 0.661+0.00 0.7040.04 -6.0% 0.0440.04
16 0.7840.01 0.7840.04 0.0% 0.0540.03
18 0.7040.04 0.7440.05 -6.0% 0.0640.05
32 0.661+0.03 0.6140.04 8.0% 0.0340.04
200 0.6740.02 0.6940.02 -3.0% 0.0340.02
201 0.8740.02 0.7740.03 12.0% 0.0340.00
202 0.654+0.01 0.6440.05 2.0% 0.054+0.05
204 0.7040.00 0.6840.05 3.0% 0.0440.04
205 1.0240.05 1.00+£0.04 2.0% 0.0840.04
206 1.0340.03 1.0140.04 2.0% 0.0740.03
208 0.6040.00 0.6340.00 -5.0% 0.0140.00
209 0.3840.00 0.3940.00 -3.0% 0.0040.00
213 3.5040.06 2.1240.05 39.0% 0.0840.02
214 2.4440.06 1.67+40.05 31.0% 0.1040.04
215 8.5340.07 2.4640.06 71.0% 0.0940.04
216 1.1240.02 1.1940.04 -6.0% 0.064+0.03
217 0.8740.03 0.9440.05 -8.0% 0.0540.04
218 1.0140.04 1.06+£0.05 -5.0% 0.0540.00
221 0.7640.00 0.7740.03 -2.0% 0.0340.03
224 0.4640.00 0.4740.05 -2.0% 0.0140.00
225 0.4540.00 0.4740.01 -4.0% 0.0140.00
226 1.0840.01 1.1140.06 -3.0% 0.0940.04
227 0.9940.02 0.9540.05 4.0% 0.0740.05
231 2.6840.04 2.6840.06 0.0% 0.0640.02
232 0.5840.01 0.6240.03 -7.0% 0.0340.00
233 0.5840.01 0.6240.04 -7.0% 0.0340.00
304 0.7440.00 0.0240.00 97.0% 0.0240.00
308 0.9940.10 0.5840.05 41.0% 0.0340.05
309 0.5840.04 0.0240.03 97.0% 0.0240.03
310 0.5940.00 0.0240.00 97.0% 0.0240.00
Total 40.89 30.33 1.58
Average 1.14 0.84 25.84% 0.04
3 = 1.42 0.58 0.03
Rules? 112
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Performance of Learned Rules

[id w/o opt. w/ opt. [ savings opt. [ id w/o opt. w/ opt. savings opt. |
2 1.0540.02 1.0540.02 0.0% 0.0140.00 5 0.7940.01 0.7540.03 5.0% 0.0440.03
16 0.8440.02 0.8840.02 -5.0% 0.0340.03 12 0.661+0.02 0.6840.00 -5.0% 0.0240.00
18 0.7340.00 0.7640.02 -4.0% 0.0340.02 32 0.6540.02 0.5940.02 8.0% 0.0240.00
32 0.661+0.00 0.6940.03 -5.0% 0.0240.00 202 0.654+0.00 0.6040.03 8.0% 0.0240.00
202 0.6740.03 0.6940.03 -3.0% 0.0240.03 204 0.6940.03 0.7240.02 -4.0% 0.0540.02
204 0.7440.03 0.7640.03 -3.0% 0.0540.03 208 0.614+0.01 0.6240.01 -2.0% 0.0140.00
208 0.6240.02 0.6340.00 -2.0% 0.0140.00 209 0.3840.00 0.4040.00 -5.0% 0.0140.00
215 8.3340.05 3.3340.04 60.0% 0.1540.04 215 8.3940.05 3.5540.14 58.0% 0.3340.04
216 1.1140.04 1.1540.04 -4.0% 0.0540.00 216 1.0640.01 1.1840.05 -11.0% 0.0540.03
218 1.0140.03 1.0940.02 -8.0% 0.0740.03 217 0.9040.04 0.9440.08 -5.0% 0.0540.02
221 0.7840.03 0.7040.03 10.0% 0.0240.03 218 1.0140.03 1.0740.04 -6.0% 0.0540.00
227 0.9840.01 1.0740.03 -9.0% 0.064+0.03 221 0.7540.00 0.7940.03 -5.0% 0.0340.03
231 2.6440.01 2.7340.03 -3.0% 0.0540.02 225 0.4640.00 0.4740.01 -2.0% 0.0140.00
232 0.5840.00 0.6140.00 -5.0% 0.0340.00 226 1.0740.03 1.06+£0.03 1.0% 0.064+0.03
304 0.7440.00 0.0240.00 97.0% 0.0240.00 227 0.9840.00 0.9340.03 5.0% 0.0540.02
308 0.9940.09 0.5840.03 41.0% 0.0340.03 304 0.7340.02 0.0240.00 97.0% 0.0240.00
309 0.5740.00 0.0240.00 96.0% 0.0240.00 308 1.0040.09 0.5640.02 44.0% 0.0340.02
310 0.5940.01 0.0240.00 97.0% 0.0240.00 309 0.5740.01 0.0340.04 95.0% 0.0340.04
Total 23.60 16.76 0.69 Total 21.91 14.99 0.90
Average 1.31 0.93 29.00% 0.04 Average 1.15 0.79 31.60% 0.05
3 = 1.81 0.84 0.03 5 = 1.76 0.75 0.07
Rules? 101 Rules? 119
3 0.4740.01 0.4840.01 -2.0% 0.0140.02 1 0.664+0.02 0.6240.02 7.0% 0.0140.00
4 0.7840.02 0.7240.02 8.0% 0.0340.00 13 0.7840.06 0.8240.06 -5.0% 0.0440.05
32 0.661+0.00 0.6140.04 8.0% 0.0240.04 32 0.7440.02 0.6940.04 8.0% 0.0240.02
201 0.8610.00 0.9140.03 -6.0% 0.0240.02 200 0.8340.01 0.7540.01 10.0% 0.0240.00
202 0.661+0.02 0.6140.03 8.0% 0.0240.03 202 0.7340.02 0.6840.01 7.0% 0.0240.00
204 0.7040.01 0.7240.01 -3.0% 0.0340.00 204 0.8540.02 0.7840.01 8.0% 0.0540.00
205 1.0240.03 0.9740.03 5.0% 0.0440.03 208 0.7040.01 0.6840.05 3.0% 0.0140.00
206 1.0140.02 0.9940.03 2.0% 0.0540.04 214 2.6840.14 1.7940.03 33.0% 0.1240.00
208 0.6240.00 0.6240.00 0.0% 0.0140.00 215 8.5740.24 3.9740.17 54.0% 0.3740.03
213 3.4340.03 2.1340.04 38.0% 0.1240.04 216 1.1540.04 1.4940.06 -30.0% 0.0540.00
215 8.4610.05 3.4840.05 59.0% 0.1140.04 218 1.2440.09 1.3440.06 -8.0% 0.0840.00
216 1.0940.01 1.1840.04 -9.0% 0.0640.00 221 0.8540.04 0.9140.02 -7.0% 0.0340.00
218 0.9740.03 1.0540.04 -9.0% 0.0840.03 224 0.4840.01 0.5440.08 -12.0% 0.0140.03
221 0.7540.01 0.6940.03 8.0% 0.0340.03 227 1.0940.03 1.1440.05 -5.0% 0.0640.00
227 0.9740.00 0.9440.03 3.0% 0.0440.03 233 0.6740.02 0.7740.03 -15.0% 0.0440.00
304 0.7340.03 0.0240.02 97.0% 0.0240.02 304 0.7940.01 0.0240.00 97.0% 0.0240.00
308 0.9940.10 0.5740.01 43.0% 0.0340.00 308 1.0940.17 0.6240.05 43.0% 0.0340.02
309 0.5840.00 0.0340.02 95.0% 0.0340.02 309 0.6440.02 0.0240.00 97.0% 0.0240.00
310 0.5940.00 0.0340.00 95.0% 0.0340.00 310 0.6240.01 0.0340.02 95.0% 0.0340.02
Total 25.32 16.73 0.78 Total 25.13 17.63 1.03
Average 1.33 0.88 33.94% 0.04 Average 1.32 0.93 29.86% 0.05
3 = 1.84 0.79 0.03 5 = 1.82 0.87 0.08
Rules? 106 Rules? 118
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Performance of Very high Robust

Rules

[id w/o opt. w/ opt. [ savings opt. [ id w/o opt. w/ opt. savings opt. |
2 1.0540.05 1.0940.13 -4.0% 0.0140.00 5 0.8540.03 0.8740.01 -2.0% 0.0340.00
16 0.8440.00 0.8740.04 -4.0% 0.0240.04 12 0.6740.02 0.7040.02 -5.0% 0.0240.00
18 0.7340.01 0.7540.01 -3.0% 0.0240.00 32 0.7240.01 0.7440.01 -3.0% 0.0240.00
32 0.684+0.03 0.6840.01 0.0% 0.0140.00 202 0.7240.06 0.7140.01 1.0% 0.0240.00
202 0.6840.00 0.7040.00 -3.0% 0.0140.00 204 0.7540.02 0.7640.02 -1.0% 0.0240.00
204 0.7440.00 0.7640.03 -2.0% 0.0240.00 208 0.6340.02 0.6640.01 -5.0% 0.0140.00
208 0.6440.04 0.6440.03 0.0% 0.0140.00 209 0.3940.01 0.4140.02 -5.0% 0.0040.00
215 8.6440.75 7.4940.07 13.0% 0.0640.00 215 8.7840.11 7.2540.08 17.0% 0.0840.00
216 1.1340.05 1.1540.05 -2.0% 0.0340.03 216 1.1440.23 1.2540.17 -10.0% 0.0440.00
218 1.0340.03 1.0640.01 -3.0% 0.0340.00 217 0.9240.05 1.3740.06 -48.0% 0.2640.05
221 0.7840.00 0.8040.01 -4.0% 0.0140.00 218 1.0640.03 1.1140.08 -5.0% 0.0440.00
227 0.9940.05 1.0540.04 -6.0% 0.0340.00 221 0.8340.05 0.8740.04 -5.0% 0.0240.00
231 2.7540.35 2.8340.02 -3.0% 0.0340.00 225 0.5240.02 0.5240.02 0.0% 0.0040.00
232 0.5940.00 0.6140.03 -3.0% 0.0140.03 226 1.1240.04 1.6540.09 -48.0% 0.0540.00
304 0.7540.04 0.0240.00 97.0% 0.0240.00 227 1.0040.04 1.1540.05 -14.0% 0.0540.00
308 1.0240.11 0.5740.04 43.0% 0.0140.04 304 0.8040.02 0.0240.00 98.0% 0.0240.00
309 0.5840.01 0.0140.00 98.0% 0.0140.00 308 1.0440.02 0.7940.01 24.0% 0.0240.00
310 0.6040.02 0.0140.00 98.0% 0.0140.00 309 0.5940.01 0.0240.00 97.0% 0.0240.00
Total 24.19 21.08 0.35 Total 23.13 20.84 0.73
Average 1.34 1.17 12.84% 0.02 Average 1.22 1.10 9.91% 0.04
3 = 1.89 1.69 0.01 5 = 1.84 1.55 0.06
Rules? 19 Rules? 33
3 0.5340.03 0.5440.04 -2.0% 0.0140.04 1 0.6140.01 0.6240.03 -1.0% 0.0140.00
4 0.8540.05 0.8840.01 -4.0% 0.0340.00 13 0.7540.01 0.7540.01 0.0% 0.0240.00
32 0.7340.00 0.7540.05 -3.0% 0.0240.00 32 0.7240.01 0.7440.04 -3.0% 0.0140.04
201 0.9540.00 0.9740.05 -2.0% 0.0240.00 200 0.7440.00 0.7540.01 -1.0% 0.0140.00
202 0.7340.01 0.7540.00 -3.0% 0.0240.00 202 0.7340.02 0.7440.05 -1.0% 0.0240.00
204 0.7640.01 0.7940.00 -4.0% 0.0340.00 204 0.7640.02 0.7940.01 -4.0% 0.0340.00
205 1.1640.02 1.2140.02 -4.0% 0.0440.00 208 0.6740.01 0.6840.01 -1.0% 0.0140.00
206 1.1640.01 1.2340.04 -6.0% 0.0440.00 214 2.6340.08 2.3740.08 10.0% 0.0840.06
208 0.6740.01 0.6840.01 -1.0% 0.0140.00 215 9.0740.25 7.67+0.22 15.0% 0.0840.00
213 3.6740.06 3.4440.07 6.0% 0.0840.04 216 1.1740.06 1.2740.06 -8.0% 0.0440.00
215 8.9140.07 7.5340.04 15.0% 0.0840.00 218 1.1140.05 1.1640.04 -5.0% 0.0440.04
216 1.2440.03 1.2440.05 0.0% 0.0440.00 221 0.8440.02 0.8740.02 -4.0% 0.0240.00
218 1.1340.05 1.1740.16 -4.0% 0.0440.06 224 0.5240.01 0.5240.06 0.0% 0.0040.00
221 0.8340.01 0.8840.04 -6.0% 0.0240.04 227 1.1040.04 1.1340.05 -4.0% 0.0440.00
227 1.1440.03 1.1840.04 -3.0% 0.0440.00 233 0.6140.08 0.6440.05 -5.0% 0.0240.00
304 0.8540.03 0.0240.00 98.0% 0.0240.00 304 0.8240.03 0.0240.00 98.0% 0.0240.00
308 1.1140.04 0.7840.00 30.0% 0.0240.00 308 1.1040.05 0.7940.04 28.0% 0.0240.04
309 0.614+0.01 0.0240.00 97.0% 0.0240.00 309 0.6140.05 0.0240.00 97.0% 0.0240.00
310 0.6440.01 0.0140.00 98.0% 0.0140.00 310 0.6240.03 0.0140.00 98.0% 0.0140.00
Total 27.66 24.05 0.59 Total 25.16 21.53 0.50
Average 1.46 1.27 13.04% 0.03 Average 1.32 1.13 14.41% 0.03
3 = 1.93 1.68 0.02 5 = 1.93 1.67 0.02
Rules? 30 Rules? 32
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Performance of High Robust Rules

[id w/o opt. w/ opt. [ savings opt. [ id w/o opt. w/ opt. savings opt. |
2 1.0940.09 1.10+£0.05 -1.0% 0.0140.00 5 0.8540.04 0.8940.00 -5.0% 0.0340.00
16 0.861+0.03 1.1540.04 -33.0% 0.2740.05 12 0.7340.00 0.7640.02 -4.0% 0.0240.00
18 0.7740.01 1.0540.06 -36.0% 0.0240.05 32 0.7440.00 0.7540.00 -1.0% 0.0240.00
32 0.7240.01 0.7640.00 -6.0% 0.0240.00 202 0.7340.01 0.7640.00 -4.0% 0.0240.00
202 0.7340.01 0.7640.00 -4.0% 0.0240.00 204 0.7740.05 0.7940.00 -2.0% 0.0340.00
204 0.7740.05 0.7940.00 -2.0% 0.0340.00 208 0.66+0.01 0.6740.02 -2.0% 0.0140.00
208 0.6740.01 0.6740.01 0.0% 0.0140.00 209 0.4240.01 0.4140.00 2.0% 0.0040.00
215 8.734+0.06 7.9240.08 9.0% 0.3240.04 215 8.7740.08 7.2540.05 17.0% 0.1140.03
216 1.1740.03 1.204£0.02 -3.0% 0.0440.00 216 1.1540.01 1.2040.04 -4.0% 0.0540.00
218 1.1140.04 1.1540.01 -4.0% 0.0540.00 217 1.0340.05 1.0840.03 -5.0% 0.0540.00
221 0.8440.01 0.7640.01 9.0% 0.0240.00 218 1.1140.07 1.1640.16 -5.0% 0.0540.08
227 1.1040.01 1.1740.03 -6.0% 0.0440.03 221 0.8340.01 0.8640.05 -4.0% 0.0240.05
231 2.8940.03 2.8940.01 0.0% 0.0440.00 225 0.5140.01 0.5140.00 0.0% 0.0040.00
232 0.6040.05 0.6340.01 -5.0% 0.0240.00 226 1.2040.05 1.2640.05 -5.0% 0.0640.05
304 0.8540.01 0.0240.00 98.0% 0.0240.00 227 1.0940.04 1.1340.06 -5.0% 0.0640.00
308 1.0740.01 0.8540.04 21.0% 0.0240.06 304 0.8040.01 0.0240.00 98.0% 0.0240.00
309 0.6040.02 0.0140.00 98.0% 0.0140.00 308 1.0640.05 0.5940.05 44.0% 0.0340.00
310 0.6140.01 0.0240.00 97.0% 0.0240.00 309 0.5940.00 0.0340.00 95.0% 0.0340.00
Total 25.16 22.87 0.98 Total 23.64 20.14 0.63
Average 1.40 1.27 9.12% 0.05 Average 1.24 1.06 14.82% 0.03
3 = 1.90 1.78 0.09 5 = 1.84 1.55 0.03
Rules? 35 Rules? 55
3 0.5340.01 0.5440.00 -2.0% 0.0140.00 1 0.6140.04 0.6240.05 -2.0% 0.0140.05
4 0.8610.05 0.8840.05 -2.0% 0.0340.00 13 0.7340.00 0.7740.04 -6.0% 0.0340.00
32 0.7340.01 0.7540.04 -3.0% 0.0240.04 32 0.7340.00 0.7440.01 -1.0% 0.0240.00
201 0.9540.05 0.9640.05 -1.0% 0.0240.05 200 0.7340.01 0.764+0.04 -4.0% 0.0240.04
202 0.7340.03 0.7540.06 -3.0% 0.0240.04 202 0.7240.02 0.7540.00 -4.0% 0.0240.00
204 0.7540.00 0.7840.00 -4.0% 0.0340.00 204 0.7540.00 0.7940.00 -5.0% 0.0340.00
205 1.1540.01 1.1940.06 -4.0% 0.0440.00 208 0.6740.01 0.6840.00 -1.0% 0.0140.00
206 1.1240.01 1.2140.05 -8.0% 0.0540.00 214 2.5240.06 2.4440.05 3.0% 0.1040.05
208 0.6840.02 0.6740.01 1.0% 0.0140.00 215 8.9940.06 7.404£0.09 18.0% 0.1040.00
213 3.5940.07 3.3340.05 7.0% 0.1040.04 216 1.1840.05 1.2240.02 -3.0% 0.0440.00
215 8.9340.05 7.4940.06 16.0% 0.1040.05 218 1.1140.02 1.2140.04 -9.0% 0.064+0.04
216 1.1640.01 1.2340.12 -6.0% 0.0540.04 221 0.8440.05 0.8540.01 -1.0% 0.0240.00
218 1.1140.06 1.1840.06 -6.0% 0.0640.05 224 0.5240.04 0.5340.00 -2.0% 0.0040.00
221 0.8240.02 0.7740.01 6.0% 0.0340.00 227 1.1040.01 1.1740.06 -7.0% 0.054+0.05
227 1.1140.03 1.1740.04 -5.0% 0.0440.05 233 0.614+0.01 0.6740.01 -10.0% 0.0340.00
304 0.8240.01 0.0240.00 98.0% 0.0240.00 304 0.8240.04 0.0240.00 98.0% 0.0240.00
308 1.0740.07 0.6040.01 45.0% 0.0340.00 308 1.0840.07 0.5840.01 46.0% 0.0240.00
309 0.6040.01 0.0340.00 95.0% 0.0340.00 309 0.6240.02 0.0240.00 97.0% 0.0240.00
310 0.6040.01 0.0240.00 97.0% 0.0240.00 310 0.6140.02 0.0240.04 97.0% 0.0240.04
Total 27.29 23.56 0.71 Total 24.92 21.23 0.62
Average 1.44 1.24 13.69% 0.04 Average 1.31 1.12 14.82% 0.03
3 = 1.93 1.67 0.03 5 = 1.91 1.61 0.03
Rules? 57 Rules? 54
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Performance of Low Robust Rules

[id w/o opt. w/ opt. [ savings opt. [ id w/o opt. w/ opt. savings opt. |
2 1.0940.03 1.1140.00 -2.0% 0.0240.00 5 0.8640.02 0.9140.04 -6.0% 0.0440.00
16 0.8540.04 0.9040.00 -6.0% 0.0340.00 12 0.7340.01 0.7640.00 -4.0% 0.0340.00
18 0.7740.05 0.8140.00 -5.0% 0.0340.00 32 0.7340.02 0.7640.01 -4.0% 0.0240.00
32 0.7340.00 0.7640.01 -4.0% 0.0240.00 202 0.7340.02 0.7640.03 -4.0% 0.0240.04
202 0.7340.01 0.7640.05 -4.0% 0.0240.00 204 0.7740.00 0.7840.05 -1.0% 0.0440.00
204 0.7640.00 0.7840.05 -3.0% 0.0440.05 208 0.6740.04 0.6840.01 -1.0% 0.0140.00
208 0.66+0.01 0.6740.01 -1.0% 0.0140.00 209 0.4240.01 0.4340.01 -3.0% 0.0040.00
215 8.9440.03 7.64+40.04 15.0% 0.1040.00 215 8.7240.06 7.4940.43 14.0% 0.1040.05
216 1.1740.02 1.2240.04 -4.0% 0.0540.04 216 1.1740.01 1.2040.01 -3.0% 0.0540.00
218 1.1040.01 1.1540.05 -5.0% 0.0640.00 217 1.0340.05 1.104£0.08 -7.0% 0.0540.04
221 0.8440.01 0.7740.05 8.0% 0.0240.05 218 1.1140.05 1.1840.01 -7.0% 0.0540.00
227 1.0840.01 1.1740.01 -8.0% 0.0640.00 221 0.8340.01 0.8640.05 -4.0% 0.0240.05
231 2.8240.01 2.8840.02 -2.0% 0.0440.00 225 0.5240.00 0.5340.00 -2.0% 0.0140.00
232 0.6240.01 0.6440.05 -3.0% 0.0240.00 226 1.1940.05 1.2940.06 -9.0% 0.0740.04
304 0.8040.01 0.0240.05 98.0% 0.0240.05 227 1.1140.00 1.1840.06 -6.0% 0.0640.00
308 1.0740.01 0.5940.04 45.0% 0.0240.04 304 0.8040.01 0.0240.00 98.0% 0.0240.00
309 0.6140.05 0.0240.00 97.0% 0.0240.00 308 1.0740.01 0.60+5.15 45.0% 0.0340.00
310 0.6140.01 0.0240.00 97.0% 0.0240.00 309 0.6140.02 0.0340.04 95.0% 0.0340.04
Total 25.22 21.89 0.60 Total 23.69 20.56 0.67
Average 1.40 1.22 13.21% 0.03 Average 1.25 1.08 13.20% 0.04
5 = 1.95 1.72 0.02 5 = 1.82 1.60 0.02
Rules? 47 Rules? 64
3 0.6040.05 0.5440.04 10.0% 0.014+0.04 1 0.6140.05 0.6140.00 0.0% 0.0140.00
4 0.8540.01 0.9040.05 -6.0% 0.0340.00 13 0.7440.01 0.7840.05 -6.0% 0.0340.03
32 0.7340.00 0.7540.04 -3.0% 0.0240.04 32 0.7440.07 0.7440.05 0.0% 0.0240.05
201 0.9440.01 0.9740.00 -3.0% 0.0240.00 200 0.7540.01 0.764+0.04 -2.0% 0.0240.00
202 0.7440.05 0.7640.01 -3.0% 0.0340.00 202 0.7340.00 0.7540.00 -3.0% 0.0240.00
204 0.7540.00 0.8040.05 -7.0% 0.0340.05 204 0.7740.05 0.7840.01 -1.0% 0.0440.00
205 1.1340.05 1.2140.05 -7.0% 0.0540.04 208 0.6740.02 0.6740.01 0.0% 0.0140.00
206 1.1440.01 1.2240.04 -7.0% 0.0540.00 214 2.564+0.02 2.3640.04 8.0% 0.0940.03
208 0.66+0.01 0.6740.05 -1.0% 0.0140.05 215 8.761+0.08 7.4440.08 15.0% 0.0940.05
213 3.5740.06 3.3840.07 5.0% 0.1140.05 216 1.1840.01 1.2240.04 -4.0% 0.0540.00
215 8.8740.10 7.4240.07 16.0% 0.1140.05 218 1.1540.04 1.1840.05 -3.0% 0.0740.05
216 1.1540.00 1.2940.06 -12.0% 0.0640.05 221 0.8440.02 0.8640.07 -3.0% 0.0240.00
218 1.0840.01 1.2240.04 -13.0% 0.0740.00 224 0.5140.00 0.5240.00 -2.0% 0.0140.00
221 0.8340.00 0.7840.00 6.0% 0.0340.00 227 1.0940.06 1.1640.05 -6.0% 0.0640.00
227 1.1140.06 1.2040.04 -8.0% 0.0540.00 233 0.6340.05 0.6840.02 -8.0% 0.0340.00
304 0.8240.12 0.0240.06 98.0% 0.0240.06 304 0.8440.02 0.0240.00 98.0% 0.0240.00
308 1.1140.04 0.6040.02 47.0% 0.0340.00 308 1.0840.01 0.5940.01 45.0% 0.0340.00
309 0.6040.00 0.0340.04 95.0% 0.0340.04 309 0.6040.01 0.0240.00 97.0% 0.0240.00
310 0.6340.01 0.0340.00 95.0% 0.0340.00 310 0.6440.05 0.0240.00 97.0% 0.0240.00
Total 27.28 23.77 0.79 Total 24.87 21.16 0.66
Average 1.44 1.25 12.86% 0.04 Average 1.31 1.11 14.92% 0.03
5 = 1.91 1.66 0.03 5 = 1.86 1.62 0.03
Rules? 71 Rules? 70
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Performance of Range Rules

[id w/o opt. w/ opt. [ savings opt. [ id w/o opt. w/ opt. savings opt. |
2 1.0340.03 1.04+£0.05 -1.0% 0.0140.00 5 0.8340.01 0.8740.01 -5.0% 0.0340.00
16 0.8340.00 0.8740.02 -5.0% 0.0240.00 12 0.6740.03 0.7240.02 -6.0% 0.0240.00
18 0.7140.05 0.7340.03 -3.0% 0.0240.03 32 0.654+0.01 0.6940.01 -5.0% 0.0140.00
32 0.661+0.04 0.6940.03 -5.0% 0.0140.03 202 0.66+0.01 0.7040.01 -6.0% 0.0240.00
202 0.6840.02 0.6840.01 0.0% 0.0140.00 204 0.7240.01 0.9040.05 -25.0% 0.0340.00
204 0.7240.01 0.8940.04 -24.0% 0.0340.03 208 0.6140.00 0.6440.01 -5.0% 0.0140.00
208 0.6440.02 0.6440.03 0.0% 0.0140.03 209 0.3840.00 0.3940.01 -3.0% 0.0040.00
215 8.3840.08 7.4340.07 11.0% 0.0840.00 215 8.6440.04 7.30£0.09 16.0% 0.0940.04
216 1.1040.05 1.1840.01 -7.0% 0.0440.00 216 1.1040.02 1.1540.05 -5.0% 0.0440.00
218 1.0540.08 1.0940.06 -4.0% 0.0540.00 217 0.9340.05 0.9540.01 -2.0% 0.0440.00
221 0.7640.00 0.7940.03 -4.0% 0.0240.03 218 1.0540.04 1.1140.05 -6.0% 0.0440.00
227 1.0340.01 1.0940.07 -6.0% 0.0540.04 221 0.7940.10 0.8140.04 -3.0% 0.0240.04
231 2.8340.03 2.8240.01 1.0% 0.0340.00 225 0.4740.00 0.4740.01 0.0% 0.0040.00
232 0.6240.02 0.6540.05 -5.0% 0.0240.00 226 1.1240.03 1.1740.05 -5.0% 0.0540.04
304 0.8140.02 0.0240.00 98.0% 0.0240.00 227 1.0440.02 1.06+£0.02 -2.0% 0.0540.00
308 1.0340.28 0.5640.01 45.0% 0.0140.00 304 0.7940.03 0.0240.00 97.0% 0.0240.00
309 0.6040.01 0.0140.00 98.0% 0.0140.00 308 1.0640.28 0.8340.05 22.0% 0.0240.00
310 0.6140.01 0.0240.00 97.0% 0.0240.00 309 0.5940.01 0.0240.00 97.0% 0.0240.00
Total 24.06 21.17 0.46 Total 22.72 19.81 0.53
Average 1.34 1.18 12.03% 0.03 Average 1.20 1.04 12.82% 0.03
3 = 1.83 1.68 0.02 5 = 1.82 1.56 0.02
Rules? 49 Rules? 56
3 0.4740.01 0.4840.02 -2.0% 0.0140.00 1 0.5440.04 0.5640.01 -4.0% 0.0140.00
4 0.7940.01 0.8240.05 -4.0% 0.0240.00 13 0.6840.01 0.7140.00 -4.0% 0.0240.00
32 0.6740.01 0.7040.01 -4.0% 0.0240.00 32 0.661+0.05 0.6740.06 0.0% 0.0140.00
201 0.8940.02 0.9140.02 -2.0% 0.0240.00 200 0.7040.05 0.6940.04 1.0% 0.0140.04
202 0.6840.01 0.6840.01 0.0% 0.0240.00 202 0.66+0.01 0.6740.01 -1.0% 0.0140.00
204 0.7140.01 0.7440.04 -4.0% 0.0340.04 204 0.7340.05 0.9040.04 -23.0% 0.0340.00
205 1.0540.05 1.104£0.08 -5.0% 0.0340.00 208 0.634+0.01 0.6340.00 0.0% 0.0140.00
206 1.0640.04 1.1340.03 -6.0% 0.0440.04 214 2.4940.03 2.2540.04 10.0% 0.0840.00
208 0.6240.01 0.6240.05 0.0% 0.0140.00 215 8.6840.08 7.1840.06 17.0% 0.0840.00
213 3.5840.06 3.1840.09 11.0% 0.0840.03 216 1.1040.02 1.1740.02 -6.0% 0.0440.00
215 8.5940.07 7.1840.08 16.0% 0.0840.03 218 0.9940.03 1.0940.07 -10.0% 0.0540.00
216 1.0740.02 1.2640.05 -18.0% 0.0540.03 221 0.7840.01 0.8140.04 -4.0% 0.0240.04
218 1.0340.01 1.1240.05 -9.0% 0.0540.04 224 0.4640.07 0.4640.00 0.0% 0.0040.00
221 0.7740.01 0.8040.09 -4.0% 0.0240.00 227 1.0440.05 1.0740.07 -3.0% 0.0440.00
227 1.0540.06 1.06+£0.08 -1.0% 0.0340.00 233 0.614+0.01 0.6340.01 -3.0% 0.0240.00
304 0.7840.05 0.0240.00 97.0% 0.0240.00 304 0.7840.02 0.0240.00 97.0% 0.0240.00
308 1.0740.30 0.8040.08 25.0% 0.0240.00 308 1.0340.32 0.7840.08 24.0% 0.0240.00
309 0.6140.06 0.0240.00 97.0% 0.0240.00 309 0.6040.05 0.0140.04 98.0% 0.0140.04
310 0.6240.01 0.0240.00 97.0% 0.0240.00 310 0.6740.02 0.0240.00 97.0% 0.0240.00
Total 26.10 22.62 0.59 Total 23.81 20.30 0.50
Average 1.37 1.19 13.31% 0.03 Average 1.25 1.07 14.74% 0.03
3 = 1.87 1.60 0.02 5 = 1.85 1.56 0.02
Rules? 60 Rules? 60
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Performance of Relational Rules

[id w/o opt. w/ opt. [ savings opt. [ id w/o opt. w/ opt. savings opt. |
2 1.0540.02 1.0240.02 3.0% 0.0140.00 5 0.8040.02 0.8140.01 -1.0% 0.0340.00
16 0.86+0.01 0.8740.03 -1.0% 0.0240.03 12 0.654+0.01 0.7040.04 -6.0% 0.0240.04
18 0.7140.05 0.7540.04 -6.0% 0.0240.00 32 0.6540.07 0.6740.01 -3.0% 0.0140.00
32 0.6740.01 0.6840.03 -2.0% 0.0140.00 202 0.654+0.01 0.6940.06 -6.0% 0.0240.00
202 0.6740.01 0.6940.02 -3.0% 0.0140.00 204 0.6840.01 0.7240.03 -6.0% 0.0440.03
204 0.7140.01 0.7540.03 -6.0% 0.0440.03 208 0.6140.02 0.6240.01 -2.0% 0.0140.00
208 0.6140.06 0.6440.00 -5.0% 0.0140.00 209 0.3940.04 0.3840.00 3.0% 0.0040.00
215 8.4840.07 3.5540.05 58.0% 0.1240.04 215 8.4740.09 3.5040.06 59.0% 0.1240.04
216 1.0740.02 1.1640.03 -9.0% 0.0440.00 216 1.0740.08 1.1440.01 -6.0% 0.0340.00
218 1.0240.05 1.1040.04 -7.0% 0.0540.03 217 0.9340.03 0.9540.04 -2.0% 0.0440.03
221 0.7840.02 0.7840.01 0.0% 0.0140.00 218 1.0240.01 1.1140.05 -8.0% 0.0440.00
227 1.0040.01 1.06+£0.03 -6.0% 0.0340.04 221 0.7640.01 0.7840.02 -3.0% 0.0240.00
231 2.7840.01 2.8640.04 -3.0% 0.0340.00 225 0.4640.05 0.4640.04 0.0% 0.0040.04
232 0.654+0.05 0.6040.12 8.0% 0.0240.00 226 1.1140.01 1.1540.04 -4.0% 0.0440.03
304 0.7740.02 0.0240.00 97.0% 0.0240.00 227 1.0240.01 1.09+40.04 -7.0% 0.0340.03
308 1.0940.27 0.5940.01 46.0% 0.0240.00 304 0.8740.05 0.0240.00 98.0% 0.0240.00
309 0.5940.04 0.0140.00 98.0% 0.0140.00 308 1.0540.27 0.5940.01 44.0% 0.0240.00
310 0.6240.01 0.014+0.04 98.0% 0.0140.04 309 0.5840.01 0.0240.00 97.0% 0.0240.00
Total 24.12 17.11 0.48 Total 22.38 15.39 0.52
Average 1.34 0.95 29.05% 0.03 Average 1.18 0.81 31.24% 0.03
5 = 1.85 0.90 0.03 5 = 1.78 0.74 0.03
Rules? 52 Rules? 63
3 0.4840.01 0.4840.01 0.0% 0.0140.00 1 0.5740.04 0.5740.01 0.0% 0.0140.00
4 0.8040.01 0.7940.03 1.0% 0.0240.03 13 0.7340.01 0.7640.03 -4.0% 0.0240.03
32 0.654+0.00 0.6740.04 -3.0% 0.0240.04 32 0.7340.06 0.7440.03 -1.0% 0.0140.03
201 0.86+0.01 0.8940.05 -4.0% 0.0240.00 200 0.7340.01 0.7440.05 -1.0% 0.0240.00
202 0.661+0.00 0.6940.01 -5.0% 0.0240.00 202 0.7240.00 0.7440.00 -3.0% 0.0240.00
204 0.7140.03 0.7440.04 -4.0% 0.0240.03 204 0.7440.00 0.7840.03 -5.0% 0.0440.03
205 1.0440.02 1.0840.03 -4.0% 0.0340.03 208 0.6240.02 0.6540.01 -5.0% 0.0140.00
206 1.0440.02 1.0940.05 -5.0% 0.0340.00 214 2.464+0.03 1.67+40.07 32.0% 0.1040.00
208 0.614+0.01 0.6240.01 -2.0% 0.0140.00 215 8.4940.08 3.6040.05 58.0% 0.1040.03
213 3.5240.06 3.4340.08 3.0% 0.1040.04 216 1.1340.07 1.1940.08 -5.0% 0.0440.00
215 8.5840.05 7.4940.05 13.0% 0.0940.03 218 1.0540.08 1.1040.01 -5.0% 0.0540.00
216 1.0840.04 1.1740.06 -8.0% 0.0440.00 221 0.8340.01 0.8540.01 -2.0% 0.0240.00
218 1.0440.01 1.1040.04 -5.0% 0.0540.04 224 0.4640.00 0.4740.01 -2.0% 0.0040.00
221 0.7740.04 0.7940.04 -3.0% 0.0240.00 227 1.0440.04 1.0740.02 -3.0% 0.0340.03
227 1.0240.01 1.0840.05 -6.0% 0.0340.00 233 0.6540.02 0.6440.01 2.0% 0.0240.00
304 0.7940.03 0.0240.00 97.0% 0.0240.00 304 0.7940.01 0.0240.00 97.0% 0.0240.00
308 1.0240.29 0.5640.01 45.0% 0.0240.00 308 1.0340.28 0.5740.01 44.0% 0.0240.00
309 0.6340.03 0.0240.00 97.0% 0.0240.00 309 0.5940.06 0.0240.03 97.0% 0.0240.03
310 0.6040.04 0.0140.00 98.0% 0.0140.00 310 0.6440.07 0.0140.00 98.0% 0.0140.00
Total 25.88 22.70 0.58 Total 23.98 16.18 0.56
Average 1.36 1.19 12.30% 0.03 Average 1.26 0.85 32.55% 0.03
5 = 1.86 1.69 0.02 5 = 1.80 0.78 0.03
Rules? 46 Rules? 58
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Learning Time Statistics

Trigger Length Number of Primary Elapsed time Database
‘ query id of query learned rules relation for learning accesses
100 7 5 GEOLOC 153.23 22
200 9 5 COUNTRY_STATE 54.57 20
201 10 2 AUROIRTS 81.81 21
300 6 5 RUNWAYS 17.25 28
301 6 4 AIRPORTS 31.67 41
400 6 1 RUNWAYS 11.08 19
500 8 6 RUNWAYS 55.38 32
501 8 4 AIRPORTS 32.92 41
1200 7 7 SEAPORTS 61.33 46
1300 5 4 SEAPORTS 30.84 43
1600 12 37 PROT_BERTHS 137.08 84
1601 13 20 SEAPROTS 91.02 85
1800 10 9 AIRPORTS 53.34 53
1801 9 5 SEAPORTS 70.06 57
1803 10 6 GEQOLOC 195.22 37
20000 8 4 SEAPORTS 64.47 53
20100 12 61 WHARVES 102.06 149
20101 12 3 PIERS 21.46 25
20500 7 0 RUNWAYS 5.97 9
20501 5 0 AIRPORTS 18.19 17
20503 4 2 AIRCRAFT_AIRFIELD _CHARS 44.06 70
20600 7 0 RUNWAYS 5.7 9
20601 5 0 RUNWAYS 17.99 17
20603 4 2 AIRCRAFT_AIRFIELD _CHARS 31.73 50
20800 7 0 AIRLIFT PLANNING_FCTRS 24.14 36
20801 7 0 AIRCRAFT_GENERAL_CHARS 23.36 34
20900 3 2 AIRLIFT PLANNING_FCTRS 21.05 35
21300 13 19 CHANNELS 74.46 84
21301 13 9 WHARVES 91.16 157
21303 13 4 PIERS 62.49 42
21400 18 36 CHANNELS 66.17 98
21401 18 36 WHARVES 112.45 156
21402 16 0 PIERS 35.94 42
21406 6 3 SHIP_CLASS 61.44 82
21700 7 0 SHIP_CLASS 123.64 155
21701 14 3 BERTHS 8.57 13
21703 11 7 PORT_ BERTHS 45.55 33
21706 11 6 SEAPORTS 62.21 65
21800 6 0 SHIP_CLASS 33.07 42
21801 14 0 BERTHS 11.87 20
21802 11 0 PORT BERTHS 88.25 85
21803 12 0 SEAPORTS 58.86 58
22400 4 1 AIRPORTS 23.77 30
22500 4 1 AIRPORTS 25.15 32
22600 8 3 RUNWAYS 14.89 26
22601 7 4 AIRPORTS 33.04 43
22602 3 0 AIRCRAFT_AIRFIELD _CHARS 38.42 60
22700 6 0 RUNWAYS 5.83 9
22701 5 0 AIRPORTS 18.21 17
22702 3 0 AIRCRAFT_AIRFIELD _CHARS 38.45 60
23100 14 7 CHANNELS 137.45 25
23101 14 16 SEAPORTS 378.15 80
23103 3 2 NOTIONAL_SHIP 51.38 70
23200 7 0 CHANNELS 21.11 17
23201 7 0 SEAPORTS 61.83 45
23203 3 2 NOTIONAL_SHIP 44.73 71
23300 7 0 CHANNELS 21.22 17
23301 7 0 SEAPORTS 62.02 45
23303 3 2 NOTIONAL_SHIP 50.16 65
Avg 8.39 6.02 57.94 50.46
3= 3.92 11.17 58.08 36.14
Max 18 61 378.15 157
Median 7 2 44.73 42
Min 3 0 5.7 9
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