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Abstract: Convolutional neural networks (CNNs) such as encoder–decoder CNNs have increasingly been employed for
semantic image segmentation at the pixel-level requiring pixel-level training labels, which are rarely available in real-world
scenarios. In practice, weakly annotated training data at the image patch level are often used for pixel-level segmentation tasks,
requiring further processing to obtain accurate results, mainly because the translation invariance of the CNN-based inference
can turn into an impeding property leading to segmentation results of coarser spatial granularity compared with the original
image. However, the inherent uncertainty in the segmented image and its relationships to translation invariance, CNN
architecture, and classification scheme has never been analysed from an explicitly spatial perspective. Therefore, the authors
propose measures to spatially visualise and assess class decision confidence based on spatially dense CNN predictions,
resulting in continuous decision confidence surfaces. They find that such a visual-analytical method contributes to a better
understanding of the spatial variability of class score confidence derived from weakly supervised CNN-based classifiers. They
exemplify this approach by incorporating decision confidence surfaces into a processing chain for the extraction of human
settlement features from historical map documents based on weakly annotated training data using different CNN architectures
and classification schemes.

1 Introduction
The renaissance of convolutional neural networks (CNNs) and
other machine learning methods for recognition tasks in computer
vision has also catalysed the application of such frameworks for
information extraction tasks in the geospatial sciences. Recently,
approaches for object detection, scene classification, and semantic
segmentation have been applied to remotely sensed geospatial data
and have shown promising results outperforming traditional
methods [1, 2]. Whereas most contributions focus on the training
and evaluation of their approaches using benchmark datasets (e.g.
[3, 4]), only a few efforts tackle the challenging task of applying
these approaches to real-world data. Many of the popular
benchmark datasets come with pixel-level reference data, often
generated through manual efforts that can be used to train and
validate the models within a controlled environment.

However, accurate and abundant training labels at the pixel
level (Fig. 1a, left) are often not available in real-world application
scenarios. Training labels at the patch level (Fig. 1a, right)
describing the semantic content of a patch of an image rather than a
pixel are typically easier to obtain. If only patch-level labels are
available to train a model for pixel-level inference, we speak of
weakly supervised learning or weakly annotated training data [5].
State-of-the-art segmentation architectures that require pixel-level
training annotations such as proposed in [6, 7] cannot be used
directly in such cases. 

Using weakly annotated training data for segmentation tasks at
the pixel level has one major shortcoming, which is the translation
invariance property of the CNNs. It causes a loss in spatial
granularity since the image content in a (static) image patch around
a centre pixel influences the predicted class of the centre pixel
(Fig. 1b). This typically results in a spatially inflated segmentation
of less spatial details (Fig. 1c). In response to such shortcomings,
researchers have developed methods that rely on expectation–
maximisation techniques [8], alternative pooling techniques [9],

conditional random fields [10], and superpixel-based segmentation
methods [11]. The quantitative analysis of translation invariance,
its consequences for predictions, and how it is impacted by CNN
architecture, training configuration and chosen hyperparameters is
an active research field. In [12] for example, translation invariance
is quantified using translation-sensitivity maps based on augmented
(i.e. artificially shifted) training data.

However, the effects of translation invariance have not
explicitly been studied from a spatial point of view which is
surprising given the growing number of deep learning applications
in the geospatial sciences (e.g. [13–18]). Hence, in this
contribution, we propose a framework for the spatially explicit
analysis of such effects and how they relate to training data, CNN
architecture, and chosen hyperparameters. For this purpose, we
propose a visual-analytical approach based on uncertainty surfaces
derived from dense pixel-wise CNN predictions reflecting the
spatial variation of class decision confidence of a weakly
supervised CNN. The analysis is exemplified by the extraction of
human settlement features from scanned historical topographic
map documents.

Deep learning techniques have increasingly been applied for
information extraction from earth observation data, and this
naturally projects into the idea of applying such techniques to other
types of geospatial data. Historical maps contain valuable
information on the evolution of natural, environmental or human-
induced geographic processes. Map processing aims to
systematically extract such spatial information and transition it into
analysis-ready digital data formats [19].

Efficient graphics recognition of historical maps is impeded to
date, mainly due to the issues of poor graphical quality and large
data volume, which is a common problem when thousands of
historical map sheets are scanned and stored in digital map
archives. To overcome the need for user intervention and manual
training in a recognition system, we are developing techniques to
fully automate the process of extracting geographic information
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from scanned historical cartographic documents [20, 21]. The goal
of such information extraction efforts is to make the data in these
documents accessible for spatial-temporal analysis of landscape
patterns and their changes. One approach to improve recognition
performance is to incorporate contextual geographic layers to make
use of the fact that map series represent evolutionary documents
that change in cumulative ways [22].

The concept of geographic context implies the effective use of
ancillary geographic information that contains the feature of
interest such as gazetteers or other map series for guided graphics
sampling in training a recognition model [23–25]. For example, it
can be assumed that many building symbols in a historical map
spatially overlap or are in close proximity to building objects in a
contemporary geographic dataset. Thus, sampling nearby the
contemporary building objects enables a system to collect graphic

examples of building symbology in historical maps and facilitates
creating high-quality training data at the image patch level.

In this study, we first demonstrate the use of the geographic
contextual data to guide graphics sampling for automatically
generating training labels at the image patch level, which are then
used for the extraction of building symbols and urban areas in
historical map sheets by performing semantic segmentation at the
pixel level using different CNN architectures and classification
configurations. Since the training labels are obtained for sample
image patches, this process constitutes a typical case of weakly
annotated training data. Secondly, we validate the resulting
segmentation against manually created reference data, and then
demonstrate how spatial uncertainty measures derived from the
CNN class scores can be employed to (i) assess translation
invariance-induced effects on the segmentation results and (ii)
identify potentially ill-trained CNN classifiers resulting from
inappropriate configuration, training, or classification scheme.
These effects on the accuracy of the resulting semantic
segmentation are systematically evaluated from a spatial point of
view.

2 Data and methods
2.1 Historical topographic maps

Recently, several historical (topographic) map series have been
made available to the public (e.g. [26, 27]). The United States
Geological Survey (USGS) has scanned more than 180,000
historical map sheets and stored the entire map series in a digital
archive. While urban areas in the USGS map sheets are similarly
coloured and textured areas, building symbols are shown as small
black rectangles or more complex polygons (Figs. 2 and 3c). We
tested our approach on a map sheet of Boulder, Colorado (1966) at
a map scale of 1:24,000 scanned at a resolution of ∼500 dpi (dots
per inch) in the RGB colour space. 

2.2 Automated training data generation

In [28], we proposed an approach for automatic training data
generation based on cadastral parcel records and building footprint
data as contextual information. The temporal information of when
a building has been established can be derived from the parcel data
attributes and allows for reconstructing the spatial distribution of
parcel units with built structures at a given point in time. Spatially
refining these parcel boundaries with high-resolution LiDAR-
derived building footprint data makes it possible to create
snapshots of the existing buildings at different points in time,
allowing for the creation of training samples of settlement features
with relatively high reliability. However, such rich training data
based on LiDAR are available for only a selected number of
counties in the U.S., restricting training data generation to those
regions.

To generate training data from maps covering larger spatial
extents, we used a settlement location database derived from the
Zillow Transaction and Assessment Dataset [29] in this
experiment. This database contains geographic coordinates of
approximated address points and information about the year when
a structure was built, which allows for reconstructing building
locations at a fine temporal resolution, but with a lower spatial
accuracy (Fig. 3a). For this study, our automatic approach created
training samples for 15 topographic map sheets of five different
locations in Colorado (USA) and three points in time to test
different geographic settings and changing the cartographic design
that may affect the way how settlements are cartographically
represented in the maps. These 15 map sheets include the test map
shown in Fig. 2. Based on the locations given in the contextual
data, we collected the candidate samples of the underlying map
document. The cropped sample patches have dimensions of 42 × 42
pixels (corresponding to ∼50 × 50 m).

We expected the recognition of urban areas to be straight-
forward due to the dominating uniform background colours
(Fig. 3b). A major expected challenge for the recognition of
individual buildings (Fig. 3c) was the discrimination of building
features from the other black content in the map, such as black text

Fig. 1  The concept of weakly annotated training labels and its effect on
segmentation results
(a) Examples of pixel-level training labels and a weakly annotated patch-level training
label, (b) Spatial granularity loss in weakly supervised image segmentation: centre
pixel of the CNN input patches are labelled as class ‘building’ due to the translation
invariant property, (c) Resulting spatially inflated segmentation (red) overlaid with
original object outline (dashed)

 

Fig. 2  Subset of the Boulder map (1966) used in these experiments
 

Fig. 3  Training data collection
(a) Contextual settlement data extracted from the Zillow database with derived sample
patch extents and underlying map data, and exemplary extracted training samples at
patch-level for the four classes, (b) Urban area, (c) Individual buildings, (d) Black
negative, (e) Other negative content
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elements, whereas in [28] the extraction was considered a three-
class problem (i.e. individual buildings, urban areas, negative
class), in this study, we split the negative map content into black
non-building objects (Fig. 3d) and the remaining not-black content
as a fourth class (Fig. 3e). This resulted in a total of two positive
classes (i.e. individual building and urban area) and two negative
classes (i.e. negative black and negative other). We implemented
this separation using threshold-based, unsupervised image
processing methods, as described in the following. The effect of
reducing the in-class variability of the two negative classes will be
discussed in the Results section, where we will evaluate the results
based on both classification schemes. The training labels are
automatically derived (i) based on the proximity of sample
locations to contextual data points and (ii) based on the content of
the samples. The spatial proximity of sample locations to the
contextual data points indicates the likely class membership (close 
= positive candidate samples, distant = negative candidate
samples).

However, to determine the exact label (e.g. a positive candidate
sample can be a member of the individual building class or belong
to the urban class, or neither of them), we used an unsupervised
hierarchical classification approach to examine the content of the
candidate samples, involving a variety of image processing
techniques (see Fig. 4). In addition to the label assignment, this
procedure also performed sample cleaning, since discrepancies
between map data and the used contextual data may cause incorrect
training samples (e.g. some training samples for the building class
do not contain a building object). 

This fully automatic multi-stage workflow first identified
samples containing urban areas based on colour segmentation and
identification of the dominant colour (step 1) from the set of
positive candidate samples. The procedure then tests remaining
samples for the black content. Gaussian filtering and, additionally
to the method proposed in [28], morphologic operations were used
to filter out the irrelevant black objects based on their size, and
edge detection was used to quantify the complexity of the
remaining black objects.

Here, the black objects of high complexity were considered
more likely to represent text, and the remaining dark objects were
considered individual building symbols. They were identified using
SIFT [30] key point detection applied to the filtered sample image
(step 2). Furthermore, we extended the method described in [28] to
distinguish between black negative and other negative samples.
From the pool of negative candidate samples (i.e. samples collected
at locations distant from the contextual data where no settlements
are expected), we assigned labels for the respective negative
classes based on the number of black pixels in the samples. Since
contrast levels determined by the scanning process and
cartographic styles may vary across different map sheets, there is a
potential risk of assigning incorrect labels. Hence, we visually
assessed the results of this unsupervised training data generation
using t-distributed stochastic neighbourhood embedding (t-SNE,
[31]) plots, where the random subsets of the training samples are
arranged in a two-dimensional space in a way that similar samples
of the same class are located nearby (Fig. 5). This allows for a
quick and efficient visual assessment of the correctness and
representativeness of the created training samples in all four
classes. 

2.3 Semantic segmentation using weakly supervised CNNs

Following the law of parsimony, we tackled the map segmentation
task, firstly, using the simplest available CNN architecture, namely
the classical LeNet model with two convolutional, two pooling,
and two fully connected layers that has proven good performance
on simple image recognition tasks [32] and can be trained on a
common desktop machine without the need for high-performance
graphical processing unit servers (Fig. 6a). We compared this light-
weight approach with a VGGNet-S model, which is a shallow
variant of the VGGNet with a total of 11 layers (five convolutional
layers, three pooling layers, and three fully connected layers, [33],
see Fig. 6b). 

This comparison will allow for examining how sensitive the
model performance is to increase the depth of the network as an
outlook for future directions. In the following experiment, we
produced and compared the segmentation results for four different
scenarios (Table 1). 

First, we employed LeNet trained on 30,000 samples from the
same individual map that is used for inference. The training labels
represented three classes (i.e. urban, individual buildings, and a
non-settlement class) which we named LeNet A (see [28]). In the
second scenario (LeNet B), we included a fourth class as
previously described to reduce in-class variability in the negative
classes, keeping the same training samples as in the LeNet A
scenario still applied to one map page. The third scenario (LeNet
C) used the four training labels used in LeNet B but incorporated aFig. 4  Workflow of the automated training data generation

 

Fig. 5  t-SNE plots and corresponding enlargements for visual assessment of the automatically generated training samples
(a) Urban areas, (b) Individual buildings, (c) Negative black, (d) Negative other class

 
IET Image Process.
© The Institution of Engineering and Technology 2018

3



much larger training dataset (N = 400,000) from 15 different map
sheets. Finally, the fourth scenario used the same four class labels
and the same large training dataset (N = 400,000) from 15 map
pages, but this time we trained the above described VGGNet-S
model.

These four scenarios covered different combinations of training
sample size, number of classes, CNN architecture, and number of
training epochs and allowed for assessing the relationship between
these settings and the resulting segmentations and corresponding
uncertainty measures. For each trained CNN, we generated dense
pixel-wise predictions with a stride of one pixel and registered the
obtained class scores at each pixel location. In addition to the
subset shown in Fig. 2, we generated a small de-noised test patch
that only contains an individual building object. We manually
removed all other map content to investigate and illustrate the
spatial behaviour of the CNNs across this patch focusing on the
salient feature without background noise (Fig. 7). We used this test
patch to visually assess the class scores and uncertainty measures
for each of the four scenarios. 

2.4 Deriving uncertainty measures

To evaluate the performance of the different segmentations, we
generated overall accuracy (OA) measures by performing pixel-
wise map comparison to a manually generated reference dataset for
the test map extent described before. We generated confusion
matrices for each scenario, and derived accuracy measures,
measuring external uncertainty, since these measures are obtained
by comparison to independently generated validation data. These
measures include the class-independent measures OA, the κ index
of agreement [34], and the entropy-based normalised mutual
information index (NMI, [35]).

Since OA (i.e. the proportion of correct predictions among all
predictions), tends to yield inflated values in the case of
imbalanced class proportions [36], we also reported κ index and
NMI that describe overall agreement in more conservative but
more robust ways, accounting for chance agreement (κ) and based
on mutual dependence between validation and test data (NMI),
respectively. κ index is defined as

κ = p0 − pc
1 − pc

(1)

with p0 = OA and pc representing agreement by chance

pc = 1
N2 ∑

k
nk Refnk Test, (2)

where N is the number of overall predictions and nk are the
frequencies how often class k is predicted by the test data and the
reference data, respectively. NMI is based on the entropies of
reference class labels H(R), of predicted labels H(P) and the joint
entropy H(R, P) as

NMI = 1 − H(R, P) − H(P)
H(R) . (3)

Additionally, we reported class-specific accuracy measures
including precision and recall [37], whereas the class-independent
measures characterise the overall capacity of the CNNs to
reproduce the validation data and allow for quantitative
comparison between different segmentation results, the class-
specific measures provide insights into the degree of confusion
between individual classes constituting valuable information for
model improvement. These measures describe external uncertainty
in a non-spatial manner. In addition to that, we created several
spatial layers to analyse spatial variability in the internal
confidence of the CNNs in discriminating between the different
classes at each location. The spatial variables computed are (i)
class score surfaces (score maps) for each class and (ii) several
pixel-wise measures to characterise the CNN decision confidence,
such as the difference between the highest and the second highest
class score S1–S2, the ratio of the lowest and the highest class score
Smin/Smax, and the entropy H(S) of the class scores. These variables
measure internal uncertainty since they characterise internal
decision confidence without taking into account external reference
data. These measures can be used to describe decision confidence
at each pixel location regarding the absolute difference, the relative
difference, and the variety of class scores, respectively. The
resulting surfaces describing the spatial variation of class decision
confidence can be used as a visual-analytical tool to assess
translation invariance, but also to diagnose overfitted, underfitted,
or ill-trained classifiers. We visually compared the surfaces

Fig. 6  Architectures of the CNNs used in this study
(a) LeNet, (b) VGGNet-S

 

Table 1 CNN scenarios
CNN configuration Training samples Classes Training epochs Learning rate Step size
LeNet A 30k 3 10 0.001 0.0001
LeNet B 30k 4 10 0.001 0.0001
LeNet C 400k 4 20 0.001 0.0001
VGGNet-S 400k 4 60 0.001 0.0001

 

Fig. 7  Background noise removal for explicit analysis of salient features
(a) Original and, (b) the manually cleaned map subset to assess spatial variability of
the CNN prediction behaviour
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generated from these three variables in order to assess their spatial
variations and their capacity to effectively describe the decision
confidence.

3 Results
3.1 Semantic segmentation

To create segmentations of the test map, we assigned the class label
of the highest class score to each pixel. The segmented maps can
be seen in Fig. 8. Since the two negative classes are semantically
identical and the validation data is available at a semantic
resolution of three classes (i.e. urban areas, individual buildings,
and non-settlements), the two negative classes were visualised
using the same green colour and were merged for the subsequent
external accuracy assessment. Comparing the segmentation results
with the original map (Fig. 2), it can be observed that the urban
areas are extracted well in the four scenarios, indicating that all
CNNs learned to distinguish urban areas from the remaining
classes, reliably, based on the colour or texture. Differences can be
observed in the smoothness of the boundaries of the urban areas,
where the scenarios LeNet A and B show smooth and rounded
boundaries, LeNet C and VGGNet-S show more rugged patterns,
possibly because the latter two CNNs were trained on a much
larger amount of training samples, which increased the complexity
of the classification problem. 

The detection of individual building symbols differed
significantly between the four scenarios, whereas in LeNet A, the
CNN apparently only learned to be receptive to colours, resulting
in labelling any dark pixel as an individual building, the effect of
introducing a ‘black non-settlement’ class is clearly visible in
LeNet B, where the number of false positives (i.e. black text
elements labelled as individual buildings) has dropped
considerably by reducing the in-class variability of the two
negative classes. Interestingly, the deeper VGGNet-S falsely
detected more text elements as individual buildings than the LeNet
B and LeNet C. One reason might be that VGGNet-S was
overfitted due to the extensive training (60 epochs) and learned
also from the noise inherent in the training data. This is also
indicated by the increased confusion between the urban area and
individual buildings in the VGGNet-S segmentation result.

3.2 External uncertainty assessment

We quantified external uncertainty based on the pixel-wise map
comparison with the manually digitised (external) reference
dataset, i.e. we generated a confusion matrix for each scenario
(Fig. 9) to assess the external uncertainty in the created
segmentations. Based on these confusion matrices, we derived
class-independent accuracy measures (i.e. OA, κ index, and NMI),
and class-specific accuracy measures (i.e. precision and recall)
(Table 2). It is notable that the confusion between individual
buildings and the negative class (i.e. the ‘no bldgs.’ column) seems
to be least for the LeNet B scenario (Fig. 9b), resulting in the
highest class-independent accuracy measures and the highest
precision of the individual building class across the four scenarios. 

3.3 Internal uncertainty assessment

In addition to the assessment of external uncertainty by comparing
the segmentation results with independently generated reference
data, we assessed the ‘internal’ uncertainty inherent in the decision
process of the four scenarios based on the created score maps of
each class (i.e. spatial visualisation of the class scores at each pixel
location).

To focus on the most challenging features in this experiment
(i.e. individual building symbols), we created these score maps also
for the de-noised subset in Fig. 7 for each of the four scenarios
(Fig. 10). 

These score maps allow for analysing the spatial behaviour of
the class scores for each CNN. It is notable for the individual
building class scores (second column from the left) that the regions
around the building symbol show higher class scores in the LeNet
C and VGGNet-S scenarios, both trained on a larger amount of
training data. This indicates a higher degree of translation
invariance, most likely due to the increased variety in the training

Fig. 8  Segmentation results for the four scenarios
(a) LeNet A, (b) LeNet B, (c) LeNet C, and (d) VGGNet-S

 

Fig. 9  Confusion matrices for the four scenarios, displayed in per cent of
the total study area
(a) LeNet A, (b) LeNet B, (c) LeNet C, (d) VGGNet-S
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data and higher generalisation/abstraction capabilities in the case of
the deeper VGGNet-S.

Besides the raw class score maps, the internal uncertainty
measures derived from the class scores S1–S2, Smin/Smax, and H(S)

are shown for the de-noised subset in Fig. 11. These plots provide
some insight into the decision confidence across space for each
scenario. LeNet A shows linear drops in decision confidence
around the building symbol, resulting in a thin dark line in the S1–
S2, surface. 

This indicates a high degree of translation invariance that can
be explained by pure receptiveness to colours: as soon as a few
black pixels are found in the convoluting window, the decision
confidence is high, and the CNN labels the pixel as an individual
building.

The S1–S2 surface for the LeNet B scenario (second row) shows
how class confidence drops at non-settlement locations (i.e. the
grey areas) due to the introduction of a second negative class, and
how the class confidence increases drastically when the
convoluting window is centred at the building object. LeNet B
shows very low translation invariance due to the introduction of the
black-negative class: only if the building is close to the centre of
the search window, the centre pixel is labelled as an individual
building. The increasing translation invariance in LeNet C and
VGGNet-S is clearly reflected in the larger rectangle around the
building location. The diffuse artefacts in the S1–S2 surface for
LeNet C and VGGNet-S indicate that decision confidence varies
with small shifts across the map. This might be a consequence of
the CNN being incapable to successfully solve the given
classification problem (LeNet C) or overfitted because it has also
learned from noise in the data (VGGNet-S).

Additionally, we show S1–S2 for the entire map subset (Fig. 12).
The patterns, which have to be read in conjunction with the
segmentation results in Fig. 8, confirm the observations made for
the de-noised subset and show again a highly localised variation in
decision confidence for the LeNet C and VGGNet-S scenarios. 

4 Conclusions and outlook
This study discusses a spatial approach to uncertainty assessment
in image segmentation using weakly supervised CNNs,
exemplified by a method for settlement recognition in historical
topographic map documents. The described case study is a typical
example of weakly supervised learning, where no training data is
available a priori, and training annotations have to be generated at
the image patch level using an unsupervised, threshold-based
labelling method based on image processing techniques. The
resulting training annotations are then used to train CNNs for
classification at the patch level. However, the trained CNNs are
employed for the pixel-level inference, which can be particularly
problematic for small objects such as the building symbols. The
presented segmentation results, which will systematically be
improved in the next steps of this research, and the derived aspatial
accuracy measures (e.g. the low-precision values for the individual
building class) reflect effects of translation invariance, insufficient
generalisation capability, and overfitting, and clearly demonstrate
the necessity of post-processing methods such as superpixel-based
segmentation approaches [11] in order to increase the correctness
and the spatial granularity of the segmentation.

Table 2 Accuracy measures derived from the confusion matrices for the four segmentation scenarios
Scenario Accuracy measures Class Precision Recall
LeNet A NMI 0.38 no bldgs. 1.00 0.56

OA 0.73 urban areas 0.75 1.00
κ 0.54 indiv. bldgs. 0.05 0.98

LeNet B NMI 0.46 no bldgs. 0.99 0.74
OA 0.84 urban areas 0.75 1.00
κ 0.69 indiv. bldgs. 0.13 0.77

LeNet C NMI 0.37 no bldgs. 0.99 0.6
OA 0.75 urban areas 0.72 1.00
κ 0.56 indiv. bldgs. 0.03 0.47

VGGNet-S NMI 0.33 no bldgs. 1.00 0.53
OA 0.71 urban areas 0.66 1.00
κ 0.50 indiv. bldgs. 0.04 0.49

 

Fig. 10  Segmentation results (left column) and class score surfaces
(highest = white) for the four classes: individual building, urban area, non-
settlement black, other non-settlement content (from left to right), for each
scenario: LeNet A, LeNet B, LeNet C, and VGGNet-S (from top to bottom)

 

Fig. 11  Class decision confidence surfaces S1–S2, Smin/Smax, and H(S)
(from left to right) for the scenarios LeNet A, LeNet B, LeNet C, and
VGGNet-S (from top to bottom, highest = white)
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Several measures derived from the class score maps that
describe class decision confidence are compared visually and show
how these decision confidence surfaces indicate uncertainty in the
resulting segmentation due to the translation invariance and
potentially overfitted or overly shallow CNNs. The created
decision confidence maps represent valuable visual-analytical tools
to diagnose overfitted, ill-trained or underfitted learners, with a
focus on weakly supervised CNNs, however, these tools are
applicable to other probabilistic classifiers as well. In addition to
that, the decision confidence surfaces illustrate the relationship
between translation invariance and depth of the applied CNN
architectures.

Future work will include the spatialisation of external
uncertainty measures (e.g. focal κ index based on spatially
constrained confusion matrices) successfully applied in uncertainty
modelling in historical maps [38] and the application of superpixel
methods [11] in order to spatially refine the segmented maps
created based on weakly annotated training data. The spatially
explicit analysis of decision confidence with respect to distance
and direction from presumably salient features in the test images
can identify the effects of anisotropy in translation invariance,
which may indicate systematic offsets in the used training data or
effects of lacking rotation invariance of certain CNN
configurations. Furthermore, the potential of a multi-stage
segmentation approach will be tested, where the pixel-wise
predictions from a spatially refined segmentation will be used as
pixel-level training data for fully convolutional networks [7],
which will allow for end-to-end learning of settlement features in
historical topographic maps.
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