
VizScript: On the Creation of Efficient Visualizations for
Understanding Complex Multi-Agent Systems ∗† ‡

Jing Jin, Romeo Sanchez, Rajiv T. Maheswaran and Pedro Szekely
Information Sciences Institute, University of Southern California

4676 Admiralty Way Suite 1001, Marina del Rey, CA 90292
{jing, rsanchez, maheswar, pszekely}@isi.edu

ABSTRACT
One of the most difficult tasks in software development is
understanding the behavior of the final product. Making
sure that a system behaves as users expect is a challenging
endeavor. Understanding the behavior of a multi-agent sys-
tem is even more challenging given the additional complex-
ities of multi-agent problems. In this paper, we address the
problem of users creating visualizations to debug and under-
stand complex multi-agent systems. We introduce VizScript,
a generic framework that expedites the process of creating
such visualizations. VizScript combines a generic applica-
tion instrumentation, a knowledge-base, and simple scene
definitions primitives with a reasoning system, to produce
an easy to use visualization platform. Using VizScript, we
were able to recreate the visualizations for a complex multi-
agent system with an order-of-magnitude less effort than was
required in a Java implementation

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

General Terms
Algorithms, Measurement, Performance, Design, Languages

Author Keywords
Software Visualization, Scripting Languages, Multi-Agent
Systems, Rule-Based Systems
∗We thank Kevin Smyth, Chris van Buskirk, and Gergely Gati for
their work on the LiveTree graphics library, and their many helpful
comments.
†The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032. The
U.S.Government is authorized to reproduce and distribute reports
for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person connected
with them. Approved for Public Release, Distribution Unlimited.
‡Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. IUI’08, Jan-
uary 13-16, 2008, Maspalomas, Gran Canaria, Spain. Copyright
2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

INTRODUCTION
Understanding the behavior of complex software is chal-
lenging. Understanding the behavior of multi-agent systems
is even more challenging given some common characteris-
tics of multi-agent problems: additional timing constraints,
information sharing issues, dynamic and uncertain domains,
distributed state information, large data space, etc. One al-
ternative to debug and understand such systems is to wade
through long textual log files that report key events and vari-
able values. This is not only time consuming and frustrating,
but it is also more error-prone. It is much easier to gain in-
sight into the behavior of a system from animated interactive
graphical visualizations than from linear text logs.

In this paper, we focus on building visualizations of multi-
agent systems to help users understand the behavior and in-
teractions among agents. The key challenges for creating
such visualizations are (1) needs arise dynamically, i.e., it is
difficult to know a priori the visualizations that one needs
or wants, (2) extensive expertise on the system, the algo-
rithms and visualization tools are often needed for imple-
mentation, and (3) agents can be running in a distributed
environment. While there are many tools to build visualiza-
tions of software [2, 16, 17], they require significant effort
to build. The users must also be developers who understand
the software being visualized and specialized languages de-
signed for software visualization and graphics.

Our approach, embodied in a framework called VizScript,
expedites the process of creating effective visualizations for
understanding and debugging complex software systems.
VizScript visualization platform has been successfully ap-
plied to the Criticality-Sensitive Coordination project [12,
18], a very complex and large multi-agent system that has
successfully outperformed extensions of prominent decision
theoretic and scheduling schemes. The VizScript visualiza-
tions enabled CSC researchers to identify important short-
falls in different versions of the system, and provided in-
sights to develop more powerful heuristics that greatly im-
proved the final quality of the application.1 VizScript goal
is to enable users who understand the application require-
ments, but are not necessarily developers, to build custom
visualizations in minutes rather than days. We want to sup-
port a paradigm similar to debugging: users run the software

1The CSC multi-agent system received the DARPA COORDINA-
TORS Phase I and II Champions distinction for unmatched perfor-
mance.

40

with a few visualizations of the system to observe its behav-
ior. Upon observing interesting or suspicious behavior, users
can quickly construct a new visualization to focus on a par-
ticular aspect of the behavior to gain further insight. The key
point is that users don’t know a priori what visualizations
are needed. In order to support such a paradigm, it is crucial
to make visualizations easy to build in a very generic way.
The general idea is to visualize system components and their
evolution during execution. Therefore, the initial desiderata
for the visualization system are:

1. Easy to build visualizations: enable users to build new
visualizations in minutes rather than days.

2. Generic: support a wide variety of visualizations and ap-
plications.

3. Multi-agent: support visualizations that integrate infor-
mation from agents running on multiple machines.

4. Online / Offline: support visualization of the software
while it is running, but also after the it has completed.

5. Large applications: support visualization of large appli-
cations with thousands of lines of code.

6. Forward and reverse playback: support the ability to
play the visualizations back in time.

The multi-agent feature of our previous list is a capability,
not a restriction. Ideally, a visualization system should have
the property of integrating information coming from differ-
ent sources, and what is more important, it should be able
to make sense of it. In a more general scenario, an agent
could be considered any software module that produces an
outcome that is consumed by other software components.

The online/offline support is very important for thorough
software testing. The online support allows users to ob-
serve the behavior of a running system. This is crucial dur-
ing debugging sessions where users want to see whether re-
cent changes to the software had the intended effect. Offline
support is important for regression testing. It enables run-
ning the system many times and using the visualization tools
to analyze specific runs. Offline support is also important
in multi-agent systems where timing considerations make it
difficult or impossible to fully reproduce the behavior of a
specific run. Offline support is also challenging because we
want to enable authoring of new visualizations after the sys-
tem has run, and data has already been collected.

The playback support is crucial when multiple visualizations
of different system components are built. It allows users the
ability to quickly and accurately isolate individual applica-
tion components at particular instants in time. Furthermore,
the ability to correlate different attributes from multiple visu-
alizations by playing them back in time is also an invaluable
aid for software debugging and system understanding.

Constructing tools that meet all these requirements is diffi-
cult in itself. The desire to make it general and easy to use
is even more complex, and is the focus of our work. Usu-
ally, building a software visualization tool involves two main

tasks: instrumentation (the software to be visualized must be
instrumented to trigger the visualization system) and scene
definition (the specification of what to show when the trig-
gers fire). These two tasks are often in conflict. If one makes
the instrumentation easy by using the software data struc-
tures and procedure/method definitions as the triggers, the
scene definitions become more complex in order to bridge
the gap between the software abstractions, and the visualiza-
tion that the user wants to see. Alternatively, one can make
scene definitions simpler by raising the level of abstraction
on the triggers, but this requires adding more instrumenta-
tion code to detect higher level events.

VizScript simplifies both instrumentation and scene defini-
tion by introducing a reasoning system between the two.
The reasoning system enables the instrumentation compo-
nent to produce simple information and enables visualization
authors to define higher-level abstractions matched to the
requirements of their visualization. The reasoning system
uses a knowledge base to record the instrumentation output
and uses a production-system architecture to enable authors
to define patterns that identify high-level events. In other
words, authors do not need to understand the underlying
software in order to write the patterns that detect the interest-
ing events to be visualized, lowering the cost of creating the
visualizations. Notice that we are not only proposing a set
of visualizations tools to understand software activity, we are
in fact also introducing a framework that enables rapid cre-
ation of visualizations, facilitating programmatic analysis of
software (e.g., summary statistics, identification of patterns,
etc), system development and application debugging.

Before fully introducing VizScript, we present on the next
section some examples of the visualizations that VizScript
can easily generate: graphs to show the evolution of numeric
variables, and charts to show the evolution of nominal vari-
ables; introducing also some of the properties of such vi-
sualizations. We then present the high-level architecture of
VizScript along with the software instrumentation. The next
section introduces the VizScript language with a detailed ex-
ample to show how visualizations are specified, describing
also the details of our reasoning system. Later, we present
an evaluation of the system by comparing the effort to build
visualizations with and without the system, and end with re-
lated work, conclusions and directions for future work.

EXAMPLES
This section presents examples of the types of visualiza-
tions that can be generated through VizScript. First, we con-
sider visualizations from the CSC multi-agent system, where
VizScript has been used extensively. Then, we present an ex-
ample of VizScript using a different distributed application.
Finally, we show again visualizations of the CSC system but
connecting VizScript to different graphics libraries to show
the generality of our approach.

CSC Multi-agent System Visualizations
In this complex Multi-agent application, agents help peo-
ple manage activities they need to perform in order to meet
an objective. Each agent has knowledge only of the activi-

41

(a) Quality Views

(b) Histogram View

(c) Agent Activities View

(d) Probability View

(e) Execution View
Figure 1: CSC Example Visualizations

ties that its owner can perform, as well as enabling activities
that others are tasked to perform. The agents continuously
maintain a schedule, adapting it as necessary to cope with
delays and failures. To do so, agents exchange information
about activities that they can control: probabilities of suc-
cess, importance of activities, utilities, etc. Each scenario is
conformed of subproblems that contribute to the overall fi-
nal quality. The domains solved by this multi-agent system
are characterized by uncertainty, dynamism, complex reward
functions and distributed information. Therefore, determin-
ing appropriate actions becomes quite difficult, especially

as the number of agents and the coupling between them in-
creases. VizScript greatly helps in understanding the behav-
ior and interactions among agents in this system. Evaluating
this system involves analyzing decisions over time, and thus,
the needed visualizations are sophisticated animations. Fig-
ure 1 shows shots of 5 out of 40 of the visualizations gener-
ated with VizScript for this particular application. The visu-
alizations are generated using VizScript’s embedded graph-
ics library, which is an augmented version of the Starfields
graphics package from previous work [19]. A full animation
of the visualizations can be seen at [18].

The Quality View visualizations on Figure 1(a) show the
evolution of task achievement that the multi-agent team has
accomplished thus far in the scenario in total and by prob-
lem. The horizontal axis represents time and the vertical axis
represents the total quality accumulated.

The Histogram View visualization on Figure 1(b) shows the
overall distribution of quality for executing an activity in
the schedule. The visualization helps to identify the bene-
fits of multi-method changes to the schedule, and the impact
of those changes on the overall quality of a problem.

The next view on Figure 1(c) shows the activities that each
agent is performing at any given time. Rows represent agents
and columns represent simulated time. Cell (i, j) is col-
ored if agenti is executing an activity during timej . The
color represents the priority of the activity, or whether the
activity succeeded or failed. The visualization integrates re-
ports from every agent when they start and end activities, or
change their priorities.

The Probability View visualization from Figure 1(d) shows
the evolution of the probability of successfully executing
activities. Rows represent activities and columns represent
simulated time. Cell (i, j) is colored to show the probability
of successfully executing activityi at simulated time timej .

Finally, the Execution View visualization on Figure 1(e)
shows an integrated view of all activities from all agents.
Rows represent activities and columns represent simulated
time. The cells show information about the release and dead-
line of activities, their possible durations, the planned start
time, the execution status, the agent who owns it, etc. The
display is densely packed with information, and shows all
the relevant information to let developers and testers under-
stand what is happening in the distributed execution of ac-
tivities.

As the simulation advances, all the displays update simulta-
neously. More importantly, the visualizations can be played
back in time. Using the time sliders, the user can move time
backwards (and forwards) to view the state of the system at
any given point in time. For example, the user can position
the simulation at the time when a given activity started, to
see the probability of that activity and the effect it has on the
current schedule. Furthermore, the graphics library provides
the ability to search and cross-reference activities and plan
components, offering the capability of isolating activities for

42

(a) Agent Load View

(b) Agent Execution View

Figure 2: DCOP Visualizations

Figure 3: VTK Cumulative Quality View

further analysis. The visualizations created by VizScript can
be generated online while the system is running, or by pro-
cessing input data in offline mode. VizScript functionality
and characteristics facilitates rapid creation and modification
of visualizations that greatly helps in understanding and de-
bugging complex software.

Visualizations From a DCOP Application
One of the main characteristics of VizScript is the gener-
ality of the approach. In this subsection, we present some
visualizations generated by VizScript for a distributed con-
straint optimization application (DCOP). On this applica-
tion, agents are trying to coordinate to solve graph color-
ing problems. Two examples of the visualizations generated
by VizScript are shown on Figure 2. The Agent Load View
on Figure 2(a) shows the amount of work load each agent
has across time. The second visualization shows the type
of work each agent is performing at each pulse. Different
shapes in the visualization represent different events (e.g.,
send/receive messages, etc). Colors represent different kinds
of messages or procedures. On this application, VizScript
was ran in full online mode.

Visualizations Using Different Graphics Libraries
So far, we have seen examples of visualizations generated
by VizScript in different applications but using only the
Starfields graphics package. However, the VizScript inter-
preter is independent of the graphics library. To demonstrate
this capability, we show in this subsection two examples
of external graphics libraries connecting to VizScript. The
first example can be seen in Figure 3. It is a 3D visualiza-
tion generated with the VTK graphics library [16]. VTK is a
very popular open source library for visualization, computer

Figure 4: LiveTree Hierarchy View

ONLINE

SOFTWARE

INSTRUMENTED
SOFTWARE

PER-AGENT
LOG FILE

VISUALIZATION
COMMANDS
(JOURNAL)

VISUALIZATIONS

VizScript
Script

VizScript
Script

INSTRUMENT

VizScript

VISUALIZE

RUN
EXPERIMENTS

PER-AGENT
LOG FILE

USER

USER

USER

DEVELOPER

DATA TUPLES

OFFLINE

Figure 5: VizScript Framework.

graphics and imaging. The example displays the cumulative
quality obtained by the system over time. Notice that the
data displayed by VTK, exactly matches the one visualized
previously through Starfields on Figure 1(a).

The second example displayed in Figure 4 uses a graph
framework (LiveTree) to represent hierarchical relations of
tasks. This LiveTree application is derived from the JUNG
framework [8], an open source library for modeling data as
graphs or networks. It shows hierarchical relations among
activities for a scheduling problem using a tree view. On
this application, VizScript is used to perform analysis on the
raw problem data. The results of the VizScript analysis are
then used to generate values for the nodes in the tree. An ex-
ample of the LiveTree visualization using VizScript can be
seen on Figure 4. On this example, nodes are composed of
two basic colors representing the probability that the current
activity gets scheduled and the probability it gets quality.

VizScript ARCHITECTURE
In this section, we provide a high level overview of the
main components of the VizScript architecture. First, Fig-
ure 5 shows how VizScript is integrated with an application,
and the different roles involved in defining new visualiza-
tions. The first task, performed by the software develop-
ers, is to instrument the application software to produce the
data that drives the visualizations. This involves augmenting
the source code with instrumentation commands, similar to
print statements typically used for debugging. When users
run experiments with the instrumented software, it produces

43

PER-AGENT
LOG FILE

VISUALIZATION
COMMANDS
(JOURNAL)

VizScript
Script

VizScript
Script

DATA TUPLES

VizScript

KNOWLEDGE BASE

BUILD
KNOWLEDGE BASE

CONSOLIDATED
LOG

CONSOLIDATE
LOGS

PATTERN
MATCHER

Figure 6: Components of the VizScript interpreter.

a stream of records containing information about changes in
the state of the system. In multi-agent systems, each agent
produces a separate stream. These streams can be fed di-
rectly to the visualization system for online visualization, or
can be saved to disk for use later in offline mode.

To produce visualizations, users write scripts that define
what they want to see. VizScript takes as input a set of scripts
and the data streams produced by the application. The out-
put is a sequence of graphics commands that are fed to a
graphics library to drive the display. In online mode, users
specify the scripts before running the application, and the
continuous stream of records produced are fed directly into
the VizScript engine for visualization. In offline mode, users
invoke VizScript with a set of scripts and files containing the
data streams saved. This enables users to run VizScript mul-
tiple times to produce alternative visualizations on the data.
One of the capabilities of the VizScript architecture is that
integrates information from distributed sources seamlessly.
Notice that if the application is fully distributed, we could
also use VizScript independently at each distributed source.
If this were to be the case, each distributed component would
visualize its own stream of records in isolation.

The architecture of the VizScript interpreter is shown in Fig-
ure 6. The interpreter takes as input a collection of data
streams, one per agent, and a collection of scripts that define
the visualizations that the user wants to see. The first step is
to consolidate the data streams produced by the agents. This
process is presented in more detail in later sections. The con-
solidated data streams are used to build a knowledge-base
that contains the information needed for visualization. The
knowledge-base gets built containing only the information
referenced in the input scripts. This is important to improve
the performance of the interpreter because the data streams
often contain over 100K records, many of which are not rel-
evant to the visualizations required by the user.

1 Team3,35582639330697,Team3,agentLabel,Team3
2 Team3,35582670779666,Problem1,releaseTime,15
3 Team3,35582670784415,Problem1,deadlineTime,112
4 Team3,35582670795310,CTask1,supertaskRelation,Window1
5 Team3,35582670800618,CTask1,releaseTime,30

Figure 7: Example data records

Scripts are defined using rules. The condition part of a
rule is a pattern that is matched against the contents of the
knowledge-base. VizScript builds the knowledge-base one
record at a time. After each record is added, VizScript fires
all the matching rules in all scripts. The output of VizScript
is a sequence of visualizations commands that are fed to a
graphics library to drive the display. The VizScript inter-
preter is independent of the graphics library, and could be
used with different graphics packages. The scripts do de-
pend on the graphics library as they explicitly invoke proce-
dures from it.

SOFTWARE INSTRUMENTATION
In VizScript, we take an object-oriented view of the soft-
ware. We assume that the software to be visualized is defined
in terms of objects, and the purpose of the visualizations is to
show the evolution of the state of the objects in the system.
We further assume that objects have unique identifiers, and
their state is defined in terms of properties whose values can
be primitive types (String, Integer, Double and Boolean) or
references to other objects. In order to show the evolution of
the state of objects, the software is instrumented to announce
changes to the state of objects by producing a stream of data
records with the following fields: (a) an Agent who made
the change to the object. Notice that for non multi-agent
systems this value could correspond to the component firing
the event. (b) a Time-Stamp representing the time when
the event happened; (c) the Object that identifies the object
changed; (d) a Property representing the name of the object
property changed; and (e) a Value that is the new value of
the object property.

Our representation is similar to RDF triples, with the addi-
tion of the agent and time-stamp fields. These could have
been represented using reification, but the additional triples
required to do so introduce inefficiencies that we don’t want
to incur. The main benefits of our representation are the
same as the benefits of using RDF, namely that the represen-
tation is generic and easily distributable. The pitfalls are also
similar to those of RDF, namely reasoning and efficiency.
Later, we show how we reason with this information and
performance results.

In multi-agent software, we assume that multiple agents can
reason about the same collection of objects. Each agent has
its own in-memory representation of the same object, but
they all use the same identifier. When one agent changes the
state of an object, it must inform the other agents about the
change, so there will be times when agents have inconsis-
tent versions of the same object. The Agent and Time-Stamp
fields enable the visualizations to reason about the authors of
changes and the latency of change propagation in the agents.
Figure 7 shows the first 5 records in a data stream collected

44

by one agent from a multi-agent application containing thou-
sands of such records. As discussed in the previous section,
the data streams from multiple agents must be consolidated
into a single stream before the visualization system can pro-
cess it. The time-stamp clock has nano-second resolution,
so every record in a stream has a unique, increasing time-
stamp. We assume that the clocks for multiple agents may
be skewed, but also assume that they run at the same speed.
Consequently the issue in consolidation is to determine the
skew. We do this by using an auxiliary agent that sends a
Pulse message to every agent. All agents are instrumented
to log receipt of this message. We assume that all agents re-
ceive the Pulse message at the same time and align their time
stamps accordingly. Even though more accurate schemes are
possible, we found this simple scheme effective in that it can
correct arbitrarily large machine clock skews and the margin
or error is on the order of a few milliseconds.

VizScript LANGUAGE
VizScript is an interpreted language with a pattern matcher
and an integrated knowledge-base. VizScript statements ma-
nipulate scalars and associative arrays using standard assign-
ment, arithmetic, conditional and function call expressions.
Functions are provided to invoke commands in the graphics
library and to update the knowledge-base. The ability to up-
date the knowledge-base is very important, since it allows
VizScript to do further pattern analysis and more complex
inference. The interpreted language is similar to other script-
ing languages such as JavaScript. The pattern matcher is
similar to the pattern matcher in OPS5 [7]. We describe the
language by first introducing an example and then present
the different language constructs in more detail.

Script Example
Figure 8 shows the complete VizScript script for the Proba-
bility View visualization from Figure 1(d). Line 3 specifies
the title of the window. Lines 5 to 7 include some external
libraries to initialize starfields. The basic setup for the Prob-
ability Starfield is done from lines 9 to 15. Line 9 tells the
engine to sort components in terms of entities (i.e., the meth-
ods and tasks in the schedule). Line 10 adds a column to the
display to represent the agents, next line adds a column to
keep track of the status of an entity. Lines 13 to 15 generate
a color map distributed uniformly for 100 bins.

The rest of the script defines the rules needed to process the
records in the data stream. The first rule in lines 17 to 21
specifies when to add rows to the visualization. The script
adds rows when a new entity of type method or task gets
recorded in the knowledge-base, if the rest of the informa-
tion related to such entity is already present (e.g., the owner,
release time, etc). The body of the rule specifies the way
the new row is inserted in the display. First, you consider
the entity for the sorting mechanism. Then, the script gener-
ates a unique color for the matching agent, and the following
statement adds the row for that agent. The last rule specifies
when to add cells to the starfields columns. We are interested
in displaying the probability of success of any entity as time
clock advances, and whose execution status is not marked as
possible. If the pattern is satisfied, the color for the prob-

1 starfield{
2 /// Set window title
3 window["title"] = "Probability Monitor Starfield";
4 /// Basic starfield settings
5 #include "../include/sfSetting.dcviz"
6 #include "../include/pulseRow.dcviz"
7 #include "../include/entityStatusUpdater.dcviz"
8 /// Basic starfield setup
9 addTreeSorter("entitySorter");

10 addColumn("agent");
11 addColumn("entityStatus");
12 /// Probability color map from RED to GREEN
13 bins = 100;
14 createColorMap("probability","#FF0000","#009900",bins);
15 createStatusColorsFromMap("probability");
16 // Add methods
17 when ((?entity "entityType" "entityTypeMethod")||
18 (?entity "entityType" "entityTypeTask"))
19 && (?entity "supertaskRelation" ?parent)
20 && (?entity "releaseTime" ?release)
21 && (?entity "entityOwner" ?owner)
22 {
23 addTreeSorterRow("entitySorter",?parent,?release,
24 ?entity,?entity,?entity."entityType");
25 generateStatusColor(?owner);
26 addCell(?entity, "agent", ?owner);
27 }
28 /// Add probability
29 when("clock" "starfieldPulse" ?cpulse)
30 &&!(?entity "smExecutionStatus" "QUALITY_POSSIBLE")
31 &&(?entity "pSchedule" ?prob)
32 {
33 probColor=getColorFromMap("probability",?prob,bins);
34 addCell(?entity,?cpulse,probColor,"Entity " +
35 ?entity+" Probability class: "+?prob*bins);
36 }
37 }

Figure 8: VizScript script for the Probability View

ability of success of an entity is generated in line 33 from
the distribution of colors previously created. These patterns
illustrate the use of Boolean expressions and variable bind-
ings in the language. Lines 34 and 35 add the new cell. It
adds the cell in the row corresponding to the entity, and at
the column given by the current time pulse when the event
happened, with the color obtained before. The addCell
statement also composes a tool-tip that contains the entity
name and its probability of success.

Knowledge-Base
The core programming system in VizScript can be consid-
ered a full knowledge-base system, since it includes a declar-
ative scripting language to access, query, and apply deduc-
tive reasoning consistently to the information recorded effi-
ciently in its pattern recognition database.2 The knowledge-
base in VizScript is in general a frame system. Where the
frames correspond to the objects in the data streams, and the
slots in the frames correspond to the object properties filled
with different values [13, 15].

The knowledge-base is built from the consolidated data.
The streams are conformed of tuples of the form (agent,
timestamp, object, property, value) as exemplified in the
Figure 7. Every time a tuple is processed, a frame for the
given object is created if one doesn’t exist already. The slot
named by the property is set to the given value. The agent
and time-stamp are stored in facets of the slot. The cur-
rent implementation of VizScript accepts multi-valued slots.
2See [21] for an explanatory definition of knowledge-base systems

45

Consequently, when processing a tuple naming an object-
property pair for which a slot is already defined, the existing
slot gets partitioned to accommodate for the new value.

Variables
VizScript is a weakly-typed language. Variables can hold
values of any type, and they do not need to be declared.
There are three kinds of variables:

Simple variables can store one value. They can be read and
written. For example:

bins = 100;
a = bins + 1;

Array variables map a list of values to another value. For
example:

x[a, 1] = "yes";
x[2] = "title";
window[x[2]] = "Probability Monitor Starfield";

Pattern variables store bindings of patterns matched against
the knowledge-base. They can be read, but can only be
assigned by the pattern matcher. Pattern variables start
with "?" (e.g.,?entity).

Expressions
VizScript supports variable reference expressions, a variety
of arithmetic and Boolean expressions, function calls, and
knowledge-base path-expressions to fetch values from the
knowledge base. These path expressions are of the form
exp1.exp2 where exp1 must evaluate to the name of an ob-
ject in the knowledge-base, and exp2 must evaluate to the
name of a property. The value of the path expression is the
value of the corresponding slot in the knowledge-base, or the
special value NoValue if the object is not in the knowledge-
base or the slot is undefined. For example, the following are
path expressions:

"task1"."probability"
?entity."entityType"

When evaluated, the first expression yields the value of the
"probability" of the object named "task1". The second
evaluates to the value of the "entityType" for the object
bound to variable ?entity.

Statements
VizScript defines four types of statements: assignment, func-
tion call, if and let. The first three have the obvious meaning.
The let statement is used to explicitly invoke the pattern
matcher. There are no iteration statements such as the tra-
ditional for and while loops. Iteration is implicit in that
statements are executed multiple times when patterns are sat-
isfied by multiple variable bindings. The pattern matcher
and the let statement are explained in more detail below.

Patterns
Patterns specify events of interest. A pattern is a boolean
combination of primitive patterns. VizScript supports con-
junction, disjunction and negation. A primitive pattern is of

the form (object, property, value), Where the object and
value elements can be variables of the form ?x, or expres-
sions that evaluate to a scalar or an object in the knowledge-
base. The property is an expression, which when evaluated
yields the name of a property in the knowledge-base. Prop-
erties define relations between objects and values, providing
the basis for the deductive mechanisms of VizScript. For
example, the following are primitive patterns:

("task1" "probability" ?p)
(?x "probability" ?p)
(?x "probability" 0)

A binding is an assignment of values to the variables in a pat-
tern that make the pattern true. A pattern can have multiple
bindings when multiple assignments of variables satisfy it,
and VizScript computes all of them. In the example above,
the first pattern will have zero or one bindings depending
on whether the "probability" of "task1" is defined in the
knowledge-base. When it is, ?p is bound to the value of the
"probability". The second pattern will typically have mul-
tiple bindings consisting of pairs of objects and their proba-
bility. The third pattern is similar to the second except that it
binds to all objects whose "probability" is zero.

Structure of a VizScript Script
As illustrated in Figure 8, a VizScript script consists of a
set of optional global statements followed by a sequence of
when statement rules. The global statements typically de-
fine the appearance of the window, symbolic names for col-
ors, and often invokes functions to initialize the visualization
(e.g., sorting mechanism, predefined rows or columns, etc).
On the other hand, the when statements constitute the core
reasoning mechanism of the VizScript interpreter. They have
the following structure:

when Pattern where BooleanExpression {
Statement+

}

The optional where clause of the when statement allows
definition of additional constraints that cannot be expressed
through the unification of pattern variables (e.g., inequality
constraints), and that need to be satisfied for the variable
bindings. If a particular when clause is satisfied, then its
body gets evaluated updating the visualizations.

VizScript first executes the global statements, and then con-
sumes the consolidated input stream one record at a time.
For each record it first adds the record to the knowledge-
base, if it refers to a property used in a script. Then, it selects
the when statements to evaluate, considering only those re-
lated to the record just added to avoid computing useless
bindings. Finally, evaluates the selected when statements,
processing the body of the rule if the variable bindings of
the patterns are satisfied against the knowledge-base.

For example, suppose that the following record is added to
the knowledge-base:

("agent1" 0 "task1" "probability" 0.3)

46

Consider the following when statements:

when (?x "probability" ?p) { ... }
when (?x "importance" ?i) { ... }
when ("task2" "probability" ?p { ... }
when (?x "probability" 0) { ... }

VizScript would evaluate the first when statement because
it contains the property "probability". It would bind ?x

to "task1" and ?p to 0.3. It would not evaluate the sec-
ond statement because it does not mention "probability".
The third statement would not be selected because even
though it mentions "probability", it requires the object to
be "task2", but the record is about "task1". The fourth
statement would not be selected either because it is looking
for a "probability" equal to zero.

After binding the pattern variables based on the record just
added to the knowledge-base, VizScript computes bindings
for any variables that are still unbound in the when state-
ment by matching against the full contents of the knowledge-
base. As mentioned before, the bindings must also satisfy
the BooleanExpression in the where clause if it has been
defined to finally execute the body of the rule. VizScript
executes the body of the rule once for each possible set of
bindings. This powerful feature enables updating multiple
objects on the screen when some key property changes.

As mentioned before, VizScript introduces a let statement
to query the knowledge-base. Unlike the when statement,
the bindings it produces are not required to contain the
record just added. The following example illustrates the use
of the let statement in the Agent View visualization from
Figure 1(c):

when ("clock" "starfieldPulse" ?pulse) {
addCell("pulse row", ?pulse, "current pulse");
let (?method "entityType" "entityTypeMethod") &&

(?method "executionStatus" "qualityChanging") &&
(?method "executingPriority" ?p) {

addCell(?method."entityOwner", ?pulse, prio[?p]);
}

}

The when statement is triggered when the simulation clock
advances. The let statement fetches all "Primitive" ac-
tivities with status "qualityChanging", binding "?p" to the
execution priority of the activity. The action paints the cor-
responding cells with a color denoting the priority.

The body of when statements typically contains commands
to drive the underlying graphics package, compute statis-
tics, summarize information or update the knowledge-base.
Therefore, the VizScript language not only makes sense of
the knowledge contained in the data set, but also has the abil-
ity to enhance it to support more complex pattern analysis.
These properties make VizScript be a very powerful tool for
redirecting users’ attention to those important patterns in the
visualizations.

EVALUATION
We developed VizScript because we need powerful, easy to
use visualizations tools to help us understand, debug and de-

Visualization Lines of Code Savings
Original VizScript Factor

Quality View 122 5 24.40
Agent View 190 47 4.04
Probability View 258 18 13.57
Execution View 1214 93 13.05
Table 1: Effective Lines of Code for Visualizations

velop a large multi-agent application. The visualizations are
used by many team members every day. Our evaluation is
based on our experience re-implementing our visualizations
using VizScript. Because we rely on our visualizations to
make progress on our multi-agent system, the VizScript vi-
sualizations must be at least as good as our previous, custom
Java implementations:

Capability: the new visualizations are either equivalent or
more detailed than the old ones. Furthermore, VizScript
provides the functionality of a deductive system, easily
identifying patterns to draw users’ attention in the visual-
izations.

Instrumentation cost: negligible in both implementations.

Offline mode: supported in VizScript, but not in the old im-
plementation.

Rendering: the VizScript visualizations often take 2 times
longer to render than the custom Java implementations
(e.g., about 20 seconds instead of 10 seconds for a medium
size 10 agent scenario).

Even though the rendering costs are higher, the offline mode
supports a concept of operation that compensates for the
slower performance. Without offline support we had to run
simulations interactively in order to visualize them. We had
to wait for both the simulation and the visualization to run.
With offline support we run many simulations in batch mode
and select the most interesting ones to visualize. We don’t
have to wait for the simulations to run, which often takes
much longer than the time to visualize the results.

We have not ran full user studies yet, so we cannot yet prove
completely that VizScript is easy to use. However, the pre-
liminary experience with VizScript is very encouraging. The
DCOP visualization examples presented in the example sec-
tion were generated by an independent group of students
with the collaboration of only one of the authors. Further-
more, the port to the VTK graphics package and the visual-
ization example were carried out in a few hours of coding.
To quantitatively express the benefits of VizScript, we con-
sidered the lines of code that went in to creating various of
the CSC visualizations discussed previously. We measure
the effective lines of code (eLOC) [6]3 required to imple-
ment four different visualizations using the old custom Java
approach and the new VizScript approach. Table 1 shows
that VizScript enables approximately an order-of-magnitude
reduction in the number of lines necessary to create these
visualizations.
3eLOC is defined as the total lines of code (no blank lines or com-
ments) excluding stand-alone braces and parenthesis.

47

Problem Size of Log Files
Lines Memory (MB)

Unzipped Zipped
Unit Test 13,831 1.29 0.11
Small 76,641 7.09 0.60
Large 601,433 56.77 5.45

Table 2: Logging Costs for VizScript

Three additional points are worth noting. (1) a useful visual-
ization can be specified in about one page of VizScript code;
(2) two of the four visualizations were not re-implemented
by the developers of the original custom-Java visualizations;
and (3) VizScript proved to be practical for data streams con-
taining over one million of data records. For example, Ta-
ble 2 shows the logging costs of VizScript for different prob-
lems size. The second column shows the number of lines in
the consolidated data stream. The third and fourth columns
show the size of the unzipped and zipped files. While the raw
files can grow large, the zipped versions are very manage-
able. Furthermore, the time to read and process the largest
zipped file in the table took only 14.40 seconds. We plan
on identifying the bottlenecks and optimizing performance
VizScript in order to be able to process data streams with
many millions of records in the next phase of work.

RELATED WORK
The problem of automating the design of graphical presen-
tations has been widely recognized. Mackinlay’s work on
applying a graphical theory to support the automatic design
of presentations is well known [11]. While his work consid-
ers only static information, one of the main contributions of
our work is the support for dynamic and continuous data to
integrate information from multiple sources. A more sim-
ilar approach to VizScript is the information visualization
spreadsheet from Chi et al [3]. Their work considers spread-
sheets to enable the display and exploration of information.
Their approach, built on the top of VTK and Tcl scripting
language, is more tailored to visualizing a wide variety of
data. Our approach is more concerned with the identifica-
tion and visualization of critical patterns in data, making it
more suitable for applications with a high degree of interre-
lations.

Demetrescuet al [5] proposed two ways to bind visualiza-
tions to the actual software objects. The event-driven method
requires users to annotate the source text of the software.
These annotations represent events, which call the system’s
visualization routines. The main disadvantage of this ap-
proach is that users need to understand the system source
code and visualization routines. The data-driven method al-
lows users to define relations between software states and
the visualization objects. Our approach is similar to this
method, but we provide a reasoning system between the soft-
ware product and the visualization scheme, which simplifies
instrumentation.

InspectJ [9] is a program visualization system that uses As-
pectJ to automatically collect program monitoring informa-
tion for visualization. Users can use AspectJ to specify
points in the program execution that will yield interesting

information for visualization. However, one the main dis-
advantages of this approach is that it needs the program ex-
ecution to feed the visualization system, precluding its use
in offline analysis. Liao and Cohen [10]’s work focused on
making instrumentation easier. They proposed a high level
program monitoring and measuring system (PMMS) that ac-
cepts the original program and a set of questions posed in a
formal specification language. Then, it installs instrumen-
tation code directly into the program that determines the
data that needs to be collected for visualization. However,
PMMS’s performance is limited by how well the system can
understand the input program, while ours is only limited by
the expressivity of our scripting language.

Tominski and Schumann [20] argued that today’s visualiza-
tion techniques often do not distinguish between the dif-
ferent properties of the data, thus visualizing all aspects of
it. This leads to overcrowded and cluttered representations.
They proposed a very similar approach to VizScript in which
users can specify those aspects of the data that will be mon-
itored, and use events once a particular pattern is detected to
draw the visualizations. However, they use XML to define
event templates, mapping them later to SQL queries. Our
approach is more flexible, since VizScript scripting language
and knowledge-base can be seen as a deductive system mak-
ing inferences on the data with respect to time.

IVEE [1] is an interactive visualization and query system
based on the concept of dynamic queries. The idea behind
IVEE is to automatically import database relations, and use
such relations to generate visualizations. In that sense, it
is similar to VizScript given that its knowledge-base could
be seen as a database. However, VizScript has the capabil-
ity of reasoning with time series events, in other words, its
knowledge-base representation and scripting language pro-
vide the functionality to analyze information across time.
Another difference is the fact that the set of visualizations
in VizScript is not predefined, but user customized through
the language.

ZEUS [14] is an agent building toolkit for rapid constructing
collaborative agent applications. It supplies a visual environ-
ment for capturing user specifications of agents. It also has
some built-in visualizations to depict the running status and
statistic information of the system. Unlike VizScript, ZEUS
is more like a building and modeling tool instead of a visual
tool for understanding the complex behavior of multi-agent
systems. Its visualizations are hard-coded, and can only be
used within ZEUS.

Brahms [4] is a modeling and simulation tool. One of its
components, AgentViewer, can be used to visualize objects
from the simulation, including agents, their locations, and
communications. It is driven by a database that stores all the
simulation events. This approach is generic, and the visu-
alization display is rich. However, its power is limited by
the initial design of AgentViewer. Whenever users want to
see additional information in the visualizations, AgentViewer
has to be re-implemented by system experts, which requires
lots of time and effort. Our approach uses a simple script lan-

48

guage to build visualizations dynamically and quickly, with-
out requiring extensive expertise on the actual system.

CONCLUSIONS AND FUTURE WORK
We address the problem of generating dynamic visualiza-
tions for large and complex distributed systems. We devel-
oped VizScript, an efficient and flexible collection of tools,
which expedites the process of building such visualizations.
By combining a generic instrumentation, a knowledge-base,
and language primitives with a reasoning system, VizScript
is able to reproduce visualization tools in a fraction of the
time and human effort necessary when procedural program-
ming languages are used.

We made significant progress toward the first desideratum
(easy to build visualizations). VizScript lifts the requirement
of extensive expertise on the system and algorithms. It en-
ables building visualizations in hours rather than days, but
we have not yet reduced the time to minutes. We believe
an interactive environment where users can easily find the
names of properties and predefined objects will help achieve
this goal. For the second desideratum (generic), we showed
how the system can generate different types of visualiza-
tions depending of the graphics package used. Line charts,
starfields, and 3D graphics are possible. We expect to in-
corporate more graphics libraries to demonstrate additional
generality of our approach. We completely satisfy desiderata
3 through 6. VizScript’s architecture allows it to work in sin-
gle as well as distributed computing environments, making it
very suitable for complex and large multi-agent systems and
parallel computing. Furthermore, our approach can work on-
line as well as in offline mode after the system has completed
execution. This is a very powerful mechanism for software
testing and debugging, since it allows the developer to run
multiple instances of the software, and then select those that
will be visualized. In addition, the framework allows the vi-
sualizations to play back in time to show the evolution of the
system at any time point.

We also presented a performance evaluation of the frame-
work, both in terms of the quantitative differences in cod-
ing a VizScript module, and the logging costs incurred in
storing the data streams and processing the visualizations
for small, medium and large problems. We showed that the
eLOC needed to create a visualization using VizScript repre-
sents approximately an order-of-magnitude reduction in ef-
fort. Furthermore, the processing costs both in terms of data
space and time are manageable.

A possibility for extension is the introduction of state his-
tory. Currently, our approach keeps the latest snapshot of
the system to drive the visualizations. There may be cases
in which a partial history of the evolution of the system may
be needed. This would allow VizScript to work not only
as a visualization creation framework, but also as an analyt-
ical and data mining tool. Ongoing work also focuses on
further scale-up to data streams with several million records
by identifying the bottlenecks and optimization factors of
VizScript. Despite VizScript current limitations, VizScript
is a promising and effective approach to creating dynamic

visualizations for complex, large, and distributed systems.
VizScript represents a significant step toward satisfying the
desiderata listed in the introduction of this paper.

REFERENCES
1. C. Ahlberg and E. Wistrand. Ivee: an information visualization and exploration

environment. infovis, 00:66, 1995.

2. Sarita Bassil and Rudolf Keller. Software visualization tools: Survey and
analysis. In 9th. International Workshop on Program Comprehension
(IWPC’01), pages 7–17, 2001.

3. E. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach to information
visualization. In IEEE Information Visualization ’97, 1997.

4. W. Clancey, P. Sachs, M. Sierhuis, and R. van Hoof. Brahms: Simulating
practice for work systems design. International Journal of Human-Computer
Studies, 49:831–865, 1998.

5. Camil Demetrescu, Irene Finocchi, and John T. Stasko. Specifying algorithm
visualizations: Interesting events or state mapping? In Revised Lectures on
Software Visualization, International Seminar, pages 16–30, London, UK, 2002.
Springer-Verlag.

6. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous
and Practical Approach. Course Technology, 1998.

7. Charles Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

8. J.O’Madadhain, D. Fisher, S. White, and Y. Boey. The jung (java universal
network/graph) framework. Technical Report 03-17, University of California,
Irvine-School of Information and Computer Science, October 2003.

9. Rilla Khaled, James Noble, and Robert Biddle. Inspect j: Program monitoring
for visualisation using aspectj.

10. Yingsha Liao and Donald Cohen. A specificational approach to high level
program monitoring and measuring. IEEE Trans. Softw. Eng., 18(11):969–978,
1992.

11. J. Mackinlay. Applying a theory of graphical presentation to the graphic design
of user interfaces. In 1st Annual ACM SIGGRAPH Symposium on User Interface
Software, 1988.

12. Rajiv Maheswaran, Craig Rogers, Romeo Sanchez, and Pedro Szekely.
Distributed coordination in uncertain multiagent systems. In 6th. International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’07), 2007.

13. Marvin Minsky. The Psychology of Computer Vision, pages 211–277. New York:
McGraw-Hill, p. winston edition, 1975.

14. Hyacinth S Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collis.
ZEUS: a toolkit and approach for building distributed multi-agent systems. In
Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), pages 360–361, 1999.

15. Fikes R.E. and T. Kehler. The role of frame-based representation in knowledge
representation and reasoning. Communications of the ACM, 28(9):904–920,
1985.

16. W. Schroeder, L. Avila, and W. Hoffman. Visualizing with vtk: A tutorial. IEEE
Computer Graphics and Applications, 20:20–27, 2000.

17. John T. Stasko. Tango: A framework and system for algorithm animation.
Computer, 23(9):27–39, 1990.

18. P. Szekely, M. Becker, S. Fitzpatrick, G. Gati, D. Hanak, J. Jin, G. Karsai, R.T.
Maheswaran, R. Neches, C.M. Rogers, R. Sanchez, and C. VanBuskirk. Csc:
Criticality-sensitive coordination. In 5th. International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’06), Demo Session, 2006.
Demo at: http://www.isi.edu/∼szekely/csc/aamas06/csc-demo-v01.html.

19. Pedro Szekely, Craig Milo Rogers, and Martin Frank. Interfaces for
understanding multi-agent behavior. In IUI ’01: Proceedings of the 6th
international conference on Intelligent user interfaces, pages 161–166, New
York, NY, USA, 2001. ACM Press.

20. Christian Tominski and Heidrun Schumann. An event-based approach to
visualization. In IV ’04: Proceedings of the Information Visualisation, Eighth
International Conference on (IV’04), pages 101–107, Washington, DC, USA,
2004. IEEE Computer Society.

21. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems Volume
II: The New Technologies, chapter 16, pages 982–983. W.H. Freeman and
Company, 1989.

49

